1
|
Narendra DP, Youle RJ. The role of PINK1-Parkin in mitochondrial quality control. Nat Cell Biol 2024; 26:1639-1651. [PMID: 39358449 DOI: 10.1038/s41556-024-01513-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/22/2024] [Indexed: 10/04/2024]
Abstract
Mitophagy mediated by the recessive Parkinson's disease genes PINK1 and Parkin responds to mitochondrial damage to preserve mitochondrial function. In the pathway, PINK1 is the damage sensor, probing the integrity of the mitochondrial import pathway, and activating Parkin when import is blocked. Parkin is the effector, selectively marking damaged mitochondria with ubiquitin for mitophagy and other quality-control processes. This selective mitochondrial quality-control pathway may be especially critical for dopamine neurons affected in Parkinson's disease, in which the mitochondrial network is widely distributed throughout a highly branched axonal arbor. Here we review the current understanding of the role of PINK1-Parkin in the quality control of mitophagy, including sensing of mitochondrial distress by PINK1, activation of Parkin by PINK1 to induce mitophagy, and the physiological relevance of the PINK1-Parkin pathway.
Collapse
Affiliation(s)
- Derek P Narendra
- Mitochondrial Biology and Neurodegeneration Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Richard J Youle
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Maruszczak KK, Draczkowski P, Wnorowski A, Chacinska A. Structure prediction analysis of human core TIM23 complex reveals conservation of the protein translocation mechanism. FEBS Open Bio 2024; 14:1656-1667. [PMID: 38837610 PMCID: PMC11452300 DOI: 10.1002/2211-5463.13840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024] Open
Abstract
The majority of mitochondrial proteins are encoded in the nucleus, translated on cytosolic ribosomes, and subsequently targeted to the mitochondrial surface. Their further import into the organelle is facilitated by highly specialized protein translocases. Mitochondrial precursor proteins that are destined to the mitochondrial matrix and, to some extent, the inner membrane, utilize translocase of the inner membrane (TIM23). This indispensable import machinery has been extensively studied in yeast. The translocating unit of the TIM23 complex in yeast consists of two membrane proteins, Tim17 and Tim23. In contrast to previous findings, recent reports demonstrate the primary role of Tim17, rather than Tim23, in the translocation of newly synthesized proteins. Very little is known about human TIM23 translocase. Human cells have two orthologs of yeast Tim17, TIMM17A and TIMM17B. Here, using computational tools, we present the architecture of human core TIM23 variants with either TIMM17A or TIMM17B, forming two populations of highly similar complexes. The structures reveal high conservation of the core TIM23 complex between human and yeast. Interestingly, both TIMM17A and TIMM17B variants interact with TIMM23 and reactive oxygen species modulator 1 (ROMO1); a homolog of yeast Mgr2, a protein that can create a channel-like structure with Tim17. The high structural conservation of proteins that form the core TIM23 complex in yeast and humans raises an interesting question about mechanistic and functional differences that justify existence of the two variants of TIM23 in higher eukaryotes.
Collapse
Affiliation(s)
| | - Piotr Draczkowski
- National Bioinformatics Infrastructure Sweden, SciLifeLabSolnaSweden
- Department of Synthesis and Chemical Technology of Pharmaceutical SubstancesMedical University of LublinPoland
| | | | | |
Collapse
|
3
|
Herrmann JM. Mitochondria: the beating heart of the eukaryotic cell. FEBS Open Bio 2024; 14:1588-1590. [PMID: 39367527 PMCID: PMC11452296 DOI: 10.1002/2211-5463.13884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/14/2024] [Accepted: 08/09/2024] [Indexed: 10/06/2024] Open
Abstract
Mitochondria are essential organelles of eukaryotic cells. They consist of hundreds of proteins, which are synthesized in the cytosol and imported into mitochondria via different targeting routes. In addition, a small number of proteins are encoded by the organellar genome and synthesized by mitochondrial ribosomes. In this 'In the Limelight' special issue of FEBS Open Bio, five review articles describe these different biogenesis routes of mitochondrial proteins and provide a comprehensive overview of the structures and mechanisms by which mitochondrial proteins are synthesized and transported to their respective location within the organelle. These reviews, written by leading experts, provide a general overview, but also highlight current developments in the field of mitochondrial biogenesis.
