1
|
Zilecka E, Klima M, Stefek M, Dejmek M, Nencka R, Boura E. Structure of SARS-CoV-2 MTase nsp14 with the inhibitor STM957 reveals inhibition mechanism that is shared with a poxviral MTase VP39. J Struct Biol X 2024; 10:100109. [PMID: 39188530 PMCID: PMC11345338 DOI: 10.1016/j.yjsbx.2024.100109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/28/2024] Open
Abstract
Nsp14 is an RNA methyltransferase (MTase) encoded by all coronaviruses. In fact, many viral families, including DNA viruses, encode MTases that catalyze the methylation of the RNA precap structure, resulting in fully capped viral RNA. This capping is crucial for efficient viral RNA translation, stability, and immune evasion. Our previous research identified nsp14 inhibitors based on the chemical scaffold of its methyl donor - the S-adenosyl methionine (SAM) - featuring a modified adenine base and a substituted arylsulfonamide. However, the binding mode of these inhibitors was based only on docking experiments. To uncover atomic details of nsp14 inhibition we solved the crystal structure of nsp14 bound to STM957. The structure revealed the atomic details of nsp14 inhibition such that the 7-deaza-adenine moiety of STM957 forms specific interactions with Tyr368, Ala353, and Phe367, while the arylsulfonamide moiety engages with Asn388 and Phe506. The large aromatic substituent at the 7-deaza position displaces a network of water molecules near the adenine base. Surprisingly, this was recently observed in the case of an unrelated monkeypox MTase VP39, where the 7-deaza modified SAH analogs also displaced water molecules from the vicinity of the active site.
Collapse
Affiliation(s)
- Eva Zilecka
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Martin Klima
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Milan Stefek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Milan Dejmek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Radim Nencka
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| |
Collapse
|
2
|
Li X, Song Y. Perspective for Drug Discovery Targeting SARS Coronavirus Methyltransferases: Function, Structure and Inhibition. J Med Chem 2024; 67:18642-18655. [PMID: 39478665 DOI: 10.1021/acs.jmedchem.4c01749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Severe acute respiratory syndrome-associated coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), is highly contagious and caused a catastrophic pandemic. It has infected billions of people worldwide with >6 million deaths. With expedited development of effective vaccines and antiviral drugs, there have been significantly reduced SARS-CoV-2 infections and associated mortalities and morbidities. The virus is closely related to SARS-CoV, which emerged in 2003 and infected several thousand people with a higher mortality rate of ∼10%. Because of continued viral evolution and drug-induced resistance, as well as the possibility of a new coronavirus in the future, studies for new therapies are needed. The viral methyltransferases play critical roles in SARS coronavirus replication and are therefore promising drug targets. This review summarizes the function, structure and inhibition of methyltransferases of SARS-CoV-2 and SARS-CoV. Challenges and perspectives of targeting the viral methyltransferases to treat viral infections are discussed.
Collapse
|
3
|
Pham S, Zhao B, Neetu N, Sankaran B, Patil K, Ramani S, Song Y, Estes MK, Palzkill T, Prasad BV. CONFORMATIONAL FLEXIBILITY IS A CRITICAL FACTOR IN DESIGNING BROAD-SPECTRUM HUMAN NOROVIRUS PROTEASE INHIBITORS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.613336. [PMID: 39345439 PMCID: PMC11430002 DOI: 10.1101/2024.09.16.613336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Human norovirus (HuNoV) infection is a global health and economic burden. Currently, there are no licensed HuNoV vaccines or antiviral drugs available. The protease encoded by the HuNoV genome plays a critical role in virus replication by cleaving the polyprotein and is, therefore, an excellent target for developing small molecule inhibitors. While rupintrivir, a potent small-molecule inhibitor of several picornavirus proteases, effectively inhibits GI.1 protease, it is an order of magnitude less effective against GII protease. Other GI.1 protease inhibitors also tend to be less effective against GII proteases. To understand the structural basis for the potency difference, we determined the crystal structures of proteases of GI.1, pandemic GII.4 (Houston and Sydney), and GII.3 in complex with rupintrivir. These structures show that the open substrate pocket in GI protease binds rupintrivir without requiring significant conformational changes, whereas, in GII proteases, the closed pocket flexibly extends, reorienting arginine-112 in the BII-CII loop to accommodate rupintrivir. Structures of R112A protease mutants with rupintrivir, coupled with enzymatic and inhibition studies, suggest R112 is involved in displacing both substrate and ligands from the active site, implying a role in the release of cleaved products during polyprotein processing. Thus, the primary determinant for differential inhibitor potency between the GI and GII proteases is the increased flexibility in the BII-CII loop of the GII proteases caused by H-G mutation in this loop. Therefore, the inherent flexibility of the BII-CII loop in GII proteases is a critical factor to consider when developing broad-spectrum inhibitors for HuNoV proteases.
