1
|
Thiede JM, Dick JK, Jarjour NN, Krishna VD, Qian L, Sangala J, Benzow K, Karanjeet K, Chin S, Rainwater O, Cheeran MCJ, Hogquist KA, Jameson SC, Hart GT, Bold TD, Koob MD. Human ACE2 Gene Replacement Mice Support SARS-CoV-2 Viral Replication and Nonlethal Disease Progression. Immunohorizons 2024; 8:712-720. [PMID: 39287601 PMCID: PMC11447706 DOI: 10.4049/immunohorizons.2400030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/06/2024] [Indexed: 09/19/2024] Open
Abstract
Many mouse models of SARS-CoV-2 infection involve expression of the human ACE2 protein, the entry receptor for SARS-CoV-2 Spike protein, in mouse tissues. However, most of these models suffer from nonphysiological regulation of ACE2 expression, which can lead to atypically severe infections and aberrant sites of viral replication. In this report, we developed and characterized an ACE2 gene replacement (ACE2-GR) mouse strain in which the mouse Ace2 genomic locus was replaced by the entire human ACE2 gene locus, and we investigated the ability of these animals to respond to SARS-CoV-2 infection. We show that ACE2-GR mice support SARS-CoV-2 viral replication, but, in stark contrast to the widely used K18-hACE2 transgenic model, this infection leads to a mild disease with no detectable involvement of the CNS. Thus, ACE2-GR mice provide a novel, to our knowledge, model to explore immune responses and long-term consequences of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Joshua M. Thiede
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN
| | - Jenna K. Dick
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN
| | - Nicholas N. Jarjour
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN
| | - Venkatramana D. Krishna
- Department of Veterinary Population Medicine, University of Minnesota College of Veterinary Medicine, St. Paul, MN
| | - Lily Qian
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN
| | - Jules Sangala
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN
| | - Kellie Benzow
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN
| | - Kul Karanjeet
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN
| | - Shine Chin
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN
| | - Orion Rainwater
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN
| | - Maxim C.-J. Cheeran
- Department of Veterinary Population Medicine, University of Minnesota College of Veterinary Medicine, St. Paul, MN
| | - Kristin A. Hogquist
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN
| | - Stephen C. Jameson
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN
| | - Geoffrey T. Hart
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN
| | - Tyler D. Bold
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN
| | - Michael D. Koob
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN
| |
Collapse
|
2
|
Rossi L, Santos KBS, Mota BIS, Pimenta J, Oliveira B, Machado CA, Fernandes HB, Barbosa LA, Rodrigues HA, Teixeira GHM, Gomes-Martins GA, Chaimowicz GF, Queiroz-Junior CM, Chaves I, Tapia JC, Teixeira MM, Costa VV, Miranda AS, Guatimosim C. Neuromuscular defects after infection with a beta coronavirus in mice. Neurochem Int 2023; 169:105567. [PMID: 37348761 PMCID: PMC10281698 DOI: 10.1016/j.neuint.2023.105567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
COVID-19 affects primarily the lung. However, several other systemic alterations, including muscle weakness, fatigue and myalgia have been reported and may contribute to the disease outcome. We hypothesize that changes in the neuromuscular system may contribute to the latter symptoms observed in COVID-19 patients. Here, we showed that C57BL/6J mice inoculated intranasally with the murine betacoronavirus hepatitis coronavirus 3 (MHV-3), a model for studying COVID-19 in BSL-2 conditions that emulates severe COVID-19, developed robust motor alterations in muscle strength and locomotor activity. The latter changes were accompanied by degeneration and loss of motoneurons that were associated with the presence of virus-like particles inside the motoneuron. At the neuromuscular junction level, there were signs of atrophy and fragmentation in synaptic elements of MHV-3-infected mice. Furthermore, there was muscle atrophy and fiber type switch with alteration in myokines levels in muscles of MHV-3-infected mice. Collectively, our results show that acute infection with a betacoronavirus leads to robust motor impairment accompanied by neuromuscular system alteration.
Collapse
Affiliation(s)
- Leonardo Rossi
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Kivia B S Santos
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Barbara I S Mota
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Jordane Pimenta
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Bruna Oliveira
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Caroline A Machado
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Heliana B Fernandes
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Leticia A Barbosa
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Hermann A Rodrigues
- Departamento de Ciências Básicas da Vida, Universidade Federal de Juiz de Fora, Campus Governador Valadares, MG, Brazil
| | - Gabriel H M Teixeira
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gabriel A Gomes-Martins
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gabriel F Chaimowicz
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Celso Martins Queiroz-Junior
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ian Chaves
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Juan C Tapia
- School of Medicine, University of Talca, Talca, Chile
| | - Mauro M Teixeira
- Department of Biochemistry, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vivian V Costa
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Aline S Miranda
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Cristina Guatimosim
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
3
|
Totain E, Lindner L, Martin N, Misseri Y, Iché A, Birling MC, Sorg T, Herault Y, Bousquet-Melou A, Bouillé P, Duthoit C, Pavlovic G, Boullier S. Development of HPV16 mouse and dog models for more accurate prediction of human vaccine efficacy. Lab Anim Res 2023; 39:14. [PMID: 37308929 DOI: 10.1186/s42826-023-00166-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Animal models are essential to understand the physiopathology of human diseases but also to evaluate new therapies. However, for several diseases there is no appropriate animal model, which complicates the development of effective therapies. HPV infections, responsible for carcinoma cancers, are among these. So far, the lack of relevant animal models has hampered the development of therapeutic vaccines. In this study, we used a candidate therapeutic vaccine named C216, similar to the ProCervix candidate therapeutic vaccine, to validate new mouse and dog HPV preclinical models. ProCervix has shown promising results with classical subcutaneous murine TC-1 cell tumor isografts but has failed in a phase II study. RESULTS We first generated E7/HPV16 syngeneic transgenic mice in which the expression of the E7 antigen could be switched on through the use of Cre-lox recombination. Non-integrative LentiFlash® viral particles were used to locally deliver Cre mRNA, resulting in E7/HPV16 expression and GFP reporter fluorescence. The expression of E7/HPV16 was monitored by in vivo fluorescence using Cellvizio imaging and by local mRNA expression quantification. In the experimental conditions used, we observed no differences in E7 expression between C216 vaccinated and control groups. To mimic the MHC diversity of humans, E7/HPV16 transgenes were locally delivered by injection of lentiviral particles in the muscle of dogs. Vaccination with C216, tested with two different adjuvants, induced a strong immune response in dogs. However, we detected no relationship between the level of cellular response against E7/HPV16 and the elimination of E7-expressing cells, either by fluorescence or by RT-ddPCR analysis. CONCLUSIONS In this study, we have developed two animal models, with a genetic design that is easily transposable to different antigens, to validate the efficacy of candidate vaccines. Our results indicate that, despite being immunogenic, the C216 candidate vaccine did not induce a sufficiently strong immune response to eliminate infected cells. Our results are in line with the failure of the ProCervix vaccine that was observed at the end of the phase II clinical trial, reinforcing the relevance of appropriate animal models.