Collapse
|
4
|
Kizmaz B, Nutz A, Egeler A, Herrmann JM. Protein insertion into the inner membrane of mitochondria: routes and mechanisms. FEBS Open Bio 2024; 14:1627-1639. [PMID: 38664330 PMCID: PMC11452304 DOI: 10.1002/2211-5463.13806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/28/2024] [Accepted: 04/11/2024] [Indexed: 10/06/2024] Open
Abstract
The inner membrane of mitochondria contains hundreds of different integral membrane proteins. These proteins transport molecules into and out of the matrix, they carry out multifold catalytic reactions and they promote the biogenesis or degradation of mitochondrial constituents. Most inner membrane proteins are encoded by nuclear genes and synthesized in the cytosol from where they are imported into mitochondria by translocases in the outer and inner membrane. Three different import routes direct proteins into the inner membrane and allow them to acquire their appropriate membrane topology. First, mitochondrial import intermediates can be arrested at the level of the TIM23 inner membrane translocase by a stop-transfer sequence to reach the inner membrane by lateral insertion. Second, proteins can be fully translocated through the TIM23 complex into the matrix from where they insert into the inner membrane in an export-like reaction. Carriers and other polytopic membrane proteins embark on a third insertion pathway: these hydrophobic proteins employ the specialized TIM22 translocase to insert from the intermembrane space (IMS) into the inner membrane. This review article describes these three targeting routes and provides an overview of the machinery that promotes the topogenesis of mitochondrial inner membrane proteins.
Collapse
Affiliation(s)
- Büsra Kizmaz
- Cell BiologyUniversity of Kaiserslautern, RPTUGermany
| | - Annika Nutz
- Cell BiologyUniversity of Kaiserslautern, RPTUGermany
| | - Annika Egeler
- Cell BiologyUniversity of Kaiserslautern, RPTUGermany
| | | |
Collapse
|
5
|
Ren J, Xiang B, Xueling L, Han X, Yang Z, Zhang M, Zhang Y. Molecular mechanisms of mitochondrial homeostasis regulation in neurons and possible therapeutic approaches for Alzheimer's disease. Heliyon 2024; 10:e36470. [PMID: 39281517 PMCID: PMC11401100 DOI: 10.1016/j.heliyon.2024.e36470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 08/09/2024] [Accepted: 08/15/2024] [Indexed: 09/18/2024] Open
Abstract
Alzheimer's disease (AD) is a neurological disease with memory loss and cognitive decline, which affects a large proportion of the aging population. Regrettably, there are no drug to reverse or cure AD and drug development for the primary theory of amyloid beta deposition has mostly failed. Therefore, there is an urgent need to investigate novel strategies for preventing AD. Recent studies demonstrate that imbalance of mitochondrial homeostasis is a driver in Aβ accumulation, which can lead to the occurrence and deterioration of cognitive impairment in AD patients. This suggests that regulating neuronal mitochondrial homeostasis may be a new strategy for AD. We summarize the importance of mitochondrial homeostasis in AD neuron and its regulatory mechanisms in this review. In addition, we summarize the results of studies indicating mitochondrial dysfunction in AD subjects, including impaired mitochondrial energy production, oxidative stress, imbalance of mitochondrial protein homeostasis, imbalance of fusion and fission, imbalance of neuronal mitochondrial biogenesis and autophagy, and altered mitochondrial motility, in hope of providing possible therapeutic approaches for AD.
Collapse
Affiliation(s)
- Jiale Ren
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Beibei Xiang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Xueling
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaolu Han
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhen Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mixia Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanjun Zhang
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
6
|
Mussulini BHM, Wasilewski M, Chacinska A. Methods to monitor mitochondrial disulfide bonds. Methods Enzymol 2024; 706:125-158. [PMID: 39455213 DOI: 10.1016/bs.mie.2024.07.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Mitochondria contain numerous proteins that utilize the chemistry of cysteine residues, which can be reversibly oxidized. These proteins are involved in mitochondrial biogenesis, protection against oxidative stress, metabolism, energy transduction to adenosine triphosphate, signaling and cell death among other functions. Many proteins located in the mitochondrial intermembrane space are imported by the mitochondrial import and assembly pathway the activity of which is based on the reversible oxidation of cysteine residues and oxidative trapping of substrates. Oxidative modifications of cysteine residues are particularly difficult to study because of their labile character. Here we present techniques that allow for monitoring the oxidative state of mitochondrial proteins as well as to investigate the mitochondrial import and assembly pathway. This chapter conveys basic concepts on sample preparation and techniques to monitor the redox state of cysteine residues in mitochondrial proteins as well as the strategies to study mitochondrial import and assembly pathway.
