1
|
Simcock IC, Arthurs OJ, Hutchinson JC, Sebire NJ, Jacques TS, Sekar T, Shelmerdine SC. Impact of non-invasive post-mortem micro-CT imaging on a fetal autopsy service: a single centre retrospective study. Clin Radiol 2024; 79:791-798. [PMID: 39068113 DOI: 10.1016/j.crad.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/25/2024] [Accepted: 06/30/2024] [Indexed: 07/30/2024]
Abstract
AIM To evaluate the impact of a new, less-invasive micro-computed tomography (CT) service on autopsy service provision. We recorded parental consent, type of autopsy performed, autopsy reporting times and time taken for the body to be released from the mortuary. MATERIALS AND METHODS A retrospective, single-centre case series was conducted for all perinatal deaths since the introduction of our micro-CT service in 2016, with a detailed review of records extracted from 2019 and 2021. Fetal demographics (gestational age, weight), type of autopsy conducted, and the time taken from receiving the body to releasing the body and issuing a final report were recorded. RESULTS Micro-CT imaging uptake increased to over two hundred cases/year by 2021. Overall, invasive autopsies reduced from (45.8%, 196/428; 2019) to (32.1%, 125/390; 2021) with an equivalent rise in less-invasive autopsy from 54.2% (232/428;2019) to 67.9% (265/390;2019). Offering a micro-CT service resulted in an increase in consent to imaging-based autopsies from (76.9%, 329/428;2019) to (87.2%, 340/390;2021). Micro-CT has become the most common post-mortem imaging performed in our institution at 54.4% (212/251;2021), although the body preparation time from the tissue staining required has increased the time to provide an autopsy report to 17 days and release of the body to 18 days. CONCLUSION Our study shows that introducing a micro-CT post-mortem imaging service was associated with reduced use of conventional invasive procedures, despite a slight increase in turnaround times. Understanding these factors and continued improvements in micro-CT service delivery will help make this accessible to a wider population in the future.
Collapse
Affiliation(s)
- I C Simcock
- Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London, WC1N 3JH, UK; UCL Great Ormond Street Institute of Child Health, 30 Guildford Street, London, WC1N 3EH, UK; NIHR Great Ormond Street Hospital Biomedical Research Centre, 30 Guildford Street, London, WC1N 3EH, UK.
| | - O J Arthurs
- Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London, WC1N 3JH, UK; UCL Great Ormond Street Institute of Child Health, 30 Guildford Street, London, WC1N 3EH, UK; NIHR Great Ormond Street Hospital Biomedical Research Centre, 30 Guildford Street, London, WC1N 3EH, UK.
| | - J C Hutchinson
- Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London, WC1N 3JH, UK.
| | - N J Sebire
- Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London, WC1N 3JH, UK; UCL Great Ormond Street Institute of Child Health, 30 Guildford Street, London, WC1N 3EH, UK; NIHR Great Ormond Street Hospital Biomedical Research Centre, 30 Guildford Street, London, WC1N 3EH, UK.
| | - T S Jacques
- Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London, WC1N 3JH, UK.
| | - T Sekar
- Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London, WC1N 3JH, UK.
| | - S C Shelmerdine
- Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London, WC1N 3JH, UK.
| |
Collapse
|
2
|
Laundon D, Proudley E, Basford PJ, Katsamenis OL, Chatelet DS, Cleal JK, Gostling NJ, Chavatte-Palmer P, Lewis RM. Quantitative microCT imaging of a whole equine placenta and its blood vessel network. Placenta 2024; 154:216-219. [PMID: 39096863 DOI: 10.1016/j.placenta.2024.07.313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
Placental structure is linked to function across morphological scales. In the placenta, changes to gross anatomy, such as surface area, volume, or blood vessel arrangement, are associated with suboptimal physiological outcomes. However, quantifying each of these metrics requires different laborious semi-quantitative methods. Here, we demonstrate how, with minimal sample preparation, whole-organ computed microtomography (microCT) can be used to calculate gross morphometry of the equine placenta and a range of additional metrics, including branching morphometry of placental vasculature, non-destructively from a single dataset. Our approach can be applied to quantify the gross structure of any large mammalian placenta.