Collapse
Affiliation(s)
- Son Pham
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Boyang Zhao
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Neetu Neetu
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Banumathi Sankaran
- Berkeley Center for Structural Biology, Molecular Biophysics, and Integrated Bioimaging, Lawrence Berkeley Laboratory, Berkeley, CA, USA
| | - Ketki Patil
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Sasirekha Ramani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Yongcheng Song
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Timothy Palzkill
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - B.V. Venkataram Prasad
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
4
|
Wu K, Guo Y, Xu T, Huang W, Guo D, Cao L, Lei J. Structure-Based Virtual Screening for Methyltransferase Inhibitors of SARS-CoV-2 nsp14 and nsp16. Molecules 2024; 29:2312. [PMID: 38792173 PMCID: PMC11124212 DOI: 10.3390/molecules29102312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/06/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024] Open
Abstract
The ongoing COVID-19 pandemic still threatens human health around the world. The methyltransferases (MTases) of SARS-CoV-2, specifically nsp14 and nsp16, play crucial roles in the methylation of the N7 and 2'-O positions of viral RNA, making them promising targets for the development of antiviral drugs. In this work, we performed structure-based virtual screening for nsp14 and nsp16 using the screening workflow (HTVS, SP, XP) of Schrödinger 2019 software, and we carried out biochemical assays and molecular dynamics simulation for the identification of potential MTase inhibitors. For nsp14, we screened 239,000 molecules, leading to the identification of three hits A1-A3 showing N7-MTase inhibition rates greater than 60% under a concentration of 50 µM. For the SAM binding and nsp10-16 interface sites of nsp16, the screening of 210,000 and 237,000 molecules, respectively, from ZINC15 led to the discovery of three hit compounds B1-B3 exhibiting more than 45% of 2'-O-MTase inhibition under 50 µM. These six compounds with moderate MTase inhibitory activities could be used as novel candidates for the further development of anti-SARS-CoV-2 drugs.
Collapse
Affiliation(s)
- Kejue Wu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (K.W.); (Y.G.); (W.H.)
| | - Yinfeng Guo
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (K.W.); (Y.G.); (W.H.)
| | - Tiefeng Xu
- Centre for Infection and Immunity Studies (CIIS), School of Medicine, Sun Yat-Sen University, Shenzhen 518107, China (D.G.); (L.C.)
| | - Weifeng Huang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (K.W.); (Y.G.); (W.H.)
| | - Deyin Guo
- Centre for Infection and Immunity Studies (CIIS), School of Medicine, Sun Yat-Sen University, Shenzhen 518107, China (D.G.); (L.C.)
- Guangzhou Laboratory, Bio-Island, Guangzhou 510320, China
| | - Liu Cao
- Centre for Infection and Immunity Studies (CIIS), School of Medicine, Sun Yat-Sen University, Shenzhen 518107, China (D.G.); (L.C.)
| | - Jinping Lei
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (K.W.); (Y.G.); (W.H.)
| |
Collapse
|
5
|
Ahmed-Belkacem R, Sutto-Ortiz P, Delpal A, Troussier J, Canard B, Vasseur JJ, Decroly E, Debart F. 5'-cap RNA/SAM mimetic conjugates as bisubstrate inhibitors of viral RNA cap 2'-O-methyltransferases. Bioorg Chem 2024; 143:107035. [PMID: 38199140 DOI: 10.1016/j.bioorg.2023.107035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/24/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024]
Abstract
Viral RNA cap 2'-O-methyltransferases are considered promising therapeutic targets for antiviral treatments, as they play a key role in the formation of viral RNA cap-1 structures to escape the host immune system. A better understanding of how they interact with their natural substrates (RNA and the methyl donor SAM) would enable the rational development of potent inhibitors. However, as few structures of 2'-O-MTases in complex with RNA have been described, little is known about substrate recognition by these MTases. For this, chemical tools mimicking the state in which the cap RNA substrate and SAM cofactor are bound in the enzyme's catalytic pocket may prove useful. In this work, we designed and synthesized over 30 RNA conjugates that contain a short oligoribonucleotide (ORN with 4 or 6 nucleotides) with the first nucleotide 2'-O-attached to an adenosine by linkers of different lengths and containing S or N-heteroatoms, or a 1,2,3-triazole ring. These ORN conjugates bearing or not a cap structure at 5'-extremity mimic the methylation transition state with RNA substrate/SAM complex as bisubstrates of 2'-O-MTases. The ORN conjugates were synthesized either by the incorporation of a dinucleoside phosphoramidite during RNA elongation or by click chemistry performed on solid-phase post-RNA elongation. Their ability to inhibit the activity of the nsp16/nsp10 complex of SARS-CoV-2 and the NS5 protein of dengue and Zika viruses was assessed. Significant submicromolar IC50 values and Kd values in the µM range were found, suggesting a possible interaction of some ORN conjugates with these viral 2'-O-MTases.