Collapse
|
7
|
Herrmann JM, Lenhard S, Hansen KG. Import of mitochondrial precursor proteins into mitochondria of semi-intact yeast cells. Methods Enzymol 2024; 706:391-405. [PMID: 39455226 DOI: 10.1016/bs.mie.2024.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Mitochondria import hundreds of different precursor proteins from the cytosol and direct each of these to its specific mitochondrial subcompartment. The import routes and mechanisms by which precursors are transported into the outer membrane, the intermembrane space (IMS), the inner membrane and the matrix have been characterized in depth by use of very powerful in vitro assays. In the 'classical' import assays, radiolabeled precursor proteins are incubated with isolated mitochondria and the protein uptake is monitored by one or more of the following observations: intramitochondrial processing, resistance to externally added proteases, or the formation of disulfide bonds. In this chapter, we describe an alternative import assay which employs semi-intact yeast cells. This assay uses spheroplasts from which the cell wall had been removed by enzymatic digestion before the plasma membrane was partially permeabilized by a freeze-thawing step. Since the organellar architecture is largely maintained in semi-intact cells, this in vitro import assay allows to elucidate the targeting of precursor proteins from the cytoplasm to the mitochondrial surface. Thereby the contribution of other compartments such as the endoplasmic reticulum (ER) can be assessed. Here we describe how semi-intact cells are prepared and used in the in vitro import assay and discuss the pros and cons of this approach.
Collapse
Affiliation(s)
- Johannes M Herrmann
- Cell Biology, RPTU University of Kaiserslautern-Landau, Kaiserslautern, Germany.
| | - Svenja Lenhard
- Cell Biology, RPTU University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Katja G Hansen
- Cell Biology, RPTU University of Kaiserslautern-Landau, Kaiserslautern, Germany
| |
Collapse
|
8
|
Hirata R, Mogi Y, Takahashi K, Nozaki H, Higashiyama T, Yoshida Y. Simple prerequisite of presequence for mitochondrial protein import in the unicellular red alga Cyanidioschyzon merolae. J Cell Sci 2024; 137:jcs262042. [PMID: 38940185 PMCID: PMC11298712 DOI: 10.1242/jcs.262042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/13/2024] [Indexed: 06/29/2024] Open
Abstract
Mitochondrial biogenesis relies on hundreds of proteins that are derived from genes encoded in the nucleus. According to the characteristic properties of N-terminal targeting peptides (TPs) and multi-step authentication by the protein translocase called the TOM complex, nascent polypeptides satisfying the requirements are imported into mitochondria. However, it is unknown whether eukaryotic cells with a single mitochondrion per cell have a similar complexity of presequence requirements for mitochondrial protein import compared to other eukaryotes with multiple mitochondria. Based on putative mitochondrial TP sequences in the unicellular red alga Cyanidioschyzon merolae, we designed synthetic TPs and showed that functional TPs must have at least one basic residue and a specific amino acid composition, although their physicochemical properties are not strictly determined. Combined with the simple composition of the TOM complex in C. merolae, our results suggest that a regional positive charge in TPs is verified solely by TOM22 for mitochondrial protein import in C. merolae. The simple authentication mechanism indicates that the monomitochondrial C. merolae does not need to increase the cryptographic complexity of the lock-and-key mechanism for mitochondrial protein import.