Collapse
Affiliation(s)
| | - Loïc Lindner
- CNRS, INSERM, CELPHEDIA, PHENOMIN-Institut Clinique de la Souris (ICS), Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch Graffenstaden, France
| | - Nicolas Martin
- FlashTherapeutics, Centre de Recherche Langlade, 3 Avenue Hubert Curien, 31100, Toulouse, France
| | | | - Alexandra Iché
- FlashTherapeutics, Centre de Recherche Langlade, 3 Avenue Hubert Curien, 31100, Toulouse, France
| | - Marie-Christine Birling
- CNRS, INSERM, CELPHEDIA, PHENOMIN-Institut Clinique de la Souris (ICS), Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch Graffenstaden, France
| | - Tania Sorg
- CNRS, INSERM, CELPHEDIA, PHENOMIN-Institut Clinique de la Souris (ICS), Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch Graffenstaden, France
| | - Yann Herault
- CNRS, INSERM, CELPHEDIA, PHENOMIN-Institut Clinique de la Souris (ICS), Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch Graffenstaden, France
- CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch Graffenstaden, France
| | | | - Pascale Bouillé
- FlashTherapeutics, Centre de Recherche Langlade, 3 Avenue Hubert Curien, 31100, Toulouse, France
| | - Christine Duthoit
- FlashTherapeutics, Centre de Recherche Langlade, 3 Avenue Hubert Curien, 31100, Toulouse, France
| | - Guillaume Pavlovic
- CNRS, INSERM, CELPHEDIA, PHENOMIN-Institut Clinique de la Souris (ICS), Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch Graffenstaden, France
| | | |
Collapse
|
4
|
Christapher PV, Ganeson T, Chinni SV, Parasuraman S. Transgenic Rodent Models in Toxicological and Environmental Research: Future Perspectives. J Pharmacol Pharmacother 2022. [DOI: 10.1177/0976500x221135691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The coexistence of humans and animals has existed for centuries. Over the past decade, animal research has played a critical role in drug development and discovery. More and more diverse animals, including transgenic animals, are used in basic research than in applied research. Transgenic animals are generated using molecular genetic techniques to add functional genes, alter gene products, delete genes, insert reporter genes into regulatory sequences, replace or repair genes, and make changes in gene expression. These genetically engineered animals are unique tools for studying a wide range of biomedical issues, allowing the exhibition of specific genetic alterations in various biological systems. Over the past two decades, transgenic animal models have played a critical role in improving our understanding of gene regulation and function in biological systems and human disease. This review article aims to highlight the role of transgenic animals in pharmacological, toxicological, and environmental research. The review accounts for various types of transgenic animals and their appropriateness in multiple types of studies.
Collapse
Affiliation(s)
- Parayil Varghese Christapher
- Department of Pharmacology, Al Shifa College of Pharmacy, Poothavanam post, Kizhattur, Perinthalmanna, Malappuram District, Kerala, India
| | - Thanapakiam Ganeson
- Department of Pharmaceutical Technology, Faculty of Pharmacy, AIMST University, Bedong, Malaysia
| | - Suresh V. Chinni
- Department of Biochemistry, Faculty of Medicine, Bioscience, and Nursing, MAHSA University, Selangor, Malaysia
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | | |
Collapse
|
5
|
Gurumurthy CB, Quadros RM, Ohtsuka M. Prototype mouse models for researching SEND-based mRNA delivery and gene therapy. Nat Protoc 2022; 17:2129-2138. [PMID: 35922579 DOI: 10.1038/s41596-022-00721-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 05/19/2022] [Indexed: 11/09/2022]
Abstract
One of the major challenges of gene therapy-an approach to treat diseases caused by faulty genes-is a lack of technologies that deliver healthy gene copies to target tissues and cells. Some commonly used approaches include viral vectors or coating therapeutic nucleic acids with lipid-based nanoparticles to pass through cell membranes, but these technologies have had limited success. A revolutionary tool, the CRISPR-Cas gene-editing system, offers tremendous promise, but it too suffers from problems with delivery. Another tool, called 'SEND' (for 'selective endogenous encapsidation for cellular delivery'), seems to offer a better solution. The SEND system uses endogenous genetic components to package mRNA cargoes to deliver them to other cells via virus-like particles (VLPs). The SEND-VLP tool has enormous potential as a gene-therapy tool, if the endogenous components of SEND can be repurposed to produce VLPs containing therapeutic cargoes. However, several aspects of this newly identified phenomenon are not yet fully understood. Genetically engineered mouse (GEM) models, expressing different combinations of SEND components in a controllable and inducible fashion, could serve as valuable tools to understand more about this tool and to repurpose it for gene-therapy applications. In this Perspective, we discuss how GEM models and mouse molecular genetics tools could be used for SEND-VLP research.
Collapse
Affiliation(s)
- Channabasavaiah B Gurumurthy
- Mouse Genome Engineering Core Facility, University of Nebraska Medical Center, Omaha, NE, USA. .,Genome Editing and Education Center Nebraska (GEEC-Nebraska), College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA. .,Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Rolen M Quadros
- Mouse Genome Engineering Core Facility, University of Nebraska Medical Center, Omaha, NE, USA.,Genome Editing and Education Center Nebraska (GEEC-Nebraska), College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Masato Ohtsuka
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Japan. .,The Institute of Medical Sciences, Tokai University, Isehara, Japan.
| |
Collapse
|
6
|
Yang S, Cao L, Xu W, Xu T, Zheng B, Ji Y, Huang S, Liu L, Du J, Peng H, Zhang H, Chen J, Ke B, Zheng H, Deng X, Li C, Guo D. Comparison of model-specific histopathology in mouse models of COVID-19. J Med Virol 2022; 94:3605-3612. [PMID: 35355296 PMCID: PMC9088385 DOI: 10.1002/jmv.27747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 11/30/2022]
Abstract
A novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been identified as the causative agent of the current coronavirus disease 2019 pandemic. Development of animal models that parallel the clinical and pathologic features of disease are highly essential to understanding the pathogenesis of SARS-CoV-2 infection and the development of therapeutics and prophylactics. Several mouse models that express the human angiotensin converting enzyme 2 (hACE2) have been created, including transgenic and knock-in strains, and viral vector-mediated delivery of hACE2. However, the comparative pathology of these mouse models infected with SARS-CoV-2 are unknown. Here, we perform systematic comparisons of the mouse models including K18-hACE2 mice, KI-hACE2 mice, Ad5-hACE2 mice and CAG-hACE2 mice, which revealed differences in the distribution of lesions and the characteristics of pneumonia induced. Based on these observations, the hACE2 mouse models meet different needs of SARS-CoV-2 researches. The similarities or differences among the model-specific pathologies may help in better understanding the pathogenic process of SARS-CoV-2 infection and aiding in the development of effective medications and prophylactic treatments for SARS-CoV-2.