Collapse
Affiliation(s)
- Davis Laundon
- The Institute of Developmental Sciences, Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK; Institute for Life Sciences, University of Southampton, University Rd, Highfield, Southampton, SO17 1BJ, UK.
| | - Ella Proudley
- The Institute of Developmental Sciences, Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Philip J Basford
- Institute for Life Sciences, University of Southampton, University Rd, Highfield, Southampton, SO17 1BJ, UK; School of Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, University Road, Southampton, SO17 1BJ, UK; μ-VIS X-Ray Imaging Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Orestis L Katsamenis
- Institute for Life Sciences, University of Southampton, University Rd, Highfield, Southampton, SO17 1BJ, UK; μ-VIS X-Ray Imaging Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - David S Chatelet
- Biomedical Imaging Unit, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Jane K Cleal
- The Institute of Developmental Sciences, Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK; Institute for Life Sciences, University of Southampton, University Rd, Highfield, Southampton, SO17 1BJ, UK
| | - Neil J Gostling
- Institute for Life Sciences, University of Southampton, University Rd, Highfield, Southampton, SO17 1BJ, UK; School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, University Rd, Highfield, Southampton, SO17 1BJ, UK
| | - Pascale Chavatte-Palmer
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France; Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Rohan M Lewis
- The Institute of Developmental Sciences, Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK; Institute for Life Sciences, University of Southampton, University Rd, Highfield, Southampton, SO17 1BJ, UK
| |
Collapse
|
3
|
Simcock IC, Shelmerdine SC, Hutchinson JC, Sebire NJ, Arthurs OJ. Body weight-based iodinated contrast immersion timing for human fetal postmortem microfocus computed tomography. BJR Open 2024; 6:tzad006. [PMID: 38352185 PMCID: PMC10860501 DOI: 10.1093/bjro/tzad006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/27/2023] [Accepted: 10/13/2023] [Indexed: 02/16/2024] Open
Abstract
Objectives The aim of this study was to evaluate the length of time required to achieve full iodination using potassium tri-iodide as a contrast agent, prior to human fetal postmortem microfocus computed tomography (micro-CT) imaging. Methods Prospective assessment of optimal contrast iodination was conducted across 157 human fetuses (postmortem weight range 2-298 g; gestational age range 12-37 weeks), following micro-CT imaging. Simple linear regression was conducted to analyse which fetal demographic factors could produce the most accurate estimate for optimal iodination time. Results Postmortem body weight (r2 = 0.6435) was better correlated with iodination time than gestational age (r2 = 0.1384), producing a line of best fit, y = [0.0304 × body weight (g)] - 2.2103. This can be simplified for clinical use whereby immersion time (days) = [0.03 × body weight (g)] - 2.2. Using this formula, for example, a 100-g fetus would take 5.2 days to reach optimal contrast enhancement. Conclusions The simplified equation can now be used to provide estimation times for fetal contrast preparation time prior to micro-CT imaging and can be used to manage service throughput and parental expectation for return of their fetus. Advances in knowledge A simple equation from empirical data can now be used to estimate preparation time for human fetal postmortem micro-CT imaging.
Collapse
Affiliation(s)
- Ian C Simcock
- Department of Clinical Radiology, Great Ormond Street Hospital for Children, London WC1N 3JH, United Kingdom
- UCL Great Ormond Street Institute of Child Health, Great Ormond Street Hospital for Children, London WC1N 1EH, United Kingdom
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London WC1N 1EH, United Kingdom
| | - Susan C Shelmerdine
- Department of Clinical Radiology, Great Ormond Street Hospital for Children, London WC1N 3JH, United Kingdom
- UCL Great Ormond Street Institute of Child Health, Great Ormond Street Hospital for Children, London WC1N 1EH, United Kingdom
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London WC1N 1EH, United Kingdom
| | - John Ciaran Hutchinson
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London WC1N 1EH, United Kingdom
- Department of Histopathology, Great Ormond Street Hospital for Children, London WC1N 3JH, United Kingdom
| | - Neil J Sebire
- UCL Great Ormond Street Institute of Child Health, Great Ormond Street Hospital for Children, London WC1N 1EH, United Kingdom
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London WC1N 1EH, United Kingdom
- Department of Histopathology, Great Ormond Street Hospital for Children, London WC1N 3JH, United Kingdom
| | - Owen J Arthurs
- Department of Clinical Radiology, Great Ormond Street Hospital for Children, London WC1N 3JH, United Kingdom
- UCL Great Ormond Street Institute of Child Health, Great Ormond Street Hospital for Children, London WC1N 1EH, United Kingdom
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London WC1N 1EH, United Kingdom
| |
Collapse
|
4
|