Collapse
Affiliation(s)
| | | | - Adrien Delpal
- AFMB, University of Aix-Marseille, CNRS, Marseille, France
| | - Joris Troussier
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Bruno Canard
- AFMB, University of Aix-Marseille, CNRS, Marseille, France
| | | | | | - Françoise Debart
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France.
| |
Collapse
|
6
|
Tsukamoto Y, Igarashi M, Kato H. Targeting cap1 RNA methyltransferases as an antiviral strategy. Cell Chem Biol 2024; 31:86-99. [PMID: 38091983 DOI: 10.1016/j.chembiol.2023.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/30/2023] [Accepted: 11/20/2023] [Indexed: 01/21/2024]
Abstract
Methylation is one of the critical modifications that regulates numerous biological processes. Guanine capping and methylation at the 7th position (m7G) have been shown to mature mRNA for increased RNA stability and translational efficiency. The m7G capped cap0 RNA remains immature and requires additional methylation at the first nucleotide (N1-2'-O-Me), designated as cap1, to achieve full maturation. This cap1 RNA with N1-2'-O-Me prevents its recognition by innate immune sensors as non-self. Viruses have also evolved various strategies to produce self-like capped RNAs with the N1-2'-O-Me that potentially evades the antiviral response and establishes an efficient replication. In this review, we focus on the importance of the presence of N1-2'-O-Me in viral RNAs and discuss the potential for drug development by targeting host and viral N1-2'-O-methyltransferases.
Collapse
Affiliation(s)
- Yuta Tsukamoto
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Manabu Igarashi
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hiroki Kato
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany.
| |
Collapse
|
7
|
Nigam A, Hurley MFD, Li F, Konkoľová E, Klíma M, Trylčová J, Pollice R, Çinaroğlu SS, Levin-Konigsberg R, Handjaya J, Schapira M, Chau I, Perveen S, Ng HL, Ümit Kaniskan H, Han Y, Singh S, Gorgulla C, Kundaje A, Jin J, Voelz VA, Weber J, Nencka R, Boura E, Vedadi M, Aspuru-Guzik A. Drug Discovery in Low Data Regimes: Leveraging a Computational Pipeline for the Discovery of Novel SARS-CoV-2 Nsp14-MTase Inhibitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.03.560722. [PMID: 37873443 PMCID: PMC10592886 DOI: 10.1101/2023.10.03.560722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has led to significant global morbidity and mortality. A crucial viral protein, the non-structural protein 14 (nsp14), catalyzes the methylation of viral RNA and plays a critical role in viral genome replication and transcription. Due to the low mutation rate in the nsp region among various SARS-CoV-2 variants, nsp14 has emerged as a promising therapeutic target. However, discovering potential inhibitors remains a challenge. In this work, we introduce a computational pipeline for the rapid and efficient identification of potential nsp14 inhibitors by leveraging virtual screening and the NCI open compound collection, which contains 250,000 freely available molecules for researchers worldwide. The introduced pipeline provides a cost-effective and efficient approach for early-stage drug discovery by allowing researchers to evaluate promising molecules without incurring synthesis expenses. Our pipeline successfully identified seven promising candidates after experimentally validating only 40 compounds. Notably, we discovered NSC620333, a compound that exhibits a strong binding affinity to nsp14 with a dissociation constant of 427 ± 84 nM. In addition, we gained new insights into the structure and function of this protein through molecular dynamics simulations. We identified new conformational states of the protein and determined that residues Phe367, Tyr368, and Gln354 within the binding pocket serve as stabilizing residues for novel ligand interactions. We also found that metal coordination complexes are crucial for the overall function of the binding pocket. Lastly, we present the solved crystal structure of the nsp14-MTase complexed with SS148 (PDB:8BWU), a potent inhibitor of methyltransferase activity at the nanomolar level (IC50 value of 70 ± 6 nM). Our computational pipeline accurately predicted the binding pose of SS148, demonstrating its effectiveness and potential in accelerating drug discovery efforts against SARS-CoV-2 and other emerging viruses.