Collapse
Affiliation(s)
- Sidi Yang
- Centre for Infection and Immunity Studies (CIIS), School of MedicineShenzhen Campus of Sun Yat‐sen UniversityGuangdongShenzhenChina
| | - Liu Cao
- Centre for Infection and Immunity Studies (CIIS), School of MedicineShenzhen Campus of Sun Yat‐sen UniversityGuangdongShenzhenChina
| | - Wenting Xu
- Department of Pathology, The International Peace Maternity & Child Health Hospital of China Welfare Institute (IPMCH)Shanghai Jiao Tong UniversityShanghaiChina
| | - Tiefeng Xu
- Centre for Infection and Immunity Studies (CIIS), School of MedicineShenzhen Campus of Sun Yat‐sen UniversityGuangdongShenzhenChina
| | - Birong Zheng
- Centre for Infection and Immunity Studies (CIIS), School of MedicineShenzhen Campus of Sun Yat‐sen UniversityGuangdongShenzhenChina
| | - Yanxi Ji
- Centre for Infection and Immunity Studies (CIIS), School of MedicineShenzhen Campus of Sun Yat‐sen UniversityGuangdongShenzhenChina
| | - Siyao Huang
- Centre for Infection and Immunity Studies (CIIS), School of MedicineShenzhen Campus of Sun Yat‐sen UniversityGuangdongShenzhenChina
| | - Lihong Liu
- Centre for Infection and Immunity Studies (CIIS), School of MedicineShenzhen Campus of Sun Yat‐sen UniversityGuangdongShenzhenChina
| | - Jie Du
- Centre for Infection and Immunity Studies (CIIS), School of MedicineShenzhen Campus of Sun Yat‐sen UniversityGuangdongShenzhenChina
| | - Hong Peng
- Centre for Infection and Immunity Studies (CIIS), School of MedicineShenzhen Campus of Sun Yat‐sen UniversityGuangdongShenzhenChina
| | - Huan Zhang
- Center for Disease Control and Prevention of Guangdong ProvinceGuangzhouGuangdongChina
| | - Jingdiao Chen
- Center for Disease Control and Prevention of Guangdong ProvinceGuangzhouGuangdongChina
| | - Bixia Ke
- Center for Disease Control and Prevention of Guangdong ProvinceGuangzhouGuangdongChina
| | - Huanying Zheng
- Center for Disease Control and Prevention of Guangdong ProvinceGuangzhouGuangdongChina
| | - Xiaoling Deng
- Center for Disease Control and Prevention of Guangdong ProvinceGuangzhouGuangdongChina
| | - Chunmei Li
- Centre for Infection and Immunity Studies (CIIS), School of MedicineShenzhen Campus of Sun Yat‐sen UniversityGuangdongShenzhenChina
| | - Deyin Guo
- Centre for Infection and Immunity Studies (CIIS), School of MedicineShenzhen Campus of Sun Yat‐sen UniversityGuangdongShenzhenChina
| |
Collapse
|
7
|
Bhardwaj V, Dela Cruz M, Subramanyam D, Kumar R, Markan S, Parker B, Roy HK. Exercise-induced myokines downregulates the ACE2 level in bronchial epithelial cells: Implications for SARS-CoV-2 prevention. PLoS One 2022; 17:e0271303. [PMID: 35857747 PMCID: PMC9299331 DOI: 10.1371/journal.pone.0271303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/27/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The Covid-19 pandemic has emerged as the leading public health challenge of our time (20th century). While vaccinations have finally blunted the death rate, concern has remained about more virulent forms highlighting the need for alternative approaches. Epidemiological studies indicate that physical activity has been shown to decrease the risk of infection of some respiratory viruses. Part of the salutary effects of exercise is believed to be through the elaboration of cytokines by contracting skeletal muscles (termed myokines). The objective of this study was to investigate whether exercise-induced myokines would mitigate the SARS-CoV-2 infectivity of the bronchial epithelium through modulating the SARS-CoV-2 Covid-19 receptor (angiotensin-converting enzyme 2 -ACE2) its priming enzyme, transmembrane serine protease 2 (TMPRSS2). METHODS We utilized a cell culture model of exercise to generate myokines by differentiating C2C12 cells into myotubules and inducing them to contract via low-frequency electric pulse stimulation. Condition media was concentrated via centrifugation and applied to human immortalized human bronchial epithelium cell line (6HBE14o) along with conditioned media from unstimulated myotubules as controls. Following exposure to myokines, the 16HBE14o cells were harvested and subjected to quantitative RT-PCR and Enzyme-Linked Immunosorbent Assay (ELISA) for assessment of mRNA and protein levels of ACE2 and TMPRSS2, respectively. Pilot proteomic data was performed with isotope barcoding and mass spectroscopy. RESULTS Quantitative Real-Time PCR of 16HBE14o with 48 h treated unstimulated vs. stimulated myokine treatment revealed a reduction of ACE2 and TMPRSS2 mRNA by 32% (p<2.69x10-5) and 41% (p<4.57x10-5), respectively. The high sensitivity of ELISAs showed downregulation of ACE2 and TMPRSS2 protein expression in 16HBE14o cells by 53% (p<0.01) and 32% (p<0.03) respectively with 48 h treated. For rigor, this work was replicated in the human lung cancer cell line A549, which mirrored the downregulation. Proteomic analysis showed dramatic alteration in myokine profile between contracted and uncontracted C2C12 tubules. CONCLUSIONS The current study explores a novel approach of a modified exercise cell culture system and uses ACE2 and TMPRSS2 as a surrogate marker of SARS-CoV-2 infectivity. In conclusion, we demonstrated biological data supporting exercise's protective effect against Covid-19. These further strengthen myokines' beneficial role as potential therapeutic targets against SARS-CoV-2 and similar viruses albeit these preliminary cell culture studies will require future validation in animal models.
Collapse
Affiliation(s)
- Vaishali Bhardwaj
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Mart Dela Cruz
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Deepika Subramanyam
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Rohit Kumar
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Sandeep Markan
- Department of Anaesthesiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Beth Parker
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Hemant K. Roy
- Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
8
|
Bestion E, Halfon P, Mezouar S, Mège JL. Cell and Animal Models for SARS-CoV-2 Research. Viruses 2022; 14:1507. [PMID: 35891487 PMCID: PMC9319816 DOI: 10.3390/v14071507] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
During the last two years following the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, development of potent antiviral drugs and vaccines has been a global health priority. In this context, the understanding of virus pathophysiology, the identification of associated therapeutic targets, and the screening of potential effective compounds have been indispensable advancements. It was therefore of primary importance to develop experimental models that recapitulate the aspects of the human disease in the best way possible. This article reviews the information concerning available SARS-CoV-2 preclinical models during that time, including cell-based approaches and animal models. We discuss their evolution, their advantages, and drawbacks, as well as their relevance to drug effectiveness evaluation.
Collapse
Affiliation(s)
- Eloïne Bestion
- Microbe Evolution Phylogeny Infection, Institut pour la Recherche et le Developpement, Assistance Publique Hopitaux de Marseille, Aix-Marseille University, 13005 Marseille, France; (E.B.); (P.H.)
- Institue Hospitalo, Universitaire Mediterranée Infection, 13005 Marseille, France
- Genoscience Pharma, 13005 Marseille, France
| | - Philippe Halfon
- Microbe Evolution Phylogeny Infection, Institut pour la Recherche et le Developpement, Assistance Publique Hopitaux de Marseille, Aix-Marseille University, 13005 Marseille, France; (E.B.); (P.H.)
- Institue Hospitalo, Universitaire Mediterranée Infection, 13005 Marseille, France
- Genoscience Pharma, 13005 Marseille, France
| | - Soraya Mezouar
- Microbe Evolution Phylogeny Infection, Institut pour la Recherche et le Developpement, Assistance Publique Hopitaux de Marseille, Aix-Marseille University, 13005 Marseille, France; (E.B.); (P.H.)
- Institue Hospitalo, Universitaire Mediterranée Infection, 13005 Marseille, France
- Genoscience Pharma, 13005 Marseille, France
| | - Jean-Louis Mège
- Microbe Evolution Phylogeny Infection, Institut pour la Recherche et le Developpement, Assistance Publique Hopitaux de Marseille, Aix-Marseille University, 13005 Marseille, France; (E.B.); (P.H.)
- Institue Hospitalo, Universitaire Mediterranée Infection, 13005 Marseille, France
| |
Collapse
|
9
|
Abstract
The dramatic global consequences of the coronavirus disease 2019 (COVID-19) pandemic soon fueled quests for a suitable model that would facilitate the development and testing of therapies and vaccines. In contrast to other rodents, hamsters are naturally susceptible to infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the Syrian hamster (Mesocricetus auratus) rapidly developed into a popular model. It recapitulates many characteristic features as seen in patients with a moderate, self-limiting course of the disease such as specific patterns of respiratory tract inflammation, vascular endothelialitis, and age dependence. Among 4 other hamster species examined, the Roborovski dwarf hamster (Phodopus roborovskii) more closely mimics the disease in highly susceptible patients with frequent lethal outcome, including devastating diffuse alveolar damage and coagulopathy. Thus, different hamster species are available to mimic different courses of the wide spectrum of COVID-19 manifestations in humans. On the other hand, fewer diagnostic tools and information on immune functions and molecular pathways are available than in mice, which limits mechanistic studies and inference to humans in several aspects. Still, under pandemic conditions with high pressure on progress in both basic and clinically oriented research, the Syrian hamster has turned into the leading non-transgenic model at an unprecedented pace, currently used in innumerable studies that all aim to combat the impact of the virus with its new variants of concern. As in other models, its strength rests upon a solid understanding of its similarities to and differences from the human disease, which we review here.