Katsamenis OL, Basford PJ, Robinson SK, Boardman RP, Konstantinopoulou E, Lackie PM, Page A, Ratnayaka JA, Goggin PM, Thomas GJ, Cox SJ, Sinclair I, Schneider P. A high-throughput 3D X-ray histology facility for biomedical research and preclinical applications. Wellcome Open Res 2023; 8:366. [PMID: 37928208 PMCID: PMC10620852 DOI: 10.12688/wellcomeopenres.19666.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 11/07/2023] Open
Abstract
Background The University of Southampton, in collaboration with the University Hospital Southampton (UHS) NHS Foundation Trust and industrial partners, has been at the forefront of developing three-dimensional (3D) imaging workflows using X-ray microfocus computed tomography (μCT) -based technology. This article presents the outcomes of these endeavours and highlights the distinctive characteristics of a μCT facility tailored explicitly for 3D X-ray Histology, with a primary focus on applications in biomedical research and preclinical and clinical studies. Methods The UHS houses a unique 3D X-ray Histology (XRH) facility, offering a range of services to national and international clients. The facility employs specialised μCT equipment explicitly designed for histology applications, allowing whole-block XRH imaging of formalin-fixed and paraffin-embedded tissue specimens. It also enables correlative imaging by combining μCT imaging with other microscopy techniques, such as immunohistochemistry (IHC) and serial block-face scanning electron microscopy, as well as data visualisation, image quantification, and bespoke analysis. Results Over the past seven years, the XRH facility has successfully completed over 120 projects in collaboration with researchers from 60 affiliations, resulting in numerous published manuscripts and conference proceedings. The facility has streamlined the μCT imaging process, improving productivity and enabling efficient acquisition of 3D datasets. Discussion & Conclusions The 3D X-ray Histology (XRH) facility at UHS is a pioneering platform in the field of histology and biomedical imaging. To the best of our knowledge, it stands out as the world's first dedicated XRH facility, encompassing every aspect of the imaging process, from user support to data generation, analysis, training, archiving, and metadata generation. This article serves as a comprehensive guide for establishing similar XRH facilities, covering key aspects of facility setup and operation. Researchers and institutions interested in developing state-of-the-art histology and imaging facilities can utilise this resource to explore new frontiers in their research and discoveries.
Collapse
Affiliation(s)
- Orestis L. Katsamenis
- μ-VIS X-ray Imaging Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, England, SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Philip J. Basford
- μ-VIS X-ray Imaging Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, England, SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
- Computational Engineering and Design, Faculty of Engineering and Physical Sciences,, University of Southampton, Southampton, England, SO17 1BJ, UK
| | - Stephanie K. Robinson
- μ-VIS X-ray Imaging Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, England, SO17 1BJ, UK
| | - Richard P. Boardman
- μ-VIS X-ray Imaging Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, England, SO17 1BJ, UK
| | - Elena Konstantinopoulou
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, England, SO16 6YD, UK
| | - Peter M. Lackie
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, England, SO16 6YD, UK
- Biomedical Imaging Unit, Faculty of Medicine, University of Southampton, Southampton, England, SO16 6YD, UK
| | - Anton Page
- University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - J. Arjuna Ratnayaka
- Institute for Life Sciences, University of Southampton, Southampton, UK
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, England, SO16 6YD, UK
- Biomedical Imaging Unit, Faculty of Medicine, University of Southampton, Southampton, England, SO16 6YD, UK
- University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - Patricia M. Goggin
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, England, SO16 6YD, UK
- Biomedical Imaging Unit, Faculty of Medicine, University of Southampton, Southampton, England, SO16 6YD, UK
- University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - Gareth J. Thomas
- Institute for Life Sciences, University of Southampton, Southampton, UK
- University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, England, SO16 6YD, UK
| | - Simon J. Cox
- Institute for Life Sciences, University of Southampton, Southampton, UK
- Computational Engineering and Design, Faculty of Engineering and Physical Sciences,, University of Southampton, Southampton, England, SO17 1BJ, UK
| | - Ian Sinclair
- μ-VIS X-ray Imaging Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, England, SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Philipp Schneider
- μ-VIS X-ray Imaging Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, England, SO17 1BJ, UK
- High-Performance Vision Systems, Center for Vision, Automation & Control, AIT Austrian Institute of Technology, Vienna, Austria
| |
Collapse
|
5
|
del Valle I, Young MD, Kildisiute G, Ogunbiyi OK, Buonocore F, Simcock IC, Khabirova E, Crespo B, Moreno N, Brooks T, Niola P, Swarbrick K, Suntharalingham JP, McGlacken-Byrne SM, Arthurs OJ, Behjati S, Achermann JC. An integrated single-cell analysis of human adrenal cortex development. JCI Insight 2023; 8:e168177. [PMID: 37440461 PMCID: PMC10443814 DOI: 10.1172/jci.insight.168177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/31/2023] [Indexed: 07/15/2023] Open