Collapse
Affiliation(s)
- AkshatKumar Nigam
- Department of Computer Science, Stanford University
- Department of Genetics, Stanford University
| | | | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Eva Konkoľová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Klíma
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jana Trylčová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Robert Pollice
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario M5S 3H6, Canada
- Department of Computer Science, University of Toronto, 40 St. George St, Toronto, Ontario M5S 2E4, Canada
- Current affiliation: Stratingh Institute for Chemistry, University of Groningen, The Netherlands
| | - Süleyman Selim Çinaroğlu
- Structural Bioinformatics and Computational Biochemistry, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | | | - Jasemine Handjaya
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario M5S 3H6, Canada
- Department of Computer Science, University of Toronto, 40 St. George St, Toronto, Ontario M5S 2E4, Canada
| | - Matthieu Schapira
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Irene Chau
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Sumera Perveen
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Ho-Leung Ng
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - H. Ümit Kaniskan
- Department of Pharmacological Sciences and Oncological Sciences, Mount Sinai Center for Therapeutics Discovery, Tisch Cancer Institute, Ichan School of Medicine at Mount Sinai, New York, NY, USA
| | - Yulin Han
- Department of Pharmacological Sciences and Oncological Sciences, Mount Sinai Center for Therapeutics Discovery, Tisch Cancer Institute, Ichan School of Medicine at Mount Sinai, New York, NY, USA
| | - Sukrit Singh
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center
| | - Christoph Gorgulla
- St. Jude Children’s Research Hospital, Department of Structural Biology, Memphis, TN, USA
- Department of Physics, Faculty of Arts and Sciences, Harvard University, Cambridge, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, USA
| | - Anshul Kundaje
- Department of Computer Science, Stanford University
- Department of Genetics, Stanford University
| | - Jian Jin
- Department of Pharmacological Sciences and Oncological Sciences, Mount Sinai Center for Therapeutics Discovery, Tisch Cancer Institute, Ichan School of Medicine at Mount Sinai, New York, NY, USA
| | - Vincent A. Voelz
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA
| | - Jan Weber
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Radim Nencka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Alán Aspuru-Guzik
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario M5S 3H6, Canada
- Department of Computer Science, University of Toronto, 40 St. George St, Toronto, Ontario M5S 2E4, Canada
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Canada
- Department of Materials Science & Engineering, University of Toronto, Canada
- Vector Institute for Artificial Intelligence, Toronto, Canada
- Canadian Institute for Advanced Research (CIFAR), Toronto, ON, Canada
- Acceleration Consortium, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Srivastava R, Panda SK, Sen Gupta PS, Chaudhary A, Naaz F, Yadav AK, Ram NK, Rana MK, Singh RK, Srivastava R. In silico evaluation of S-adenosyl-L-homocysteine analogs as inhibitors of nsp14-viral cap N7 methyltranferase and PLpro of SARS-CoV-2: synthesis, molecular docking, physicochemical data, ADMET and molecular dynamics simulations studies. J Biomol Struct Dyn 2023:1-18. [PMID: 38147408 DOI: 10.1080/07391102.2023.2297005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/13/2023] [Indexed: 12/28/2023]
Abstract
A series of S-adenosyl-L-homosysteine (SAH) analogs, with modification in the base and sugar moiety, have been designed, synthesized and screened as nsp14 and PLpro inhibitors of severe acute respiratory syndrome corona virus (SARS-CoV-2). The outcomes of ADMET (Adsorption, Distribution, Metabolism, Excretion, and Toxicity) studies demonstrated that the physicochemical properties of all analogs were permissible for development of these SAH analogs as antiviral agents. All molecules were screened against different SARS-CoV-2 targets using molecular docking. The docking results revealed that the SAH analogs interacted well in the active site of nsp14 protein having H-bond interactions with the amino acid residues Arg289, Val290, Asn388, Arg400, Phe401 and π-alkyl interactions with Arg289, Val290 and Phe426 of Nsp14-MTase site. These analogs also formed stable H-bonds with Leu163, Asp165, Arg167, Ser246, Gln270, Tyr274 and Asp303 residues of PLpro proteins and found to be quite stable complexes therefore behaved as probable nsp14 and PLpro inhibitors. Interestingly, analog 3 showed significant in silico activity against the nsp14 N7 methyltransferase of SARS-CoV-2. The molecular dynamics (MD) and post-MD results of analog 3 unambiguously established the higher stability of the nsp14 (N7 MTase):3 complex and also indicated its behavior as probable nsp14 inhibitor like the reference sinefungin. The docking and MD simulations studies also suggested that sinefungin did act as SARS-CoV-2 PLpro inhibitor as well. This study's findings not only underscore the efficacy of the designed SAH analogs as potent inhibitors against crucial SARS-CoV-2 proteins but also pinpoint analog 3 as a particularly promising candidate. All the study provides valuable insights, paving the way for potential advancements in antiviral drug development against SARS-CoV-2.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ritika Srivastava
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Odisha, India
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad, India
| | - Saroj Kumar Panda
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Odisha, India
| | - Parth Sarthi Sen Gupta
- School of Biosciences and Bioengineering, D Y Patil International University, Akurdi, India
| | - Anvita Chaudhary
- Department of Applied Chemistry, Delhi Technological University, Delhi, India
| | - Farha Naaz