Collapse
|
10
|
Tiwari S, Goel G, Kumar A. Natural and genetically-modified animal models to investigate pulmonary and extrapulmonary manifestations of COVID-19. Int Rev Immunol 2022; 43:13-32. [PMID: 35757923 DOI: 10.1080/08830185.2022.2089666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/09/2022] [Indexed: 10/17/2022]
Abstract
Coronavirus disease-19 (COVID-19), a pandemic caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), is a primarily respiratory tract disease. Suitable animal models for COVID-19 are required to study various aspects of pathogenesis, drug discovery, effective and safe vaccine development. Several laboratory animals including, non-human primates, hamsters, ferrets, transgenic mice, and zebrafish, have been used and proven their significance experimentally. Currently available animal models of SARS-CoV-2 can be broadly classified into two categories 1) natural animal models 2) genetically-modified that exhibit different degrees of susceptibility of SARS-CoV-2, tissue damage in respiratory and other organ systems. Not all the available animal models mimic COVID-19-like phenotype completely. Therefore, understanding various aspects of COVID-19 requires different animal models. In this review article, we provide an update on the immune response and clinical manifestations observed in naturally occurring and genetically-modified animals of COVID-19. We then review the transmission, viral replication, lung pathology, immunological aspects, and extrapulmonary phenotypes observed in various animal models. In the end, we put forth our perspective on the anticipated uses, disadvantages, and limitations of each type of animal model.
Collapse
Affiliation(s)
- Shikha Tiwari
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, India
| | - Garima Goel
- Department of Pathology and Laboratory Medicine, All India Institute of Medical Sciences, Bhopal, India
| | - Ashok Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, India
| |
Collapse
|
11
|
KIANI AYSHAKARIM, PHEBY DEREK, HENEHAN GARY, BROWN RICHARD, SIEVING PAUL, SYKORA PETER, MARKS ROBERT, FALSINI BENEDETTO, CAPODICASA NATALE, MIERTUS STANISLAV, LORUSSO LORENZO, DONDOSSOLA DANIELE, TARTAGLIA GIANLUCAMARTINO, ERGOREN MAHMUTCERKEZ, DUNDAR MUNIS, MICHELINI SANDRO, MALACARNE DANIELE, BONETTI GABRIELE, DAUTAJ ASTRIT, DONATO KEVIN, MEDORI MARIACHIARA, BECCARI TOMMASO, SAMAJA MICHELE, CONNELLY STEPHENTHADDEUS, MARTIN DONALD, MORRESI ASSUNTA, BACU ARIOLA, HERBST KARENL, KAPUSTIN MYKHAYLO, STUPPIA LIBORIO, LUMER LUDOVICA, FARRONATO GIAMPIETRO, BERTELLI MATTEO. Ethical considerations regarding animal experimentation. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2022; 63:E255-E266. [PMID: 36479489 PMCID: PMC9710398 DOI: 10.15167/2421-4248/jpmh2022.63.2s3.2768] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Animal experimentation is widely used around the world for the identification of the root causes of various diseases in humans and animals and for exploring treatment options. Among the several animal species, rats, mice and purpose-bred birds comprise almost 90% of the animals that are used for research purpose. However, growing awareness of the sentience of animals and their experience of pain and suffering has led to strong opposition to animal research among many scientists and the general public. In addition, the usefulness of extrapolating animal data to humans has been questioned. This has led to Ethical Committees' adoption of the 'four Rs' principles (Reduction, Refinement, Replacement and Responsibility) as a guide when making decisions regarding animal experimentation. Some of the essential considerations for humane animal experimentation are presented in this review along with the requirement for investigator training. Due to the ethical issues surrounding the use of animals in experimentation, their use is declining in those research areas where alternative in vitro or in silico methods are available. However, so far it has not been possible to dispense with experimental animals completely and further research is needed to provide a road map to robust alternatives before their use can be fully discontinued.
Collapse
Affiliation(s)
- AYSHA KARIM KIANI
- Allama Iqbal Open University, Islamabad, Pakistan
- MAGI EUREGIO, Bolzano, Italy
| | - DEREK PHEBY
- Society and Health, Buckinghamshire New University, High Wycombe, UK
| | - GARY HENEHAN
- School of Food Science and Environmental Health, Technological University of Dublin, Dublin, Ireland
| | - RICHARD BROWN
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - PAUL SIEVING
- Department of Ophthalmology, Center for Ocular Regenerative Therapy, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - PETER SYKORA
- Department of Philosophy and Applied Philosophy, University of St. Cyril and Methodius, Trnava, Slovakia
| | - ROBERT MARKS
- Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - BENEDETTO FALSINI
- Institute of Ophthalmology, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | | | - STANISLAV MIERTUS
- Department of Biotechnology, University of SS. Cyril and Methodius, Trnava, Slovakia
- International Centre for Applied Research and Sustainable Technology, Bratislava, Slovakia
| | | | - DANIELE DONDOSSOLA
- Center for Preclincal Research and General and Liver Transplant Surgery Unit, Fondazione IRCCS Ca‘ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - GIANLUCA MARTINO TARTAGLIA
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
- UOC Maxillo-Facial Surgery and Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - MAHMUT CERKEZ ERGOREN
- Department of Medical Genetics, Faculty of Medicine, Near East University, Nicosia, Cyprus
| | - MUNIS DUNDAR
- Department of Medical Genetics, Erciyes University Medical Faculty, Kayseri, Turkey
| | - SANDRO MICHELINI
- Vascular Diagnostics and Rehabilitation Service, Marino Hospital, ASL Roma 6, Marino, Italy
| | | | | | | | | | | | - TOMMASO BECCARI
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | | | | | - DONALD MARTIN
- Univ. Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, SyNaBi, Grenoble, France
| | - ASSUNTA MORRESI
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - ARIOLA BACU
- Department of Biotechnology, University of Tirana, Tirana, Albania
| | - KAREN L. HERBST
- Total Lipedema Care, Beverly Hills California and Tucson Arizona, USA
| | | | - LIBORIO STUPPIA
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, University "G. d'Annunzio", Chieti, Italy
| | - LUDOVICA LUMER
- Department of Anatomy and Developmental Biology, University College London, London, UK
| | - GIAMPIETRO FARRONATO
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
- UOC Maxillo-Facial Surgery and Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - MATTEO BERTELLI
- MAGI EUREGIO, Bolzano, Italy
- MAGI’S LAB, Rovereto (TN), Italy
- MAGISNAT, Peachtree Corners (GA), USA
| |
Collapse
|
12
|
Tarrés-Freixas F, Trinité B, Pons-Grífols A, Romero-Durana M, Riveira-Muñoz E, Ávila-Nieto C, Pérez M, Garcia-Vidal E, Perez-Zsolt D, Muñoz-Basagoiti J, Raïch-Regué D, Izquierdo-Useros N, Andrés C, Antón A, Pumarola T, Blanco I, Noguera-Julián M, Guallar V, Lepore R, Valencia A, Urrea V, Vergara-Alert J, Clotet B, Ballana E, Carrillo J, Segalés J, Blanco J. Heterogeneous Infectivity and Pathogenesis of SARS-CoV-2 Variants Beta, Delta and Omicron in Transgenic K18-hACE2 and Wildtype Mice. Front Microbiol 2022; 13:840757. [PMID: 35602059 PMCID: PMC9114491 DOI: 10.3389/fmicb.2022.840757] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/29/2022] [Indexed: 02/05/2023] Open
Abstract
The emerging SARS-CoV-2 variants of concern (VOCs) may display enhanced transmissibility, more severity and/or immune evasion; however, the pathogenesis of these new VOCs in experimental SARS-CoV-2 models or the potential infection of other animal species is not completely understood. Here we infected K18-hACE2 transgenic mice with B.1, B.1.351/Beta, B.1.617.2/Delta and BA.1.1/Omicron isolates and demonstrated heterogeneous infectivity and pathogenesis. B.1.351/Beta variant was the most pathogenic, while BA.1.1/Omicron led to lower viral RNA in the absence of major visible clinical signs. In parallel, we infected wildtype (WT) mice and confirmed that, contrary to B.1 and B.1.617.2/Delta, B.1.351/Beta and BA.1.1/Omicron can infect them. Infection in WT mice coursed without major clinical signs and viral RNA was transient and undetectable in the lungs by day 7 post-infection. In silico modeling supported these findings by predicting B.1.351/Beta receptor binding domain (RBD) mutations result in an increased affinity for both human and murine ACE2 receptors, while BA.1/Omicron RBD mutations only show increased affinity for murine ACE2.
