1
|
Fan X, Zhang A, Zhang T, Tu M, Du Q, Ling N, Wu J, Zeng X, Wu Z, Pan D. Effects of Semen Ziziphi Spinosae extract and binary probiotics co-fermentation on the quality of yogurt and their underlying molecular mechanisms. Food Chem X 2024; 21:101191. [PMID: 38357367 PMCID: PMC10864216 DOI: 10.1016/j.fochx.2024.101191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/20/2024] [Accepted: 02/02/2024] [Indexed: 02/16/2024] Open
Abstract
The study aimed to investigate the impact of water-soluble extract from Semen Ziziphi Spinosae (SZSE) on yogurt quality and understand the underlying mechanism. The results demonstrated that adding 0.5% (w/v) SZSE had a significant effect on reducing yogurt syneresis and resulted in a more compact and uniform casein gel. Notably, the co-fermented yogurt with binary probiotics (Lacticaseibacillus casei CGMCC1.5956 and Levilactobacillus brevis CGMCC1.5954) along with SZSE led to increased viable probiotics and a higher odor score (23.23). This effect might be attributed to the increased amino acid utilization by binary probiotics through biosynthesis of valine, leucine and isoleucine, metabolic pathways, and amino acid biosynthesis to produce amino acid derivatives such as N5-(l-1-carboxyethyl)-l-ornithine and diaminopyrimidine acid. The yogurt contained 79 volatile flavor compounds, with hexanoic acid, 2-heptanone, and 2-nonanone potentially contributing to the high odor scores. These findings have strategic implications for developing yogurt with high gel characteristics and distinctive flavor.
Collapse
Affiliation(s)
- Xiankang Fan
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Ang Zhang
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Tao Zhang
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Maolin Tu
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Qiwei Du
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Nan Ling
- Nanjing Weigang Dairy Co., Nanjing 211100, China
| | - Jihuan Wu
- Ningbo Yifule Biotechnology Co., Ltd., Ningbo 315500, China
| | - Xiaoqun Zeng
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Zhen Wu
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Daodong Pan
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
2
|
He L, Chen J, Deng P, Huang S, Liu P, Wang C, Huang X, Li Y, Chen B, Shi D, Xiao Y, Chen X, Ouyang Y, Song L, Lin C. Lysosomal cyst(e)ine storage potentiates tolerance to oxidative stress in cancer cells. Mol Cell 2023; 83:3502-3519.e11. [PMID: 37751742 DOI: 10.1016/j.molcel.2023.08.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 07/17/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023]
Abstract
Cyst(e)ine is a key precursor for the synthesis of glutathione (GSH), which protects cancer cells from oxidative stress. Cyst(e)ine is stored in lysosomes, but its role in redox regulation is unclear. Here, we show that breast cancer cells upregulate major facilitator superfamily domain containing 12 (MFSD12) to increase lysosomal cyst(e)ine storage, which is released by cystinosin (CTNS) to maintain GSH levels and buffer oxidative stress. We find that mTORC1 regulates MFSD12 by directly phosphorylating residue T254, while mTORC1 inhibition enhances lysosome acidification that activates CTNS. This switch modulates lysosomal cyst(e)ine levels in response to oxidative stress, fine-tuning redox homeostasis to enhance cell fitness. MFSD12-T254A mutant inhibits MFSD12 function and suppresses tumor progression. Moreover, MFSD12 overexpression correlates with poor neoadjuvant chemotherapy response and prognosis in breast cancer patients. Our findings reveal the critical role of lysosomal cyst(e)ine storage in adaptive redox homeostasis and suggest that MFSD12 is a potential therapeutic target.
Collapse
Affiliation(s)
- Lixin He
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jinxin Chen
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Pinwei Deng
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Shumei Huang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Pian Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chanjuan Wang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xinjian Huang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yue Li
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Boyu Chen
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Dongni Shi
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yunyun Xiao
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xiangfu Chen
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ying Ouyang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Libing Song
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Institute of Oncology, Tumor Hospital, Guangzhou Medical University, Guangzhou 510080, China
| | - Chuyong Lin
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; Guangdong Esophageal Cancer Institute, Guangzhou 510060, China.
| |
Collapse
|
3
|
Fan X, Yu L, Shi Z, Li C, Zeng X, Wu Z, Pan D. Characterization of a novel flavored yogurt enriched in γ-aminobutyric acid fermented by Levilactobacillus brevis CGMCC1.5954. J Dairy Sci 2023; 106:852-867. [PMID: 36494222 DOI: 10.3168/jds.2022-22590] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/02/2022] [Indexed: 12/12/2022]
Abstract
This study developed and characterized a γ-aminobutyric acid (GABA)-enriched yogurt fermented by Levilactobacillus brevis CGMCC1.5954. The GABA content in the yogurt was 147.36 mg/100 mL, which was 317.06% higher than that of the control group. Furthermore, there was a significant improvement in the aroma, hardness, adhesion, cohesiveness, and gelatinousness of yogurt. The chromatography and metabolomics analyses further confirmed the high GABA content in yogurt and its nutritional value, and the metabolic pathway for GABA production by L. brevis 54 was identified. A total of 58 volatile flavor compounds were identified using headspace solid-phase microextraction-gas chromatography-mass spectrometry, of which 2-nonanone and 2-heptanone may be responsible for the high odor score of GABA-enriched yogurt. This study developed a nutritious and unique GABA-enriched flavored yogurt, summarized the metabolic pathway of GABA, and provided a flavor fingerprint that could guide the production of specifically flavored yogurts.