Collapse
Affiliation(s)
- Riko Hirata
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuko Mogi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kohei Takahashi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- Biodiversity Division, National Institute for Environmental Studies, Ibaraki 305-8506, Japan
| | - Tetsuya Higashiyama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yamato Yoshida
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- Japan Science and Technology Agency (JST), PRESTO, Tokyo 113-0033, Japan
| |
Collapse
|
9
|
Kan KT, Wilcock J, Lu H. Role of Yme1 in mitochondrial protein homeostasis: from regulation of protein import, OXPHOS function to lipid synthesis and mitochondrial dynamics. Biochem Soc Trans 2024; 52:1539-1548. [PMID: 38864432 PMCID: PMC11346431 DOI: 10.1042/bst20240450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/13/2024]
Abstract
Mitochondria are essential organelles of eukaryotic cells and thus mitochondrial proteome is under constant quality control and remodelling. Yme1 is a multi-functional protein and subunit of the homo-hexametric complex i-AAA proteinase. Yme1 plays vital roles in the regulation of mitochondrial protein homeostasis and mitochondrial plasticity, ranging from substrate degradation to the regulation of protein functions involved in mitochondrial protein biosynthesis, energy production, mitochondrial dynamics, and lipid biosynthesis and signalling. In this mini review, we focus on discussing the current understanding of the roles of Yme1 in mitochondrial protein import via TIM22 and TIM23 pathways, oxidative phosphorylation complex function, as well as mitochondrial lipid biosynthesis and signalling, as well as a brief discussion of the role of Yme1 in modulating mitochondrial dynamics.
Collapse
Affiliation(s)
- Kwan Ting Kan
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, U.K
| | - Joel Wilcock
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, U.K
| | - Hui Lu
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, U.K
| |
Collapse
|
10
|
Nieto-Panqueva F, Vázquez-Acevedo M, Hamel PP, González-Halphen D. Identification of factors limiting the allotopic production of the Cox2 subunit of yeast cytochrome c oxidase. Genetics 2024; 227:iyae058. [PMID: 38626319 PMCID: PMC11492495 DOI: 10.1093/genetics/iyae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/18/2024] Open
Abstract
Mitochondrial genes can be artificially relocalized in the nuclear genome in a process known as allotopic expression, such is the case of the mitochondrial cox2 gene, encoding subunit II of cytochrome c oxidase (CcO). In yeast, cox2 can be allotopically expressed and is able to restore respiratory growth of a cox2-null mutant if the Cox2 subunit carries the W56R substitution within the first transmembrane stretch. However, the COX2W56R strain exhibits reduced growth rates and lower steady-state CcO levels when compared to wild-type yeast. Here, we investigated the impact of overexpressing selected candidate genes predicted to enhance internalization of the allotopic Cox2W56R precursor into mitochondria. The overproduction of Cox20, Oxa1, and Pse1 facilitated Cox2W56R precursor internalization, improving the respiratory growth of the COX2W56R strain. Overproducing TIM22 components had a limited effect on Cox2W56R import, while overproducing TIM23-related components showed a negative effect. We further explored the role of the Mgr2 subunit within the TIM23 translocator in the import process by deleting and overexpressing the MGR2 gene. Our findings indicate that Mgr2 is instrumental in modulating the TIM23 translocon to correctly sort Cox2W56R. We propose a biogenesis pathway followed by the allotopically produced Cox2 subunit based on the participation of the 2 different structural/functional forms of the TIM23 translocon, TIM23MOTOR and TIM23SORT, that must follow a concerted and sequential mode of action to insert Cox2W56R into the inner mitochondrial membrane in the correct Nout-Cout topology.