Collapse
Affiliation(s)
| | - Benjamin Trinité
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, UAB, Badalona, Spain
| | - Anna Pons-Grífols
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, UAB, Badalona, Spain
| | | | - Eva Riveira-Muñoz
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, UAB, Badalona, Spain
| | - Carlos Ávila-Nieto
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, UAB, Badalona, Spain
| | - Mónica Pérez
- Unitat mixta d’investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | | | - Daniel Perez-Zsolt
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, UAB, Badalona, Spain
| | | | - Dàlia Raïch-Regué
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, UAB, Badalona, Spain
| | - Nuria Izquierdo-Useros
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, UAB, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Andrés
- Respiratory Virus Unit, Department of Microbiology, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Andrés Antón
- Respiratory Virus Unit, Department of Microbiology, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Tomàs Pumarola
- Respiratory Virus Unit, Department of Microbiology, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | | | - Marc Noguera-Julián
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, UAB, Badalona, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- University of Vic–Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Victor Guallar
- Barcelona Supercomputing Center, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | | | - Alfonso Valencia
- Barcelona Supercomputing Center, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Victor Urrea
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, UAB, Badalona, Spain
| | - Júlia Vergara-Alert
- Unitat mixta d’investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, UAB, Badalona, Spain
- University of Vic–Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Ester Ballana
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, UAB, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Jorge Carrillo
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, UAB, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Joaquim Segalés
- Unitat mixta d’investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Campus de la UAB, Bellaterra, Spain
| | - Julià Blanco
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, UAB, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- University of Vic–Central University of Catalonia (UVic-UCC), Vic, Spain
| |
Collapse
|
13
|
Genetically modified mice for research on human diseases: A triumph for Biotechnology or a work in progress? THE EUROBIOTECH JOURNAL 2022. [DOI: 10.2478/ebtj-2022-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022] Open
Abstract
Abstract
Genetically modified mice are engineered as models for human diseases. These mouse models include inbred strains, mutants, gene knockouts, gene knockins, and ‘humanized’ mice. Each mouse model is engineered to mimic a specific disease based on a theory of the genetic basis of that disease. For example, to test the amyloid theory of Alzheimer’s disease, mice with amyloid precursor protein genes are engineered, and to test the tau theory, mice with tau genes are engineered. This paper discusses the importance of mouse models in basic research, drug discovery, and translational research, and examines the question of how to define the “best” mouse model of a disease. The critiques of animal models and the caveats in translating the results from animal models to the treatment of human disease are discussed. Since many diseases are heritable, multigenic, age-related and experience-dependent, resulting from multiple gene-gene and gene-environment interactions, it will be essential to develop mouse models that reflect these genetic, epigenetic and environmental factors from a developmental perspective. Such models would provide further insight into disease emergence, progression and the ability to model two-hit and multi-hit theories of disease. The summary examines the biotechnology for creating genetically modified mice which reflect these factors and how they might be used to discover new treatments for complex human diseases such as cancers, neurodevelopmental and neurodegenerative diseases.
Collapse
|
14
|
Cheng A, Harikrishna JA, Redwood CS, Lit LC, Nath SK, Chua KH. Genetics Matters: Voyaging from the Past into the Future of Humanity and Sustainability. Int J Mol Sci 2022; 23:ijms23073976. [PMID: 35409335 PMCID: PMC8999725 DOI: 10.3390/ijms23073976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/21/2022] [Accepted: 03/30/2022] [Indexed: 12/02/2022] Open
Abstract
The understanding of how genetic information may be inherited through generations was established by Gregor Mendel in the 1860s when he developed the fundamental principles of inheritance. The science of genetics, however, began to flourish only during the mid-1940s when DNA was identified as the carrier of genetic information. The world has since then witnessed rapid development of genetic technologies, with the latest being genome-editing tools, which have revolutionized fields from medicine to agriculture. This review walks through the historical timeline of genetics research and deliberates how this discipline might furnish a sustainable future for humanity.
Collapse
Affiliation(s)
- Acga Cheng
- Institute of Biological Science, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (A.C.); (J.A.H.)
| | - Jennifer Ann Harikrishna
- Institute of Biological Science, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (A.C.); (J.A.H.)
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Charles S. Redwood
- Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK;
| | - Lei Cheng Lit
- Department of Physiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Swapan K. Nath
- Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Correspondence: (S.K.N.); (K.H.C.)
| | - Kek Heng Chua
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence: (S.K.N.); (K.H.C.)
| |
Collapse
|
15
|
Da Costa CBP, Cruz ACDM, Penha JCQ, Castro HC, Da Cunha LER, Ratcliffe NA, Cisne R, Martins FJ. Using in vivo animal models for studying SARS-CoV-2. Expert Opin Drug Discov 2022; 17:121-137. [PMID: 34727803 PMCID: PMC8567288 DOI: 10.1080/17460441.2022.1995352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/15/2021] [Indexed: 12/23/2022]
Abstract
INTRODUCTION The search for an animal model capable of reproducing the physiopathology of the COVID-19, and also suitable for evaluating the efficacy and safety of new drugs has become a challenge for many researchers. AREAS COVERED This work reviews the current animal models for in vivo tests with SARS-CoV-2 as well as the challenges involved in the safety and efficacy trials. EXPERT OPINION Studies have reported the use of nonhuman primates, ferrets, mice, Syrian hamsters, lagomorphs, mink, and zebrafish in experiments that aimed to understand the course of COVID-19 or test vaccines and other drugs. In contrast, the assays with animal hyperimmune sera have only been used in in vitro assays. Finding an animal that faithfully reproduces all the characteristics of the disease in humans is difficult. Some models may be more complex to work with, such as monkeys, or require genetic manipulation so that they can express the human ACE2 receptor, as in the case of mice. Although some models are more promising, possibly the use of more than one animal model represents the best scenario. Therefore, further studies are needed to establish an ideal animal model to help in the development of other treatment strategies besides vaccines.