Abstract
The adrenal glands synthesize and release essential steroid hormones such as cortisol and aldosterone, but many aspects of human adrenal gland development are not well understood. Here, we combined single-cell and bulk RNA sequencing, spatial transcriptomics, IHC, and micro-focus computed tomography to investigate key aspects of adrenal development in the first 20 weeks of gestation. We demonstrate rapid adrenal growth and vascularization, with more cell division in the outer definitive zone (DZ). Steroidogenic pathways favored androgen synthesis in the central fetal zone, but DZ capacity to synthesize cortisol and aldosterone developed with time. Core transcriptional regulators were identified, with localized expression of HOPX (also known as Hop homeobox/homeobox-only protein) in the DZ. Potential ligand-receptor interactions between mesenchyme and adrenal cortex were seen (e.g., RSPO3/LGR4). Growth-promoting imprinted genes were enriched in the developing cortex (e.g., IGF2, PEG3). These findings reveal aspects of human adrenal development and have clinical implications for understanding primary adrenal insufficiency and related postnatal adrenal disorders, such as adrenal tumor development, steroid disorders, and neonatal stress.
Collapse
Affiliation(s)
- Ignacio del Valle
- Genetics and Genomic Medicine Research and Teaching Department, University College London (UCL) Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Matthew D. Young
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Gerda Kildisiute
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Olumide K. Ogunbiyi
- Department of Histopathology, Great Ormond Street Hospital for Children National Health Service (NHS) Foundation Trust, London, United Kingdom
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Federica Buonocore
- Genetics and Genomic Medicine Research and Teaching Department, University College London (UCL) Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Ian C. Simcock
- Department of Clinical Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
- National Institute of Health Research (NIHR) Great Ormond Street Biomedical Research Centre, London, United Kingdom
- Population, Policy and Practice Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Eleonora Khabirova
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Berta Crespo
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Nadjeda Moreno
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Tony Brooks
- UCL Genomics, Zayed Centre for Research, UCL Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Paola Niola
- UCL Genomics, Zayed Centre for Research, UCL Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Katherine Swarbrick
- Department of Histopathology, Great Ormond Street Hospital for Children National Health Service (NHS) Foundation Trust, London, United Kingdom
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Jenifer P. Suntharalingham
- Genetics and Genomic Medicine Research and Teaching Department, University College London (UCL) Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Sinead M. McGlacken-Byrne
- Genetics and Genomic Medicine Research and Teaching Department, University College London (UCL) Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Owen J. Arthurs
- Department of Clinical Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
- National Institute of Health Research (NIHR) Great Ormond Street Biomedical Research Centre, London, United Kingdom
- Population, Policy and Practice Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| | - Sam Behjati
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
- Department of Paediatrics, University of Cambridge, Cambridge, United Kingdom
| | - John C. Achermann
- Genetics and Genomic Medicine Research and Teaching Department, University College London (UCL) Great Ormond Street Institute of Child Health, UCL, London, United Kingdom
| |
Collapse
|
6
|
Docter D, Dawood Y, Jacobs K, Hagoort J, Oostra RJ, van den Hoff MJB, Arthurs OJ, de Bakker BS. Microfocus computed tomography for fetal postmortem imaging: an overview. Pediatr Radiol 2023; 53:632-639. [PMID: 36169668 PMCID: PMC10027643 DOI: 10.1007/s00247-022-05517-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/18/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
Over the last few years, fetal postmortem microfocus computed tomography (micro-CT) imaging has increased in popularity for both diagnostic and research purposes. Micro-CT imaging could be a substitute for autopsy, particularly in very early gestation fetuses for whom autopsy can be technically challenging and is often unaccepted by parents. This article provides an overview of the latest research in fetal postmortem micro-CT imaging with a focus on diagnostic accuracy, endovascular staining approaches, placental studies and the reversibility of staining. It also discusses new methods that could prove helpful for micro-CT of larger fetuses. While more research is needed, contrast-enhanced micro-CT has the potential to become a suitable alternative to fetal autopsy. Further research using this novel imaging tool could yield wider applications, such as its practise in imaging rare museum specimens.