Collapse
Affiliation(s)
- Felipe Nieto-Panqueva
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-243, 04510 D.F. (Mexico), México
| | - Miriam Vázquez-Acevedo
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-243, 04510 D.F. (Mexico), México
| | - Patrice P Hamel
- Department of Molecular Genetics and Department of Biological Chemistry and Pharmacology, The Ohio State University, 582 Aronoff laboratory, 318 W. 12th Avenue, Columbus, OH 43210, USA
- School of BioScience and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632 014, India
| | - Diego González-Halphen
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-243, 04510 D.F. (Mexico), México
| |
Collapse
|
11
|
Makki A, Kereïche S, Le T, Kučerová J, Rada P, Žárský V, Hrdý I, Tachezy J. A hybrid TIM complex mediates protein import into hydrogenosomes of Trichomonas vaginalis. BMC Biol 2024; 22:130. [PMID: 38825681 PMCID: PMC11145794 DOI: 10.1186/s12915-024-01928-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/22/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND Hydrogenosomes are a specific type of mitochondria that have adapted for life under anaerobiosis. Limited availability of oxygen has resulted in the loss of the membrane-associated respiratory chain, and consequently in the generation of minimal inner membrane potential (Δψ), and inefficient ATP synthesis via substrate-level phosphorylation. The changes in energy metabolism are directly linked with the organelle biogenesis. In mitochondria, proteins are imported across the outer membrane via the Translocase of the Outer Membrane (TOM complex), while two Translocases of the Inner Membrane, TIM22, and TIM23, facilitate import to the inner membrane and matrix. TIM23-mediated steps are entirely dependent on Δψ and ATP hydrolysis, while TIM22 requires only Δψ. The character of the hydrogenosomal inner membrane translocase and the mechanism of translocation is currently unknown. RESULTS We report unprecedented modification of TIM in hydrogenosomes of the human parasite Trichomonas vaginalis (TvTIM). We show that the import of the presequence-containing protein into the hydrogenosomal matrix is mediated by the hybrid TIM22-TIM23 complex that includes three highly divergent core components, TvTim22, TvTim23, and TvTim17-like proteins. The hybrid character of the TvTIM is underlined by the presence of both TvTim22 and TvTim17/23, association with small Tim chaperones (Tim9-10), which in mitochondria are known to facilitate the transfer of substrates to the TIM22 complex, and the coupling with TIM23-specific ATP-dependent presequence translocase-associated motor (PAM). Interactome reconstruction based on co-immunoprecipitation (coIP) and mass spectrometry revealed that hybrid TvTIM is formed with the compositional variations of paralogs. Single-particle electron microscopy for the 132-kDa purified TvTIM revealed the presence of a single ring of small Tims complex, while mitochondrial TIM22 complex bears twin small Tims hexamer. TvTIM is currently the only TIM visualized outside of Opisthokonta, which raised the question of which form is prevailing across eukaryotes. The tight association of the hybrid TvTIM with ADP/ATP carriers (AAC) suggests that AAC may directly supply ATP for the protein import since ATP synthesis is limited in hydrogenosomes. CONCLUSIONS The hybrid TvTIM in hydrogenosomes represents an original structural solution that evolved for protein import when Δψ is negligible and remarkable example of evolutionary adaptation to an anaerobic lifestyle.
Collapse
Affiliation(s)
- Abhijith Makki
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25250, Vestec, Czech Republic
- Present address: Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073, Göttingen, Germany
| | - Sami Kereïche
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 12800, Prague 2, Czech Republic
| | - Tien Le
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25250, Vestec, Czech Republic
| | - Jitka Kučerová
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25250, Vestec, Czech Republic
| | - Petr Rada
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25250, Vestec, Czech Republic
| | - Vojtěch Žárský
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Ivan Hrdý
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25250, Vestec, Czech Republic
| | - Jan Tachezy
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25250, Vestec, Czech Republic.
| |
Collapse
|
12
|
Nussberger S, Ghosh R, Wang S. New insights into the structure and dynamics of the TOM complex in mitochondria. Biochem Soc Trans 2024; 52:911-922. [PMID: 38629718 PMCID: PMC11088910 DOI: 10.1042/bst20231236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/21/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
To date, there is no general physical model of the mechanism by which unfolded polypeptide chains with different properties are imported into the mitochondria. At the molecular level, it is still unclear how transit polypeptides approach, are captured by the protein translocation machinery in the outer mitochondrial membrane, and how they subsequently cross the entropic barrier of a protein translocation pore to enter the intermembrane space. This deficiency has been due to the lack of detailed structural and dynamic information about the membrane pores. In this review, we focus on the recently determined sub-nanometer cryo-EM structures and our current knowledge of the dynamics of the mitochondrial two-pore outer membrane protein translocation machinery (TOM core complex), which provide a starting point for addressing the above questions. Of particular interest are recent discoveries showing that the TOM core complex can act as a mechanosensor, where the pores close as a result of interaction with membrane-proximal structures. We highlight unusual and new correlations between the structural elements of the TOM complexes and their dynamic behavior in the membrane environment.