Collapse
Affiliation(s)
- Camila B. P. Da Costa
- Technological Development and Innovation Laboratory of the Industrial Board, Instituto Vital Brazil, Rio De Janeiro, Brazil
- Programa de Pós-graduação em Ciências e Biotecnologia, IB, UFF, Rio de Janeiro, Brazil
| | | | - Julio Cesar Q Penha
- Programa de Pós-graduação em Ciências e Biotecnologia, IB, UFF, Rio de Janeiro, Brazil
| | - Helena C Castro
- Programa de Pós-graduação em Ciências e Biotecnologia, IB, UFF, Rio de Janeiro, Brazil
| | - Luis E. R. Da Cunha
- Technological Development and Innovation Laboratory of the Industrial Board, Instituto Vital Brazil, Rio De Janeiro, Brazil
| | - Norman A Ratcliffe
- Programa de Pós-graduação em Ciências e Biotecnologia, IB, UFF, Rio de Janeiro, Brazil
- Department of Biociences, College of Science, Swansea University, Swansea, UK
| | - Rafael Cisne
- Programa de Pós-graduação em Ciências e Biotecnologia, IB, UFF, Rio de Janeiro, Brazil
| | | |
Collapse
|
16
|
Andrade ACDSP, Campolina-Silva GH, Queiroz-Junior CM, de Oliveira LC, Lacerda LDSB, Pimenta JC, de Souza FRO, de Meira Chaves I, Passos IB, Teixeira DC, Bittencourt-Silva PG, Valadão PAC, Rossi-Oliveira L, Antunes MM, Figueiredo AFA, Wnuk NT, Temerozo JR, Ferreira AC, Cramer A, Oliveira CA, Durães-Carvalho R, Weis Arns C, Guimarães PPG, Costa GMJ, de Menezes GB, Guatimosim C, da Silva GSF, Souza TML, Barrioni BR, Pereira MDM, de Sousa LP, Teixeira MM, Costa VV. A Biosafety Level 2 Mouse Model for Studying Betacoronavirus-Induced Acute Lung Damage and Systemic Manifestations. J Virol 2021; 95:e0127621. [PMID: 34495692 PMCID: PMC8549505 DOI: 10.1128/jvi.01276-21] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/01/2021] [Indexed: 12/29/2022] Open
Abstract
The emergence of life-threatening zoonotic diseases caused by betacoronaviruses, including the ongoing coronavirus disease 19 (COVID-19) pandemic, has highlighted the need for developing preclinical models mirroring respiratory and systemic pathophysiological manifestations seen in infected humans. Here, we showed that C57BL/6J wild-type mice intranasally inoculated with the murine betacoronavirus murine hepatitis coronavirus 3 (MHV-3) develop a robust inflammatory response leading to acute lung injuries, including alveolar edema, hemorrhage, and fibrin thrombi. Although such histopathological changes seemed to resolve as the infection advanced, they efficiently impaired respiratory function, as the infected mice displayed restricted lung distention and increased respiratory frequency and ventilation. Following respiratory manifestation, the MHV-3 infection became systemic, and a high virus burden could be detected in multiple organs along with morphological changes. The systemic manifestation of MHV-3 infection was also marked by a sharp drop in the number of circulating platelets and lymphocytes, besides the augmented concentration of the proinflammatory cytokines interleukin 1 beta (IL-1β), IL-6, IL-12, gamma interferon (IFN-γ), and tumor necrosis factor (TNF), thereby mirroring some clinical features observed in moderate and severe cases of COVID-19. Importantly, both respiratory and systemic changes triggered by MHV-3 infection were greatly prevented by blocking TNF signaling, either via genetic or pharmacologic approaches. In line with this, TNF blockage also diminished the infection-mediated release of proinflammatory cytokines and virus replication of human epithelial lung cells infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Collectively, results show that MHV-3 respiratory infection leads to a large range of clinical manifestations in mice and may constitute an attractive, lower-cost, biosafety level 2 (BSL2) in vivo platform for evaluating the respiratory and multiorgan involvement of betacoronavirus infections. IMPORTANCE Mouse models have long been used as valuable in vivo platforms to investigate the pathogenesis of viral infections and effective countermeasures. The natural resistance of mice to the novel betacoronavirus SARS-CoV-2, the causative agent of COVID-19, has launched a race toward the characterization of SARS-CoV-2 infection in other animals (e.g., hamsters, cats, ferrets, bats, and monkeys), as well as adaptation of the mouse model, by modifying either the host or the virus. In the present study, we utilized a natural pathogen of mice, MHV, as a prototype to model betacoronavirus-induced acute lung injure and multiorgan involvement under biosafety level 2 conditions. We showed that C57BL/6J mice intranasally inoculated with MHV-3 develops severe disease, which includes acute lung damage and respiratory distress that precede systemic inflammation and death. Accordingly, the proposed animal model may provide a useful tool for studies regarding betacoronavirus respiratory infection and related diseases.
Collapse
Affiliation(s)
| | - Gabriel Henrique Campolina-Silva
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Celso Martins Queiroz-Junior
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Leonardo Camilo de Oliveira
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Jordane C Pimenta
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Ian de Meira Chaves
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ingredy Beatriz Passos
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Danielle Cunha Teixeira
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Paloma Graziele Bittencourt-Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Leonardo Rossi-Oliveira
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Maisa Mota Antunes
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - André Felipe Almeida Figueiredo
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Natália Teixeira Wnuk
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Jairo R. Temerozo
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, RJ, Brazil
- National Institute for Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - André Costa Ferreira
- National Institute for Science and Technology on Innovation on Diseases of Neglected Populations (INCT/IDNP), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
- Immunopharmacology Laboratory, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
- Laboratório de Pesquisas Pré-clínicas, Universidade Iguaçu (UNIG), Rio de Janeiro, RJ, Brazil
| | - Allysson Cramer
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Cleida Aparecida Oliveira
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Clarice Weis Arns
- Laboratory of Virology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Pedro Pires Goulart Guimarães
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Guilherme Mattos Jardim Costa
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gustavo Batista de Menezes
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Cristina Guatimosim
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Glauber Santos Ferreira da Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Thiago Moreno L. Souza
- National Institute for Science and Technology on Innovation on Diseases of Neglected Populations (INCT/IDNP), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
- Immunopharmacology Laboratory, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Breno Rocha Barrioni
- Department of Metallurgical Engineering and Materials, Federal University of Minas Gerais, School of Engineering, Belo Horizonte, Brazil
| | - Marivalda de Magalhães Pereira
- Department of Metallurgical Engineering and Materials, Federal University of Minas Gerais, School of Engineering, Belo Horizonte, Brazil
| | - Lirlândia Pires de Sousa
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vivian Vasconcelos Costa
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
17
|
Schwedhelm P, Kusnick J, Heinl C, Schönfelder G, Bert B. How many animals are used for SARS-CoV-2 research?: An overview on animal experimentation in pre-clinical and basic research. EMBO Rep 2021; 22:e53751. [PMID: 34490973 PMCID: PMC8490974 DOI: 10.15252/embr.202153751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/19/2021] [Indexed: 11/09/2022] Open
Abstract
Non-technical summaries of research projects allow tracking the numbers and purpose of animal experiments related to SARS-CoV2 research so as to provide greater transparency on animal use.