Collapse
Affiliation(s)
- Daniël Docter
- Department of Medical Biology, Amsterdam UMC at University of Amsterdam, Amsterdam, The Netherlands
| | - Yousif Dawood
- Department of Medical Biology, Amsterdam UMC at University of Amsterdam, Amsterdam, The Netherlands
- Department of Obstetrics and Gynecology, Amsterdam UMC at University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| | - Karl Jacobs
- Department of Medical Biology, Amsterdam UMC at University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
- Department of Oral Pain and Dysfunction, Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - Jaco Hagoort
- Department of Medical Biology, Amsterdam UMC at University of Amsterdam, Amsterdam, The Netherlands
| | - Roelof-Jan Oostra
- Department of Medical Biology, Amsterdam UMC at University of Amsterdam, Amsterdam, The Netherlands
| | - Maurice J B van den Hoff
- Department of Medical Biology, Amsterdam UMC at University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands
| | - Owen J Arthurs
- Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- National Institute for Health Research, Great Ormond Street Hospital Biomedical Research Center, London, UK
| | - Bernadette S de Bakker
- Department of Obstetrics and Gynecology, Amsterdam UMC at University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.
- Amsterdam Reproduction and Development Research Institute, Amsterdam, The Netherlands.
- Department of Pediatric Surgery, Erasmus MC - Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
7
|
Franchetti G, Viel G, Fais P, Fichera G, Cecchin D, Cecchetto G, Giraudo C. Forensic applications of micro-computed tomography: a systematic review. Clin Transl Imaging 2022. [DOI: 10.1007/s40336-022-00510-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Abstract
Purpose
The aim of this systematic review was to provide a comprehensive overview of micro-CT current applications in forensic pathology, anthropology, odontology, and neonatology.
Methods
A bibliographic research on the electronic databases Pubmed and Scopus was conducted in the time frame 01/01/2001–31/12/2021 without any language restrictions and applying the following free-text search strategy: “(micro-computed tomography OR micro-CT) AND (forensic OR legal)”. The following inclusion criteria were used: (A) English language; (B) Application of micro-CT to biological and/or non-biological materials to address at least one forensic issue (e.g., age estimation, identification of post-mortem interval). The papers selected by three independent investigators have been then classified according to the investigated materials.
Results
The bibliographic search provided 651 records, duplicates excluded. After screening for title and/or abstracts, according to criteria A and B, 157 full-text papers were evaluated for eligibility. Ninety-three papers, mostly (64) published between 2017 and 2021, were included; considering that two papers investigated several materials, an overall amount of 99 classifiable items was counted when referring to the materials investigated. It emerged that bones and cartilages (54.55%), followed by teeth (13.13%), were the most frequently analyzed materials. Moreover, micro-CT allowed the collection of structural, qualitative and/or quantitative information also for soft tissues, fetuses, insects, and foreign materials.
Conclusion
Forensic applications of micro-CT progressively increased in the last 5 years with very promising results. According to this evidence, we might expect in the near future a shift of its use from research purposes to clinical forensic cases.