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad, India
| | - Aditya K Yadav
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad, India
| | - Nand Kumar Ram
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad, India
| | - Malay Kumar Rana
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Odisha, India
| | - Ramendra K Singh
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad, India
| | - Richa Srivastava
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad, India
- Department of Applied Chemistry, Delhi Technological University, Delhi, India
| |
Collapse
|
9
|
Gajjar PL, Pedroza Romo MJ, Litchfield CM, Callahan M, Redd N, Nawarathnage S, Soleimani S, Averett J, Wilson E, Lewis A, Stewart C, Tseng YJ, Doukov T, Lebedev A, Moody JD. Increasing the bulk of the 1TEL-target linker and retaining the 10×His tag in a 1TEL-CMG2-vWa construct improves crystal order and diffraction limits. Acta Crystallogr D Struct Biol 2023; 79:925-943. [PMID: 37747038 PMCID: PMC10565734 DOI: 10.1107/s2059798323007246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 08/17/2023] [Indexed: 09/26/2023] Open
Abstract
TELSAM-fusion crystallization has the potential to become a revolutionary tool for the facile crystallization of proteins. TELSAM fusion can increase the crystallization rate and enable crystallization at low protein concentrations, in some cases with minimal crystal contacts [Nawarathnage et al. (2022), Open Biol. 12, 210271]. Here, requirements for the linker composition between 1TEL and a fused CMG2 vWa domain were investigated. Ala-Ala, Ala-Val, Thr-Val and Thr-Thr linkers were evaluated, comparing metrics for crystallization propensity and crystal order. The effect on crystallization of removing or retaining the purification tag was then tested. It was discovered that increasing the linker bulk and retaining the 10×His purification tag improved the diffraction resolution, likely by decreasing the number of possible vWa-domain orientations in the crystal. Additionally, it was discovered that some vWa-domain binding modes are correlated with scrambling of the 1TEL polymer orientation in crystals and an effective mitigation strategy for this pathology is presented.
Collapse
Affiliation(s)
- Parag L. Gajjar
- Department of Chemistry and Biochemistry, Brigham Young University, 701 East University Parkway, Provo, UT 84602, USA
| | - Maria J. Pedroza Romo
- Department of Chemistry and Biochemistry, Brigham Young University, 701 East University Parkway, Provo, UT 84602, USA
| | - Celeste M. Litchfield
- Department of Chemistry and Biochemistry, Brigham Young University, 701 East University Parkway, Provo, UT 84602, USA
| | - Miles Callahan
- Department of Chemistry and Biochemistry, Brigham Young University, 701 East University Parkway, Provo, UT 84602, USA
| | - Nathan Redd
- Department of Chemistry and Biochemistry, Brigham Young University, 701 East University Parkway, Provo, UT 84602, USA
| | - Supeshala Nawarathnage
- Department of Chemistry and Biochemistry, Brigham Young University, 701 East University Parkway, Provo, UT 84602, USA
| | - Sara Soleimani
- Department of Chemistry and Biochemistry, Brigham Young University, 701 East University Parkway, Provo, UT 84602, USA
| | - Jacob Averett
- Department of Chemistry and Biochemistry, Brigham Young University, 701 East University Parkway, Provo, UT 84602, USA
| | - Elijah Wilson
- Department of Chemistry and Biochemistry, Brigham Young University, 701 East University Parkway, Provo, UT 84602, USA
| | - Andrew Lewis
- Department of Chemistry and Biochemistry, Brigham Young University, 701 East University Parkway, Provo, UT 84602, USA
| | - Cameron Stewart
- Department of Chemistry and Biochemistry, Brigham Young University, 701 East University Parkway, Provo, UT 84602, USA
| | - Yi-Jie Tseng
- Department of Chemistry and Biochemistry, Brigham Young University, 701 East University Parkway, Provo, UT 84602, USA
| | - Tzanko Doukov
- Macromolecular Crystallography Group, Structural Molecular Biology Resource, Stanford Synchrotron Radiation Lightsource, Menlo Park, California, USA
| | - Andrey Lebedev
- Scientific Computing, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - James D. Moody
- Department of Chemistry and Biochemistry, Brigham Young University, 701 East University Parkway, Provo, UT 84602, USA
| |
Collapse
|
10
|
Chen H, Lin S, Yang F, Chen Z, Guo L, Yang J, Lin X, Wang L, Duan Y, Wen A, Zhang X, Dai Y, Yin K, Yuan X, Yu C, He Y, He B, Cao Y, Dong H, Li J, Zhao Q, Liu Q, Lu G. Structural and functional basis of low-affinity SAM/SAH-binding in the conserved MTase of the multi-segmented Alongshan virus distantly related to canonical unsegmented flaviviruses. PLoS Pathog 2023; 19:e1011694. [PMID: 37831643 PMCID: PMC10575543 DOI: 10.1371/journal.ppat.1011694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
Alongshan virus (ALSV), a newly discovered member of unclassified Flaviviridae family, is able to infect humans. ALSV has a multi-segmented genome organization and is evolutionarily distant from canonical mono-segmented flaviviruses. The virus-encoded methyltransferase (MTase) plays an important role in viral replication. Here we show that ALSV MTase readily binds S-adenosyl-L-methionine (SAM) and S-adenosyl-L-homocysteine (SAH) but exhibits significantly lower affinities than canonical flaviviral MTases. Structures of ALSV MTase in the free and SAM/SAH-bound forms reveal that the viral enzyme possesses a unique loop-element lining side-wall of the SAM/SAH-binding pocket. While the equivalent loop in flaviviral MTases half-covers SAM/SAH, contributing multiple hydrogen-bond interactions; the pocket-lining loop of ALSV MTase is of short-length and high-flexibility, devoid of any physical contacts with SAM/SAH. Subsequent mutagenesis data further corroborate such structural difference affecting SAM/SAH-binding. Finally, we also report the structure of ALSV MTase bound with sinefungin, an SAM-analogue MTase inhibitor. These data have delineated the basis for the low-affinity interaction between ALSV MTase and SAM/SAH and should inform on antiviral drug design.