Collapse
Affiliation(s)
- Philipp Schwedhelm
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment, Berlin, Germany
| | - Johanna Kusnick
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment, Berlin, Germany.,Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Céline Heinl
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment, Berlin, Germany
| | - Gilbert Schönfelder
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment, Berlin, Germany.,Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Bettina Bert
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
18
|
Tamura Y, Jee E, Kouzaki K, Kotani T, Nakazato K. Effects of endurance training on the expression of host proteins involved in SARS-CoV-2 cell entry in C57BL/6J mouse. Physiol Rep 2021; 9:e15014. [PMID: 34523264 PMCID: PMC8440939 DOI: 10.14814/phy2.15014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 12/24/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is threatening people's lives and impacting their health. It is still unclear whether people engaged in physical activity are at an increased risk of SARS-CoV-2 infection and severe forms of COVID-19. In order to provide data to help answer this question, we, therefore, investigated the effects of endurance training on the levels of host proteins involved in SARS-CoV-2 infection in mice. Eight-week-old C57BL/6J mice were subjected to treadmill running (17-25 m/min, 60-90 min, 5 sessions/week, 8 weeks). After the intervention, the levels of angiotensin-converting enzyme 2 (ACE2; host receptor for SARS-CoV-2), transmembrane protease serine 2 (TMPRSS2; host protease priming fusion of SARS-CoV-2 to host cell membranes), FURIN (host protease that promotes binding of SARS-CoV-2 to host receptors), and Neuropilin-1 (host coreceptor for SARS-CoV-2) were measured in 10 organs that SARS-CoV-2 can infect (larynx, trachea, lung, heart, jejunum, ileum, colon, liver, kidney, and testis). Six organs (heart, lung, jejunum, liver, trachea, and ileum) showed changes in the levels of at least one of the proteins. Endurance training increased ACE2 levels in heart (+66.4%), lung (+37.1%), jejunum (+24.7%) and liver (+27.4%), and FURIN in liver (+17.9%) tissue. In contrast, endurance training decreased Neuropilin-1 levels in liver (-39.7%), trachea (-41.2%), and ileum (-39.7%), and TMPRSS2 in lung (-11.3%). Taken together, endurance training altered the levels of host proteins involved in SARS-CoV-2 cell entry in an organ-dependent manner.
Collapse
Affiliation(s)
- Yuki Tamura
- Graduate School of Health and Sport ScienceNippon Sport Science UniversityTokyoJapan
- Research Institute for Sport ScienceNippon Sport Science UniversityTokyoJapan
- Faculty of Sport ScienceNippon Sport Science UniversityTokyoJapan
| | - Eunbin Jee
- Graduate School of Health and Sport ScienceNippon Sport Science UniversityTokyoJapan
| | - Karina Kouzaki
- Research Institute for Sport ScienceNippon Sport Science UniversityTokyoJapan
- Graduate School of Medical and Health ScienceNippon Sport Science UniversityTokyoJapan
- Faculty of Medical ScienceNippon Sport Science UniversityTokyoJapan
| | - Takaya Kotani
- Research Institute for Sport ScienceNippon Sport Science UniversityTokyoJapan
| | - Koichi Nakazato
- Graduate School of Health and Sport ScienceNippon Sport Science UniversityTokyoJapan
- Research Institute for Sport ScienceNippon Sport Science UniversityTokyoJapan
- Graduate School of Medical and Health ScienceNippon Sport Science UniversityTokyoJapan
- Faculty of Medical ScienceNippon Sport Science UniversityTokyoJapan
| |
Collapse
|
19
|
Ekstrand K, Flanagan AJ, Lin IE, Vejseli B, Cole A, Lally AP, Morris RL, Morgan KN. Animal Transmission of SARS-CoV-2 and the Welfare of Animals during the COVID-19 Pandemic. Animals (Basel) 2021; 11:2044. [PMID: 34359172 PMCID: PMC8300090 DOI: 10.3390/ani11072044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/20/2022] Open
Abstract
The accelerated pace of research into Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) necessitates periodic summaries of current research. The present paper reviews virus susceptibilities in species with frequent human contact, and factors that are best predictors of virus susceptibility. Species reviewed were those in contact with humans through entertainment, pet, or agricultural trades, and for whom reports (either anecdotal or published) exist regarding the SARS-CoV-2 virus and/or the resulting disease state COVID-19. Available literature was searched using an artificial intelligence (AI)-assisted engine, as well as via common databases, such as Web of Science and Medline. The present review focuses on susceptibility and transmissibility of SARS-CoV-2, and polymorphisms in transmembrane protease serine 2 (TMPRSS2) and angiotensin-converting enzyme 2 (ACE2) that contribute to species differences. Dogs and pigs appear to have low susceptibility, while ferrets, mink, some hamster species, cats, and nonhuman primates (particularly Old World species) have high susceptibility. Precautions may therefore be warranted in interactions with such species, and more selectivity practiced when choosing appropriate species to serve as models for research.
Collapse
Affiliation(s)
| | - Amanda J. Flanagan
- College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA;
| | - Ilyan E. Lin
- Department of Biology, Wheaton College, Norton, MA 02766, USA; (I.E.L.); (B.V.); (R.L.M.)
| | - Brendon Vejseli
- Department of Biology, Wheaton College, Norton, MA 02766, USA; (I.E.L.); (B.V.); (R.L.M.)
| | - Allicyn Cole
- Program in Neuroscience, Wheaton College, Norton, MA 02766, USA; (A.C.); (A.P.L.)
| | - Anna P. Lally
- Program in Neuroscience, Wheaton College, Norton, MA 02766, USA; (A.C.); (A.P.L.)
| | - Robert L. Morris
- Department of Biology, Wheaton College, Norton, MA 02766, USA; (I.E.L.); (B.V.); (R.L.M.)
| | - Kathleen N. Morgan
- Program in Neuroscience, Wheaton College, Norton, MA 02766, USA; (A.C.); (A.P.L.)
| |
Collapse
|
20
|
Sun C, Chen XC, Kang YF, Zeng MS. The Status and Prospects of Epstein-Barr Virus Prophylactic Vaccine Development. Front Immunol 2021; 12:677027. [PMID: 34168649 PMCID: PMC8218244 DOI: 10.3389/fimmu.2021.677027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/20/2021] [Indexed: 12/30/2022] Open
Abstract
Epstein–Barr virus (EBV) is a human herpesvirus that is common among the global population, causing an enormous disease burden. EBV can directly cause infectious mononucleosis and is also associated with various malignancies and autoimmune diseases. In order to prevent primary infection and subsequent chronic disease, efforts have been made to develop a prophylactic vaccine against EBV in recent years, but there is still no vaccine in clinical use. The outbreak of the COVID-19 pandemic and the global cooperation in vaccine development against SARS-CoV-2 provide insights for next-generation antiviral vaccine design and opportunities for developing an effective prophylactic EBV vaccine. With improvements in antigen selection, vaccine platforms, formulation and evaluation systems, novel vaccines against EBV are expected to elicit dual protection against infection of both B lymphocytes and epithelial cells. This would provide sustainable immunity against EBV-associated malignancies, finally enabling the control of worldwide EBV infection and management of EBV-associated diseases.