Collapse
|
8
|
Dawood Y, Honhoff C, van der Post A, Roosendaal SD, Coolen BF, Strijkers GJ, Pajkrt E, de Bakker BS. Comparison of postmortem whole-body contrast-enhanced microfocus computed tomography and high-field magnetic resonance imaging of human fetuses. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2022; 60:109-117. [PMID: 34826157 PMCID: PMC9328149 DOI: 10.1002/uog.24827] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/19/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE Although fetal autopsy is generally recommended to confirm or refute the antemortem diagnosis, parental acceptance of the procedure has fallen over time, mainly due to its invasiveness. Contrast-enhanced microfocus CT (micro-CT) and high-field magnetic resonance imaging (HF-MRI, ≥ 3 Tesla) have both been suggested as non-invasive alternatives to conventional fetal autopsy for fetuses < 20 weeks of gestation. The aim of this study was to compare these two modalities in postmortem whole-body fetal imaging. METHODS In this study, the imaging process and quality of micro-CT and HF-MRI were compared using both qualitative and quantitative assessments. For the qualitative evaluation, fetal anatomy experts scored 56 HF-MRI and 56 micro-CT images of four human fetuses aged 13-18 gestational weeks on two components: overall image quality and the ability to recognize and assess 21 anatomical structures. For the quantitative evaluation, participants segmented manually three organs with increasing complexity to assess interobserver variability. In addition, the signal-to-noise and contrast-to-noise ratios of five major organs were determined. RESULTS Both imaging techniques were able to reach submillimeter voxel size. The highest resolution of micro-CT was 22 µm (isotropic), while the highest resolution of HF-MRI was 137 µm (isotropic). The qualitative image assessment form was sent to 45 fetal anatomy experts, of whom 36 (80%) responded. It was observed that micro-CT scored higher on all components of the qualitative assessment compared with HF-MRI. In addition, the quantitative assessment showed that micro-CT had lower interobserver variability and higher signal-to-noise and contrast-to-noise ratios. CONCLUSIONS Our findings show that micro-CT outperforms HF-MRI in postmortem whole-body fetal imaging in terms of both quantitative and qualitative outcomes. Combined, these findings suggest that the ability to extract diagnostic information is greater when assessing micro-CT compared with HF-MRI images. We, therefore, believe that micro-CT is the preferred imaging modality as an alternative to conventional fetal autopsy for early gestation and is an indispensable tool in postmortem imaging services. © 2021 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- Y. Dawood
- Department of Obstetrics and GynecologyAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Department of Medical Biology, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam Reproduction and Development Research InstituteAmsterdamThe Netherlands
| | - C. Honhoff
- Department of Medical Biology, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - A.‐S. van der Post
- Department of Radiology, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - S. D. Roosendaal
- Department of Radiology, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - B. F. Coolen
- Department of Biomedical Engineering and Physics, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - G. J. Strijkers
- Department of Biomedical Engineering and Physics, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - E. Pajkrt
- Department of Obstetrics and GynecologyAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Amsterdam Reproduction and Development Research InstituteAmsterdamThe Netherlands
| | - B. S. de Bakker
- Department of Obstetrics and GynecologyAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Department of Medical Biology, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam Reproduction and Development Research InstituteAmsterdamThe Netherlands
- Department of Pediatric Surgery, Erasmus MC – Sophia Children's HospitalUniversity Medical Center RotterdamRotterdamThe Netherlands
| |
Collapse
|
9
|
Shelmerdine SC, Arthurs OJ. Post-mortem perinatal imaging: what is the evidence? Br J Radiol 2022:20211078. [PMID: 35451852 DOI: 10.1259/bjr.20211078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Post-mortem imaging for the investigation of perinatal deaths is an acceptable tool amongst parents and religious groups, enabling a less invasive autopsy examination. Nevertheless, availability is scarce nationwide, and there is some debate amongst radiologists regarding the best practice and optimal protocols for performing such studies. Much of the published literature to date focusses on single centre experiences or interesting case reports. Diagnostic accuracy studies are available for a variety of individual imaging modalities (e.g. post-mortem CT, MRI, ultrasound and micro-CT), however, assimilating this information is important when attempting to start a local service.In this article, we present a comprehensive review summarising the latest research, recently published international guidelines, and describe which imaging modalities are best suited for specific indications. When the antenatal clinical findings are not supported by the post-mortem imaging, we also suggest how and when an invasive autopsy may be considered. In general, a collaborative working relationship within a multidisciplinary team (consisting of radiologists, radiographers, the local pathology department, mortuary staff, foetal medicine specialists, obstetricians and bereavement midwives) is vital for a successful service.