Collapse
Affiliation(s)
- Hua Chen
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China
| | - Sheng Lin
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fanli Yang
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zimin Chen
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liyan Guo
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing Yang
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xi Lin
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lingling Wang
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanping Duan
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ao Wen
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xindan Zhang
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yushan Dai
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Keqing Yin
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xin Yuan
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chongzhang Yu
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yarong He
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bin He
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Cao
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Disaster Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haohao Dong
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jian Li
- School of Basic Medical Sciences, Chengdu University, Chengdu, Sichuan, China
| | - Qi Zhao
- College of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Quan Liu
- Center of Infectious diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, State Key Laboratory of Zoonotic Diseases, Changchun, Jilin, China
| | - Guangwen Lu
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Katahira J, Ohmae T, Yasugi M, Sasaki R, Itoh Y, Kohda T, Hieda M, Yokota Hirai M, Okamoto T, Miyamoto Y. Nsp14 of SARS-CoV-2 inhibits mRNA processing and nuclear export by targeting the nuclear cap-binding complex. Nucleic Acids Res 2023; 51:7602-7618. [PMID: 37260089 PMCID: PMC10415132 DOI: 10.1093/nar/gkad483] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/12/2023] [Accepted: 05/21/2023] [Indexed: 06/02/2023] Open
Abstract
To facilitate selfish replication, viruses halt host gene expression in various ways. The nuclear export of mRNA is one such process targeted by many viruses. SARS-CoV-2, the etiological agent of severe acute respiratory syndrome, also prevents mRNA nuclear export. In this study, Nsp14, a bifunctional viral replicase subunit, was identified as a novel inhibitor of mRNA nuclear export. Nsp14 induces poly(A)+ RNA nuclear accumulation and the dissolution/coalescence of nuclear speckles. Genome-wide gene expression analysis revealed the global dysregulation of splicing and 3'-end processing defects of replication-dependent histone mRNAs by Nsp14. These abnormalities were also observed in SARS-CoV-2-infected cells. A mutation introduced at the guanine-N7-methyltransferase active site of Nsp14 diminished these inhibitory activities. Targeted capillary electrophoresis-mass spectrometry analysis (CE-MS) unveiled the production of N7-methyl-GTP in Nsp14-expressing cells. Association of the nuclear cap-binding complex (NCBC) with the mRNA cap and subsequent recruitment of U1 snRNP and the stem-loop binding protein (SLBP) were impaired by Nsp14. These data suggest that the defects in mRNA processing and export arise from the compromise of NCBC function by N7-methyl-GTP, thus exemplifying a novel viral strategy to block host gene expression.