Collapse
Affiliation(s)
- Cong Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Xin-Chun Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Yin-Feng Kang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
21
|
Yuan Y, Deng Q, Wei X, Liu Y, Lan Q, Jiang Y, Yu Y, Guo P, Xu J, Yu C, Han L, Cheng M, Wu P, Zhang X, Lai Y, Volpe G, Esteban MA, Yang H, Liu C, Liu L. The Chromatin Accessibility Landscape of Adult Rat. Front Genet 2021; 12:651604. [PMID: 34108989 PMCID: PMC8181391 DOI: 10.3389/fgene.2021.651604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/01/2021] [Indexed: 11/19/2022] Open
Affiliation(s)
- Yue Yuan
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,BGI-Shenzhen, Shenzhen, China
| | - Qiuting Deng
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,BGI-Shenzhen, Shenzhen, China
| | - Xiaoyu Wei
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,BGI-Shenzhen, Shenzhen, China
| | - Yang Liu
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,BGI-Shenzhen, Shenzhen, China
| | | | - Yu Jiang
- First Hospital, Jilin University, Changchun, China
| | - Yeya Yu
- BGI-Shenzhen, Shenzhen, China.,BGI College, Zhengzhou University, Zhengzhou, China
| | - Pengcheng Guo
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jiangshan Xu
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,BGI-Shenzhen, Shenzhen, China
| | - Cong Yu
- BGI-Shenzhen, Shenzhen, China
| | - Lei Han
- BGI-Shenzhen, Shenzhen, China
| | - Mengnan Cheng
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,BGI-Shenzhen, Shenzhen, China
| | | | - Xiao Zhang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yiwei Lai
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Giacomo Volpe
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Miguel A Esteban
- BGI-Shenzhen, Shenzhen, China.,First Hospital, Jilin University, Changchun, China.,College of Veterinary Medicine, Jilin University, Changchun, China.,Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen, China.,James D. Watson Institute of Genome Sciences, Hangzhou, China.,Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, Shenzhen, China
| | - Chuanyu Liu
- BGI-Shenzhen, Shenzhen, China.,Shenzhen Bay Laboratory, Shenzhen, China
| | - Longqi Liu
- BGI-Shenzhen, Shenzhen, China.,Shenzhen Bay Laboratory, Shenzhen, China
| |
Collapse
|
22
|
Singh B, Mal G, Verma V, Tiwari R, Khan MI, Mohapatra RK, Mitra S, Alyami SA, Emran TB, Dhama K, Moni MA. Stem cell therapies and benefaction of somatic cell nuclear transfer cloning in COVID-19 era. Stem Cell Res Ther 2021; 12:283. [PMID: 33980321 PMCID: PMC8114669 DOI: 10.1186/s13287-021-02334-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/12/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The global health emergency of COVID-19 has necessitated the development of multiple therapeutic modalities including vaccinations, antivirals, anti-inflammatory, and cytoimmunotherapies, etc. COVID-19 patients suffer from damage to various organs and vascular structures, so they present multiple health crises. Mesenchymal stem cells (MSCs) are of interest to treat acute respiratory distress syndrome (ARDS) caused by SARS-CoV-2 infection. MAIN BODY Stem cell-based therapies have been verified for prospective benefits in copious preclinical and clinical studies. MSCs confer potential benefits to develop various cell types and organoids for studying virus-human interaction, drug testing, regenerative medicine, and immunomodulatory effects in COVID-19 patients. Apart from paving the ways to augment stem cell research and therapies, somatic cell nuclear transfer (SCNT) holds unique ability for a wide range of health applications such as patient-specific or isogenic cells for regenerative medicine and breeding transgenic animals for biomedical applications. Being a potent cell genome-reprogramming tool, the SCNT has increased prominence of recombinant therapeutics and cellular medicine in the current era of COVID-19. As SCNT is used to generate patient-specific stem cells, it avoids dependence on embryos to obtain stem cells. CONCLUSIONS The nuclear transfer cloning, being an ideal tool to generate cloned embryos, and the embryonic stem cells will boost drug testing and cellular medicine in COVID-19.
Collapse
Affiliation(s)
- Birbal Singh
- ICAR-Indian Veterinary Research Institute Regional Station, Palampur, Himachal Pradesh, India
| | - Gorakh Mal
- ICAR-Indian Veterinary Research Institute Regional Station, Palampur, Himachal Pradesh, India
| | - Vinod Verma
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, 281001, India
| | - Muhammad Imran Khan
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, China
| | - Ranjan K Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar, Odisha, India
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Salem A Alyami
- Department of Mathematics and Statistics, Imam Mohammad Ibn Saud Islamic University, Riyadh, 11432, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh.
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243 122, India.
| | - Mohammad Ali Moni
- WHO Collaborating Centre on eHealth, UNSW Digital Health, Faculty of Medicine, School of Public Health and Community Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia.
| |
Collapse
|
23
|
Forecasting the Effects of the New SARS-CoV-2 Variant in Europe. ScientificWorldJournal 2021; 2021:5553240. [PMID: 34012360 PMCID: PMC8106412 DOI: 10.1155/2021/5553240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/26/2021] [Indexed: 01/19/2023] Open
Abstract
Due to the emergence of a new SARS-CoV-2 variant, we use a previous model to simulate the behaviour of this new SARS-CoV-2 variant. The analysis and simulations are performed for Europe, in order to provide a global analysis of the pandemic. In this context, numerical results are obtained in the first 100 days of the pandemic assuming an infectivity of 70%, 56%, and 35%, respectively, higher for the new SAR-CoV-2 variant, as compared with the real data.
Collapse
|
24
|
Gurumurthy CB, Saunders TL, Ohtsuka M. Designing and generating a mouse model: frequently asked questions. J Biomed Res 2021; 35:76-90. [PMID: 33797414 PMCID: PMC8038528 DOI: 10.7555/jbr.35.20200197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Genetically engineered mouse (GEM) models are commonly used in biomedical research. Generating GEMs involve complex set of experimental procedures requiring sophisticated equipment and highly skilled technical staff. Because of these reasons, most research institutes set up centralized core facilities where custom GEMs are created for research groups. Researchers, on the other hand, when they begin thinking about generating GEMs for their research, several questions arise in their minds. For example, what type of model(s) would be best useful for my research, how do I design them, what are the latest technologies and tools available for developing my model(s), and finally how to breed GEMs in my research. As there are several considerations and options in mouse designs, and as it is an expensive and time-consuming endeavor, careful planning upfront can ensure the highest chance of success. In this article, we provide brief answers to several frequently asked questions that arise when researchers begin thinking about generating mouse model(s) for their work.
Collapse
Affiliation(s)
- Channabasavaiah B Gurumurthy
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68106-5915, USA.,Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68106-5915, USA
| | - Thomas L Saunders
- Department of Internal Medicine, Division of Genetic Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Transgenic Animal Model Core, University of Michigan, Ann Arbor, MI 48109, USA
| | - Masato Ohtsuka
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan.,The Institute of Medical Sciences, Tokai University, Isehara, Kanagawa 259-1193, Japan
| |
Collapse
|
25
|
Badawi S, Ali BR. ACE2 Nascence, trafficking, and SARS-CoV-2 pathogenesis: the saga continues. Hum Genomics 2021; 15:8. [PMID: 33514423 PMCID: PMC7844112 DOI: 10.1186/s40246-021-00304-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/13/2021] [Indexed: 02/08/2023] Open
Abstract
With the emergence of the novel coronavirus SARS-CoV-2 since December 2019, more than 65 million cases have been reported worldwide. This virus has shown high infectivity and severe symptoms in some cases, leading to over 1.5 million deaths globally. Despite the collaborative and concerted research efforts that have been made, no effective medication for COVID-19 (coronavirus disease-2019) is currently available. SARS-CoV-2 uses the angiotensin-converting enzyme 2 (ACE2) as an initial mediator for viral attachment and host cell invasion. ACE2 is widely distributed in the human tissues including the cell surface of lung cells which represent the primary site of the infection. Inhibiting or reducing cell surface availability of ACE2 represents a promising therapy for tackling COVID-19. In this context, most ACE2-based therapeutic strategies have aimed to tackle the virus through the use of angiotensin-converting enzyme (ACE) inhibitors or neutralizing the virus by exogenous administration of ACE2, which does not directly aim to reduce its membrane availability. However, through this review, we present a different perspective focusing on the subcellular localization and trafficking of ACE2. Membrane targeting of ACE2, and shedding and cellular trafficking pathways including the internalization are not well elucidated in literature. Therefore, we hereby present an overview of the fate of newly synthesized ACE2, its post translational modifications, and what is known of its trafficking pathways. In addition, we highlight the possibility that some of the identified ACE2 missense variants might affect its trafficking efficiency and localization and hence may explain some of the observed variable severity of SARS-CoV-2 infections. Moreover, an extensive understanding of these processes is necessarily required to evaluate the potential use of ACE2 as a credible therapeutic target.
Collapse
Affiliation(s)
- Sally Badawi
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates.
- Zayed Centre for Health sciences, United Arab Emirates University, Al-Ain, United Arab Emirates.
| |
Collapse
|