Collapse
Affiliation(s)
- Susan C Shelmerdine
- Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.,UCL Great Ormond Street Institute of Child Health, London, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, 30 Guilford Street, Bloomsbury, London, UK.,Department of Radiology, St. George's Hospital, Blackshaw Road, London, UK
| | - Owen J Arthurs
- Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.,UCL Great Ormond Street Institute of Child Health, London, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, 30 Guilford Street, Bloomsbury, London, UK
| |
Collapse
|
10
|
Shelmerdine SC, Ashworth MT, Carmichael J, Arthurs OJ. Micro-CT imaging of congenital high airway obstruction syndrome. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2022; 59:687-689. [PMID: 34580943 DOI: 10.1002/uog.24782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/11/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Affiliation(s)
- S C Shelmerdine
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - M T Ashworth
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - J Carmichael
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- King's College London, London, UK
| | - O J Arthurs
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
11
|
Simcock IC, Shelmerdine SC, Langan D, Anna G, Sebire NJ, Arthurs OJ. Micro-CT yields high image quality in human fetal post-mortem imaging despite maceration. BMC Med Imaging 2021; 21:128. [PMID: 34429085 PMCID: PMC8383392 DOI: 10.1186/s12880-021-00658-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 08/01/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Current clinical post-mortem imaging techniques do not provide sufficiently high-resolution imaging for smaller fetuses after pregnancy loss. Post-mortem micro-CT is a non-invasive technique that can deliver high diagnostic accuracy for these smaller fetuses. The purpose of the study is to identify the main predictors of image quality for human fetal post-mortem micro-CT imaging. METHODS Human fetuses were imaged using micro-CT following potassium tri-iodide tissue preparation, and axial head and chest views were assessed for image quality on a Likert scale by two blinded radiologists. Simple and multivariable linear regression models were performed with demographic details, iodination, tissue maceration score and imaging parameters as predictor variables. RESULTS 258 fetuses were assessed, with median weight 41.7 g (2.6-350 g) and mean gestational age 16 weeks (11-24 weeks). A high image quality score (> 6.5) was achieved in 95% of micro-CT studies, higher for the head (median = 9) than chest (median = 8.5) imaging. The strongest negative predictors of image quality were increasing maceration and body weight (p < 0.001), with number of projections being the best positive imaging predictor. CONCLUSIONS High micro-CT image quality score is achievable following early pregnancy loss despite fetal maceration, particularly in smaller fetuses where conventional autopsy may be particularly challenging. These findings will help establish clinical micro-CT imaging services, addressing the need for less invasive fetal autopsy methods.
Collapse
Affiliation(s)
- Ian Craig Simcock
- Department of Clinical Radiology, Great Ormond Street Hospital for Children, London, UK.
- Great Ormond Street Hospital for Children, UCL Great Ormond Street Institute of Child Health, London, UK.
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK.
| | - Susan Cheng Shelmerdine
- Department of Clinical Radiology, Great Ormond Street Hospital for Children, London, UK
- Great Ormond Street Hospital for Children, UCL Great Ormond Street Institute of Child Health, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Dean Langan
- Great Ormond Street Hospital for Children, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Guy Anna
- Department of Clinical Radiology, Great Ormond Street Hospital for Children, London, UK
- Great Ormond Street Hospital for Children, UCL Great Ormond Street Institute of Child Health, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Neil James Sebire
- Great Ormond Street Hospital for Children, UCL Great Ormond Street Institute of Child Health, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
- Department of Histopathology, Great Ormond Street Hospital for Children, London, UK
| | - Owen John Arthurs
- Department of Clinical Radiology, Great Ormond Street Hospital for Children, London, UK
- Great Ormond Street Hospital for Children, UCL Great Ormond Street Institute of Child Health, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| |
Collapse
|
12
|
Shelmerdine SC, Hutchinson JC, Lewis C, Simcock IC, Sekar T, Sebire NJ, Arthurs OJ. A pragmatic evidence-based approach to post-mortem perinatal imaging. Insights Imaging 2021; 12:101. [PMID: 34264420 PMCID: PMC8282801 DOI: 10.1186/s13244-021-01042-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/24/2021] [Indexed: 12/16/2022] Open
Abstract
Post-mortem imaging has a high acceptance rate amongst parents and healthcare professionals as a non-invasive method for investigating perinatal deaths. Previously viewed as a 'niche' subspecialty, it is becoming increasingly requested, with general radiologists now more frequently asked to oversee and advise on appropriate imaging protocols. Much of the current literature to date has focussed on diagnostic accuracy and clinical experiences of individual centres and their imaging techniques (e.g. post-mortem CT, MRI, ultrasound and micro-CT), and pragmatic, evidence-based guidance for how to approach such referrals in real-world practice is lacking. In this review, we summarise the latest research and provide an approach and flowchart to aid decision-making for perinatal post-mortem imaging. We highlight key aspects of the maternal and antenatal history that radiologists should consider when protocolling studies (e.g. antenatal imaging findings and history), and emphasise important factors that could impact the diagnostic quality of post-mortem imaging examinations (e.g. post-mortem weight and time interval). Considerations regarding when ancillary post-mortem image-guided biopsy tests are beneficial are also addressed, and we provide key references for imaging protocols for a variety of cross-sectional imaging modalities.