Collapse
Affiliation(s)
- Jun Katahira
- Laboratory of Cellular Molecular Biology, Graduate School of Veterinary Sciences, Osaka Metropolitan University, 1-58 Rinku-Orai-kita, Izumisano, Osaka 598-8531, Japan
| | - Tatsuya Ohmae
- Laboratory of Cellular Molecular Biology, Graduate School of Veterinary Sciences, Osaka Metropolitan University, 1-58 Rinku-Orai-kita, Izumisano, Osaka 598-8531, Japan
| | - Mayo Yasugi
- Laboratory of Veterinary Public Health, Graduate School of Veterinary Sciences, Osaka Metropolitan University, 1-58 Rinku-Orai-kita, Izumisano, Osaka 598-8531, Japan
| | - Ryosuke Sasaki
- RIKEN Center for Sustainable Resource Science, Mass Spectrometry and Microscopy Unit, 1-7-22 Suehiro. Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Yumi Itoh
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tomoko Kohda
- Laboratory of Veterinary Epidemiology, Graduate School of Veterinary Sciences, Osaka Metropolitan University, 1-58 Rinku-Orai-kita, Izumisano, Osaka 598-8531, Japan
| | - Miki Hieda
- Department of Medical Technology, Ehime Prefectural University of Health Sciences, 543 Tobe-Cho Takaoda, Iyo, Ehime791-2102, Japan
| | - Masami Yokota Hirai
- RIKEN Center for Sustainable Resource Science, Mass Spectrometry and Microscopy Unit, 1-7-22 Suehiro. Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Toru Okamoto
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoichi Miyamoto
- Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health, and Nutrition (NIBIOHN), 7-6-8 Saito Asagi, Ibaraki, Osaka 567-0085, Japan
| |
Collapse
|
12
|
Kottur J, White KM, Rodriguez ML, Rechkoblit O, Quintana-Feliciano R, Nayar A, García-Sastre A, Aggarwal AK. Structures of SARS-CoV-2 N7-methyltransferase with DOT1L and PRMT7 inhibitors provide a platform for new antivirals. PLoS Pathog 2023; 19:e1011546. [PMID: 37523415 PMCID: PMC10414583 DOI: 10.1371/journal.ppat.1011546] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/10/2023] [Accepted: 07/06/2023] [Indexed: 08/02/2023] Open
Abstract
The RNA N7-methyltransferase (MTase) activity of SARS-CoV-2's nsp14 protein is essential for viral replication and is a target for the development of new antivirals. Nsp14 uses S-adenosyl methionine (SAM) as the methyl donor to cap the 5' end of the SARS-CoV-2 mRNA and generates S-adenosyl homocysteine (SAH) as the reaction byproduct. Due to the central role of histone MTases in cancer, many SAM/SAH analogs with properties of cell permeability have recently been developed for the inhibition of these MTases. We have succeeded in identifying two such compounds (SGC0946 and SGC8158) that display significant antiviral activity and bind to the SARS-CoV-2 nsp14 N7-MTase core. Unexpectedly, crystal structures of SGC0946 and SGC8158 with the SARS-CoV-2 nsp14 N7-MTase core identify them as bi-substrate inhibitors of the viral MTase, co-occupying both the SAM and RNA binding sites; positing novel features that can be derivatized for increased potency and selectivity for SARS-CoV-2 nsp14. Taken together, the high-resolution structures and the accompanying biophysical and viral replication data provide a new avenue for developing analogs of SGC0946 and SGC8158 as antivirals.
Collapse
Affiliation(s)
- Jithesh Kottur
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Kris M. White
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - M. Luis Rodriguez
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Olga Rechkoblit
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Richard Quintana-Feliciano
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Ahana Nayar
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- The Tisch Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Aneel K. Aggarwal
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| |
Collapse
|
13
|
Karim M, Lo CW, Einav S. Preparing for the next viral threat with broad-spectrum antivirals. J Clin Invest 2023; 133:e170236. [PMID: 37259914 PMCID: PMC10232003 DOI: 10.1172/jci170236] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023] Open
Abstract
There is a large global unmet need for the development of countermeasures to combat hundreds of viruses known to cause human disease and for the establishment of a therapeutic portfolio for future pandemic preparedness. Most approved antiviral therapeutics target proteins encoded by a single virus, providing a narrow spectrum of coverage. This, combined with the slow pace and high cost of drug development, limits the scalability of this direct-acting antiviral (DAA) approach. Here, we summarize progress and challenges in the development of broad-spectrum antivirals that target either viral elements (proteins, genome structures, and lipid envelopes) or cellular proviral factors co-opted by multiple viruses via newly discovered compounds or repurposing of approved drugs. These strategies offer new means for developing therapeutics against both existing and emerging viral threats that complement DAAs.