Collapse
Affiliation(s)
- Stephan Nussberger
- Department of Biophysics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| | - Robin Ghosh
- Department of Bioenergetics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| | - Shuo Wang
- Department of Biophysics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
13
|
Horten P, Song K, Garlich J, Hardt R, Colina-Tenorio L, Horvath SE, Schulte U, Fakler B, van der Laan M, Becker T, Stuart RA, Pfanner N, Rampelt H. Identification of MIMAS, a multifunctional mega-assembly integrating metabolic and respiratory biogenesis factors of mitochondria. Cell Rep 2024; 43:113772. [PMID: 38393949 PMCID: PMC11010658 DOI: 10.1016/j.celrep.2024.113772] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/03/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
The mitochondrial inner membrane plays central roles in bioenergetics and metabolism and contains several established membrane protein complexes. Here, we report the identification of a mega-complex of the inner membrane, termed mitochondrial multifunctional assembly (MIMAS). Its large size of 3 MDa explains why MIMAS has escaped detection in the analysis of mitochondria so far. MIMAS combines proteins of diverse functions from respiratory chain assembly to metabolite transport, dehydrogenases, and lipid biosynthesis but not the large established supercomplexes of the respiratory chain, ATP synthase, or prohibitin scaffold. MIMAS integrity depends on the non-bilayer phospholipid phosphatidylethanolamine, in contrast to respiratory supercomplexes whose stability depends on cardiolipin. Our findings suggest that MIMAS forms a protein-lipid mega-assembly in the mitochondrial inner membrane that integrates respiratory biogenesis and metabolic processes in a multifunctional platform.
Collapse
Affiliation(s)
- Patrick Horten
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Kuo Song
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Joshua Garlich
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Robert Hardt
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, 53115 Bonn, Germany
| | - Lilia Colina-Tenorio
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Susanne E Horvath
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Uwe Schulte
- Institute of Physiology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Bernd Fakler
- Institute of Physiology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Martin van der Laan
- Medical Biochemistry and Molecular Biology, Center for Molecular Signaling, PZMS, Faculty of Medicine, Saarland University, 66421 Homburg, Germany
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, 53115 Bonn, Germany
| | - Rosemary A Stuart
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| | - Heike Rampelt
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
14
|
Eldeeb MA, Bayne AN, Fallahi A, Goiran T, MacDougall EJ, Soumbasis A, Zorca CE, Tabah JJ, Thomas RA, Karpilovsky N, Mathur M, Durcan TM, Trempe JF, Fon EA. Tom20 gates PINK1 activity and mediates its tethering of the TOM and TIM23 translocases upon mitochondrial stress. Proc Natl Acad Sci U S A 2024; 121:e2313540121. [PMID: 38416681 DOI: 10.1073/pnas.2313540121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 01/08/2024] [Indexed: 03/01/2024] Open
Abstract
Mutations in PTEN-induced putative kinase 1 (PINK1) cause autosomal recessive early-onset Parkinson's disease (PD). PINK1 is a Ser/Thr kinase that regulates mitochondrial quality control by triggering mitophagy mediated by the ubiquitin (Ub) ligase Parkin. Upon mitochondrial damage, PINK1 accumulates on the outer mitochondrial membrane forming a high-molecular-weight complex with the translocase of the outer membrane (TOM). PINK1 then phosphorylates Ub, which enables recruitment and activation of Parkin followed by autophagic clearance of the damaged mitochondrion. Thus, Parkin-dependent mitophagy hinges on the stable accumulation of PINK1 on the TOM complex. Yet, the mechanism linking mitochondrial stressors to PINK1 accumulation and whether the translocases of the inner membrane (TIMs) are also involved remain unclear. Herein, we demonstrate that mitochondrial stress induces the formation of a PINK1-TOM-TIM23 supercomplex in human cultured cell lines, dopamine neurons, and midbrain organoids. Moreover, we show that PINK1 is required to stably tether the TOM to TIM23 complexes in response to stress such that the supercomplex fails to accumulate in cells lacking PINK1. This tethering is dependent on an interaction between the PINK1 N-terminal-C-terminal extension module and the cytosolic domain of the Tom20 subunit of the TOM complex, the disruption of which, by either designer or PD-associated PINK1 mutations, inhibits downstream mitophagy. Together, the findings provide key insight into how PINK1 interfaces with the mitochondrial import machinery, with important implications for the mechanisms of mitochondrial quality control and PD pathogenesis.