Collapse
Affiliation(s)
- Susan C Shelmerdine
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK. .,UCL Great Ormond Street Institute of Child Health, London, UK. .,Great Ormond Street Hospital NIHR Biomedical Research Centre, London, UK.
| | - J Ciaran Hutchinson
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK.,UCL Great Ormond Street Institute of Child Health, London, UK.,Great Ormond Street Hospital NIHR Biomedical Research Centre, London, UK
| | - Celine Lewis
- Population, Policy and Practice Department, UCL GOS Institute of Child Health, London, UK.,North Thames Genomic Laboratory Hub, Great Ormond Street Hospital, London, UK
| | - Ian C Simcock
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK.,UCL Great Ormond Street Institute of Child Health, London, UK.,Great Ormond Street Hospital NIHR Biomedical Research Centre, London, UK
| | - Thivya Sekar
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK.,UCL Great Ormond Street Institute of Child Health, London, UK.,Great Ormond Street Hospital NIHR Biomedical Research Centre, London, UK
| | - Neil J Sebire
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK.,UCL Great Ormond Street Institute of Child Health, London, UK.,Great Ormond Street Hospital NIHR Biomedical Research Centre, London, UK
| | - Owen J Arthurs
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH, UK.,UCL Great Ormond Street Institute of Child Health, London, UK.,Great Ormond Street Hospital NIHR Biomedical Research Centre, London, UK
| |
Collapse
|
13
|
Simcock IC, Reeve R, Burnett C, Costigan C, McNair H, Robinson C, Arthurs OJ. Clinical academic radiographers - A challenging but rewarding career. Radiography (Lond) 2021; 27 Suppl 1:S14-S19. [PMID: 34274226 DOI: 10.1016/j.radi.2021.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/11/2021] [Accepted: 06/20/2021] [Indexed: 12/28/2022]
Abstract
OBJECTIVES To explain what a clinical academic career can be, what it can lead to for the individual, profession and most importantly the patient, and why these roles are so important to radiography. KEY FINDINGS Multiple challenges to the adoption of clinical academic careers exist, including achievable measurable outcomes, visibility & senior support, and balancing different time demands. Equally the rewards are wide ranging and can advance both the individual and profession through role extension opportunities, increased career progression, patient benefits, and academic and research skills. CONCLUSION Clinical academic careers can provide advantages for the individual, department, profession and most importantly the patient with advanced clinical practice through evidenced based research. IMPLICATIONS FOR PRACTICE Improving clinical academic careers within Radiography will promote research participation and increase radiographic roles in patient-centred research delivery and development. Combining evidenced based research with academic skills will lead to improved patient care and better clinical outcomes.
Collapse
Affiliation(s)
- I C Simcock
- Department of Clinical Radiology, Great Ormond Street Hospital for Children, London, UK; UCL Great Ormond Street Institute of Child Health, Great Ormond Street Hospital for Children, London, UK; National Institute of Health Research, Great Ormond Street Hospital Biomedical Research Centre, London, UK.
| | - R Reeve
- Diagnostic Imaging Department, Portsmouth Hospitals University NHS Trust, Portsmouth, UK; University of Southampton, Southampton, UK.
| | - C Burnett
- Leeds Teaching Hospitals NHS Trust, UK; Leeds Institute of Medical Research, University of Leeds, UK; Leeds National Institute of Health Research Biomedical Research Centre, UK.
| | - C Costigan
- Nottingham University Hospitals NHS Trust, Nottingham, UK; National Institute of Health Research, Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK.
| | - H McNair
- Royal Marsden NHS Foundation Trust and Institute of Cancer Research, London, UK.
| | - C Robinson
- University Hospitals of Leicester NHS Trust, Infirmary Square, Leicester, UK.
| | - O J Arthurs
- Department of Clinical Radiology, Great Ormond Street Hospital for Children, London, UK; UCL Great Ormond Street Institute of Child Health, Great Ormond Street Hospital for Children, London, UK; National Institute of Health Research, Great Ormond Street Hospital Biomedical Research Centre, London, UK.
| |
Collapse
|