Collapse
Affiliation(s)
- Marwah Karim
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, and
| | - Chieh-Wen Lo
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, and
| | - Shirit Einav
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, and
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
- Chan Zuckerberg Biohub San Francisco, San Francisco, California, USA
| |
Collapse
|
14
|
Gajjar PL, Romo MJP, Litchfield CM, Callahan M, Redd N, Nawarathnage S, Soleimani S, Averett J, Wilson E, Lewis A, Stewart C, Tseng YJJ, Doukov T, Lebedev A, Moody JD. Decreasing the flexibility of the TELSAM-target protein linker and omitting the cleavable fusion tag improves crystal order and diffraction limits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.12.540586. [PMID: 37293010 PMCID: PMC10245584 DOI: 10.1101/2023.05.12.540586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
TELSAM crystallization promises to become a revolutionary tool for the facile crystallization of proteins. TELSAM can increase the rate of crystallization and form crystals at low protein concentrations without direct contact between TELSAM polymers and, in some cases, with very minimal crystal contacts overall (Nawarathnage et al ., 2022). To further understand and characterize TELSAM-mediated crystallization, we sought to understand the requirements for the composition of the linker between TELSAM and the fused target protein. We evaluated four different linkers Ala-Ala, Ala-Val, Thr-Val, and Thr-Thr, between 1TEL and the human CMG2 vWa domain. We compared the number of successful crystallization conditions, the number of crystals, the average and best diffraction resolution, and the refinement parameters for the above constructs. We also tested the effect of the fusion protein SUMO on crystallization. We discovered that rigidification of the linker improved diffraction resolution, likely by decreasing the number of possible orientations of the vWa domains in the crystal, and that omitting the SUMO domain from the construct also improved the diffraction resolution. Synopsis We demonstrate that the TELSAM protein crystallization chaperone can enable facile protein crystallization and high-resolution structure determination. We provide evidence to support the use of short but flexible linkers between TELSAM and the protein of interest and to support the avoidance of cleavable purification tags in TELSAM-fusion constructs.
Collapse
|
15
|
Hausdorff M, Delpal A, Barelier S, Nicollet L, Canard B, Touret F, Colmant A, Coutard B, Vasseur JJ, Decroly E, Debart F. Structure-guided optimization of adenosine mimetics as selective and potent inhibitors of coronavirus nsp14 N7-methyltransferases. Eur J Med Chem 2023; 256:115474. [PMID: 37192550 DOI: 10.1016/j.ejmech.2023.115474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/18/2023]
Abstract
The COVID-19 pandemic reveals the urgent need to develop new therapeutics targeting the SARS-CoV-2 replication machinery. The first antiviral drugs were nucleoside analogues targeting RdRp and protease inhibitors active on nsp5 Mpro. In addition to these common antiviral targets, SARS-CoV-2 codes for the highly conserved protein nsp14 harbouring N7-methyltransferase (MTase) activity. Nsp14 is involved in cap N7-methylation of viral RNA and its inhibition impairs viral RNA translation and immune evasion, making it an attractive new antiviral target. In this work, we followed a structure-guided drug design approach to design bisubstrates mimicking the S-adenosylmethionine methyl donor and RNA cap. We developed adenosine mimetics with an N-arylsulfonamide moiety in the 5'-position, recently described as a guanine mimicking the cap structure in a potent adenosine-derived nsp14 inhibitor. Here, the adenine moiety was replaced by hypoxanthine, N6-methyladenine, or C7-substituted 7-deaza-adenine. 26 novel adenosine mimetics were synthesized, one of which selectively inhibits nsp14 N7-MTase activity with a subnanomolar IC50 (and seven with a single-digit nanomolar IC50). In the most potent inhibitors, adenine was replaced by two different 7-deaza-adenines bearing either a phenyl or a 3-quinoline group at the C7-position via an ethynyl linker. These more complex compounds are barely active on the cognate human N7-MTase and docking experiments reveal that their selectivity of inhibition might result from the positioning of their C7 substitution in a SAM entry tunnel present in the nsp14 structure and absent in the hN7-MTase. These compounds show moderate antiviral activity against SARS-CoV-2 replication in cell culture, suggesting delivery or stability issue.
Collapse
Affiliation(s)
- Marcel Hausdorff
- IBMM, CNRS, University of Montpellier, ENSCM, Montpellier, France
| | - Adrien Delpal
- AFMB, CNRS, Aix-Marseille University, UMR 7257, 163 Avenue de Luminy, Marseille, France
| | - Sarah Barelier
- AFMB, CNRS, Aix-Marseille University, UMR 7257, 163 Avenue de Luminy, Marseille, France
| | - Laura Nicollet
- IBMM, CNRS, University of Montpellier, ENSCM, Montpellier, France
| | - Bruno Canard
- AFMB, CNRS, Aix-Marseille University, UMR 7257, 163 Avenue de Luminy, Marseille, France
| | - Franck Touret
- IHU Méditerranée Infection, Unité Virus Emergents, University of Aix-Marseille, 13005, Marseille, France
| | - Agathe Colmant
- IHU Méditerranée Infection, Unité Virus Emergents, University of Aix-Marseille, 13005, Marseille, France
| | - Bruno Coutard
- IHU Méditerranée Infection, Unité Virus Emergents, University of Aix-Marseille, 13005, Marseille, France
| | | | - Etienne Decroly
- AFMB, CNRS, Aix-Marseille University, UMR 7257, 163 Avenue de Luminy, Marseille, France.
| | - Françoise Debart
- IBMM, CNRS, University of Montpellier, ENSCM, Montpellier, France.
| |
Collapse
|