Collapse
Affiliation(s)
- Mohamed A Eldeeb
- McGill Parkinson Program and Neurodegenerative Disorders Research Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC H3A 2B4, Canada
- Structural Genomics Consortium - Neuro, McGill University, Montréal, QC H3A 2B4, Canada
| | - Andrew N Bayne
- Structural Genomics Consortium - Neuro, McGill University, Montréal, QC H3A 2B4, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC H3G 1Y6, Canada
- Centre de Recherche en Biologie Structurale, Montréal, QC H3G 0B1, Canada
| | - Armaan Fallahi
- McGill Parkinson Program and Neurodegenerative Disorders Research Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC H3A 2B4, Canada
- Structural Genomics Consortium - Neuro, McGill University, Montréal, QC H3A 2B4, Canada
| | - Thomas Goiran
- McGill Parkinson Program and Neurodegenerative Disorders Research Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC H3A 2B4, Canada
- Structural Genomics Consortium - Neuro, McGill University, Montréal, QC H3A 2B4, Canada
| | - Emma J MacDougall
- McGill Parkinson Program and Neurodegenerative Disorders Research Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC H3A 2B4, Canada
- Structural Genomics Consortium - Neuro, McGill University, Montréal, QC H3A 2B4, Canada
| | - Andrea Soumbasis
- McGill Parkinson Program and Neurodegenerative Disorders Research Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC H3A 2B4, Canada
- Structural Genomics Consortium - Neuro, McGill University, Montréal, QC H3A 2B4, Canada
| | - Cornelia E Zorca
- McGill Parkinson Program and Neurodegenerative Disorders Research Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC H3A 2B4, Canada
- Structural Genomics Consortium - Neuro, McGill University, Montréal, QC H3A 2B4, Canada
| | - Jace-Jones Tabah
- McGill Parkinson Program and Neurodegenerative Disorders Research Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC H3A 2B4, Canada
- Structural Genomics Consortium - Neuro, McGill University, Montréal, QC H3A 2B4, Canada
| | - Rhalena A Thomas
- McGill Parkinson Program and Neurodegenerative Disorders Research Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC H3A 2B4, Canada
- Structural Genomics Consortium - Neuro, McGill University, Montréal, QC H3A 2B4, Canada
| | - Nathan Karpilovsky
- McGill Parkinson Program and Neurodegenerative Disorders Research Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC H3A 2B4, Canada
- Structural Genomics Consortium - Neuro, McGill University, Montréal, QC H3A 2B4, Canada
| | - Meghna Mathur
- McGill Parkinson Program and Neurodegenerative Disorders Research Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC H3A 2B4, Canada
- Structural Genomics Consortium - Neuro, McGill University, Montréal, QC H3A 2B4, Canada
| | - Thomas M Durcan
- McGill Parkinson Program and Neurodegenerative Disorders Research Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC H3A 2B4, Canada
- Structural Genomics Consortium - Neuro, McGill University, Montréal, QC H3A 2B4, Canada
| | - Jean-François Trempe
- Structural Genomics Consortium - Neuro, McGill University, Montréal, QC H3A 2B4, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC H3G 1Y6, Canada
- Centre de Recherche en Biologie Structurale, Montréal, QC H3G 0B1, Canada
| | - Edward A Fon
- McGill Parkinson Program and Neurodegenerative Disorders Research Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC H3A 2B4, Canada
- Structural Genomics Consortium - Neuro, McGill University, Montréal, QC H3A 2B4, Canada
| |
Collapse
|
15
|
Wang Q, Zhuang J, Huang R, Guan Z, Yan L, Hong S, Zhang L, Huang C, Liu Z, Yin P. The architecture of substrate-engaged TOM-TIM23 supercomplex reveals preprotein proximity sites for mitochondrial protein translocation. Cell Discov 2024; 10:19. [PMID: 38360717 PMCID: PMC10869343 DOI: 10.1038/s41421-023-00643-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/24/2023] [Indexed: 02/17/2024] Open
Affiliation(s)
- Qiang Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jinjin Zhuang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Rui Huang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zeyuan Guan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ling Yan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Sixing Hong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Liying Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Can Huang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhu Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
16
|
Wasilewski M, Draczkowski P, Chacinska A. Protein import into mitochondria - a new path through the membranes. Nat Struct Mol Biol 2023; 30:1831-1833. [PMID: 38087086 DOI: 10.1038/s41594-023-01170-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Affiliation(s)
| | - Piotr Draczkowski
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | | |
Collapse
|