Collapse
Affiliation(s)
- Xiankang Fan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Luyun Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Zihang Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Chunwei Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China.
| |
Collapse
|
4
|
Effect of single probiotics Lacticaseibacillus casei CGMCC1.5956 and Levilactobacillus brevis CGMCC1.5954 and their combination on the quality of yogurt as fermented milk. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113530] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Kanai Y. Amino acid transporter LAT1 (SLC7A5) as a molecular target for cancer diagnosis and therapeutics. Pharmacol Ther 2021; 230:107964. [PMID: 34390745 DOI: 10.1016/j.pharmthera.2021.107964] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/30/2021] [Indexed: 01/13/2023]
Abstract
Cancer cells require a massive supply of nutrients, including sugars and amino acids-the upregulation of transporters for each nutrient contributes to meet the demand. Distinct from glucose transporters, amino acid transporters include ones whose expression is specific to cancer cells. For example, LAT1 (SLC7A5) displays protein expression mostly limited to the plasma membrane of cancer cells. The exceptions are the placental barrier and the blood-brain barrier, where immunohistochemical and mass spectrometric studies have shown LAT1 expression, although their levels are supposed to be lower than those in cancers. The expression of LAT1 has been reported in cancers from various tissue origins, where high LAT1 expression is related to the poor prognosis of patients. LAT1 is essential for cancer cell growth because the pharmacologic inhibition and knockdown/knockout of LAT1 suppress the proliferation of cancer cells and the growth of xenograft tumors. The inhibition of LAT1 suppresses protein synthesis by downregulating the mTORC1 signaling pathway and mobilizing the general amino acid control (GAAC) pathway in cancer cells. LAT1 is, thus, a candidate molecular target for the diagnosis and therapeutics of cancers. 18F-labeled 3-fluoro-l-α-methyl-tyrosine (FAMT) is used as a LAT1-specific PET probe for cancer detection due to the LAT1 specificity of α-methyl aromatic amino acids. FAMT accumulation is cancer-specific and avoids non-cancer lesions, including inflammation, confirming the cancer-specific expression of LAT1 in humans. Due to the cancer-specific nature, LAT1 can also be used for cancer-specific delivery of anti-tumor agents such as l-para-boronophenylalanine used for boron neutron capture therapy and α-emitting nuclide-labeled LAT1 substrates developed for nuclear medicine treatment. Based on the importance of LAT1 in cancer progression, high-affinity LAT1-specific inhibitors have been developed for anti-tumor drugs. JPH203 (KYT0353) is such a compound designed based on the structure-activity relationship of LAT1 ligands. It is one of the highest-affinity inhibitors with less affecting other transporters. It suppresses tumor growth in vivo without significant toxicity in preclinical studies at doses enough to suppress tumor growth. In the phase-I clinical trial, JPH203 appeared to provide promising activity. Because the mechanisms of action of LAT1 inhibitors are novel, with or without combination with other anti-tumor drugs, they could contribute to the treatment of cancers that do not respond to current therapy. The LAT1-specific PET probe could also be used as companion diagnostics of the LAT1-targeting therapies to select patients to whom therapeutic benefits could be expected. Recently, the cryo-EM structure of LAT1 has been solved, which would facilitate the understanding of the mechanisms of the dynamic interaction of ligands and the binding site, and further designing new compounds with higher activity.
Collapse
Affiliation(s)
- Yoshikatsu Kanai
- Department of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
6
|
Drew D, North RA, Nagarathinam K, Tanabe M. Structures and General Transport Mechanisms by the Major Facilitator Superfamily (MFS). Chem Rev 2021; 121:5289-5335. [PMID: 33886296 PMCID: PMC8154325 DOI: 10.1021/acs.chemrev.0c00983] [Citation(s) in RCA: 178] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Indexed: 12/12/2022]
Abstract
The major facilitator superfamily (MFS) is the largest known superfamily of secondary active transporters. MFS transporters are responsible for transporting a broad spectrum of substrates, either down their concentration gradient or uphill using the energy stored in the electrochemical gradients. Over the last 10 years, more than a hundred different MFS transporter structures covering close to 40 members have provided an atomic framework for piecing together the molecular basis of their transport cycles. Here, we summarize the remarkable promiscuity of MFS members in terms of substrate recognition and proton coupling as well as the intricate gating mechanisms undergone in achieving substrate translocation. We outline studies that show how residues far from the substrate binding site can be just as important for fine-tuning substrate recognition and specificity as those residues directly coordinating the substrate, and how a number of MFS transporters have evolved to form unique complexes with chaperone and signaling functions. Through a deeper mechanistic description of glucose (GLUT) transporters and multidrug resistance (MDR) antiporters, we outline novel refinements to the rocker-switch alternating-access model, such as a latch mechanism for proton-coupled monosaccharide transport. We emphasize that a full understanding of transport requires an elucidation of MFS transporter dynamics, energy landscapes, and the determination of how rate transitions are modulated by lipids.
Collapse
Affiliation(s)
- David Drew
- Department
of Biochemistry and Biophysics, Stockholm
University, SE 106 91 Stockholm, Sweden
| | - Rachel A. North
- Department
of Biochemistry and Biophysics, Stockholm
University, SE 106 91 Stockholm, Sweden
| | - Kumar Nagarathinam
- Center
of Structural and Cell Biology in Medicine, Institute of Biochemistry, University of Lübeck, D-23538, Lübeck, Germany
| | - Mikio Tanabe
- Structural
Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Oho 1-1, Tsukuba, Ibaraki 305-0801, Japan
| |
Collapse
|
7
|
Fairweather SJ, Shah N, Brӧer S. Heteromeric Solute Carriers: Function, Structure, Pathology and Pharmacology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 21:13-127. [PMID: 33052588 DOI: 10.1007/5584_2020_584] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Solute carriers form one of three major superfamilies of membrane transporters in humans, and include uniporters, exchangers and symporters. Following several decades of molecular characterisation, multiple solute carriers that form obligatory heteromers with unrelated subunits are emerging as a distinctive principle of membrane transporter assembly. Here we comprehensively review experimentally established heteromeric solute carriers: SLC3-SLC7 amino acid exchangers, SLC16 monocarboxylate/H+ symporters and basigin/embigin, SLC4A1 (AE1) and glycophorin A exchanger, SLC51 heteromer Ost α-Ost β uniporter, and SLC6 heteromeric symporters. The review covers the history of the heteromer discovery, transporter physiology, structure, disease associations and pharmacology - all with a focus on the heteromeric assembly. The cellular locations, requirements for complex formation, and the functional role of dimerization are extensively detailed, including analysis of the first complete heteromer structures, the SLC7-SLC3 family transporters LAT1-4F2hc, b0,+AT-rBAT and the SLC6 family heteromer B0AT1-ACE2. We present a systematic analysis of the structural and functional aspects of heteromeric solute carriers and conclude with common principles of their functional roles and structural architecture.
Collapse
Affiliation(s)
- Stephen J Fairweather
- Research School of Biology, Australian National University, Canberra, ACT, Australia. .,Resarch School of Chemistry, Australian National University, Canberra, ACT, Australia.
| | - Nishank Shah
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Stefan Brӧer
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
8
|
Chiduza GN, Johnson RM, Wright GSA, Antonyuk SV, Muench SP, Hasnain SS. LAT1 (SLC7A5) and CD98hc (SLC3A2) complex dynamics revealed by single-particle cryo-EM. Acta Crystallogr D Struct Biol 2019; 75:660-669. [PMID: 31282475 PMCID: PMC7285653 DOI: 10.1107/s2059798319009094] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 06/25/2019] [Indexed: 12/13/2022] Open
Abstract
Solute carriers are a large class of transporters that play key roles in normal and disease physiology. Among the solute carriers, heteromeric amino-acid transporters (HATs) are unique in their quaternary structure. LAT1-CD98hc, a HAT, transports essential amino acids and drugs across the blood-brain barrier and into cancer cells. It is therefore an important target both biologically and therapeutically. During the course of this work, cryo-EM structures of LAT1-CD98hc in the inward-facing conformation and in either the substrate-bound or apo states were reported to 3.3-3.5 Å resolution [Yan et al. (2019), Nature (London), 568, 127-130]. Here, these structures are analyzed together with our lower resolution cryo-EM structure, and multibody 3D auto-refinement against single-particle cryo-EM data was used to characterize the dynamics of the interaction of CD98hc and LAT1. It is shown that the CD98hc ectodomain and the LAT1 extracellular surface share no substantial interface. This allows the CD98hc ectodomain to have a high degree of movement within the extracellular space. The functional implications of these aspects are discussed together with the structure determination.
Collapse
Affiliation(s)
- George N. Chiduza
- Molecular Biophysics Group, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, England
| | - Rachel M. Johnson
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, England
| | - Gareth S. A. Wright
- Molecular Biophysics Group, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, England
| | - Svetlana V. Antonyuk
- Molecular Biophysics Group, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, England
| | - Stephen P. Muench
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, England
| | - S. Samar Hasnain
- Molecular Biophysics Group, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, England
| |
Collapse
|