1
|
Peng Y, Zhao P, Li Z, Mu N, Tao S, Feng Y, Cheng X, Zhang W. Genome-wide characterization of single-stranded DNA in rice. PLANT PHYSIOLOGY 2024; 196:1268-1283. [PMID: 38917225 DOI: 10.1093/plphys/kiae357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/31/2024] [Accepted: 06/01/2024] [Indexed: 06/27/2024]
Abstract
Single-stranded DNA (ssDNA) is essential for various DNA-templated processes in both eukaryotes and prokaryotes. However, comprehensive characterizations of ssDNA still lag in plants compared to nonplant systems. Here, we conducted in situ S1-sequencing, with starting gDNA ranging from 5 µg to 250 ng, followed by comprehensive characterizations of ssDNA in rice (Oryza sativa L.). We found that ssDNA loci were substantially associated with a subset of non-B DNA structures and functional genomic loci. Subtypes of ssDNA loci had distinct epigenetic features. Importantly, ssDNA may act alone or partly coordinate with non-B DNA structures, functional genomic loci, or epigenetic marks to actively or repressively modulate gene transcription, which is genomic region dependent and associated with the distinct accumulation of RNA Pol II. Moreover, distinct types of ssDNA had differential impacts on the activities and evolution of transposable elements (TEs) (especially common or conserved TEs) in the rice genome. Our study showcases an antibody-independent technique for characterizing non-B DNA structures or functional genomic loci in plants. It lays the groundwork and fills a crucial gap for further exploration of ssDNA, non-B DNA structures, or functional genomic loci, thereby advancing our understanding of their biology in plants.
Collapse
Affiliation(s)
- Yulian Peng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| | - Pengtao Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| | - Zhaoguo Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| | - Ning Mu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| | - Shentong Tao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| | - Yilong Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| | - Xuejiao Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| | - Wenli Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| |
Collapse
|
2
|
Ross MO, Xie Y, Owyang RC, Ye C, Zbihley ONP, Lyu R, Wu T, Wang P, Karginova O, Olopade OI, Zhao M, He C. PTPN2 copper-sensing relays copper level fluctuations into EGFR/CREB activation and associated CTR1 transcriptional repression. Nat Commun 2024; 15:6947. [PMID: 39138174 PMCID: PMC11322707 DOI: 10.1038/s41467-024-50524-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 07/10/2024] [Indexed: 08/15/2024] Open
Abstract
Fluxes in human copper levels recently garnered attention for roles in cellular signaling, including affecting levels of the signaling molecule cyclic adenosine monophosphate. We herein apply an unbiased temporal evaluation of the signaling and whole genome transcriptional activities modulated by copper level fluctuations to identify potential copper sensor proteins responsible for driving these activities. We find that fluctuations in physiologically relevant copper levels modulate EGFR signal transduction and activation of the transcription factor CREB. Both intracellular and extracellular assays support Cu1+ inhibition of the EGFR phosphatase PTPN2 (and potentially PTPN1)-via ligation to the PTPN2 active site cysteine side chain-as the underlying mechanism. We additionally show i) copper supplementation drives weak transcriptional repression of the copper importer CTR1 and ii) CREB activity is inversely correlated with CTR1 expression. In summary, our study reveals PTPN2 as a physiological copper sensor and defines a regulatory mechanism linking feedback control of copper stimulated EGFR/CREB signaling and CTR1 expression.
Collapse
Affiliation(s)
- Matthew O Ross
- Department of Chemistry, University of Chicago, Chicago, IL, USA.
| | - Yuan Xie
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Ryan C Owyang
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Chang Ye
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Olivia N P Zbihley
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Ruitu Lyu
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Tong Wu
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Pingluan Wang
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Olga Karginova
- Department of Medicine, Center for Clinical Cancer Genetics and Global Health, University of Chicago, Chicago, IL, USA
| | - Olufunmilayo I Olopade
- Department of Medicine, Center for Clinical Cancer Genetics and Global Health, University of Chicago, Chicago, IL, USA
| | - Minglei Zhao
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Chuan He
- Department of Chemistry, University of Chicago, Chicago, IL, USA.
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA.
- Howard Hughes Medical Institute, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
3
|
Lyu R, Gao Y, Wu T, Ye C, Wang P, He C. Quantitative analysis of cis-regulatory elements in transcription with KAS-ATAC-seq. Nat Commun 2024; 15:6852. [PMID: 39127768 PMCID: PMC11316786 DOI: 10.1038/s41467-024-50680-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
Cis-regulatory elements (CREs) are pivotal in orchestrating gene expression throughout diverse biological systems. Accurate identification and in-depth characterization of functional CREs are crucial for decoding gene regulation networks during cellular processes. In this study, we develop Kethoxal-Assisted Single-stranded DNA Assay for Transposase-Accessible Chromatin with Sequencing (KAS-ATAC-seq) to quantitatively analyze the transcriptional activity of CREs. A main advantage of KAS-ATAC-seq lies in its precise measurement of ssDNA levels within both proximal and distal ATAC-seq peaks, enabling the identification of transcriptional regulatory sequences. This feature is particularly adept at defining Single-Stranded Transcribing Enhancers (SSTEs). SSTEs are highly enriched with nascent RNAs and specific transcription factors (TFs) binding sites that define cellular identity. Moreover, KAS-ATAC-seq provides a detailed characterization and functional implications of various SSTE subtypes. Our analysis of CREs during mouse neural differentiation demonstrates that KAS-ATAC-seq can effectively identify immediate-early activated CREs in response to retinoic acid (RA) treatment. Our findings indicate that KAS-ATAC-seq provides more precise annotation of functional CREs in transcription. Future applications of KAS-ATAC-seq would help elucidate the intricate dynamics of gene regulation in diverse biological processes.
Collapse
Affiliation(s)
- Ruitu Lyu
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA.
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA.
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA.
| | - Yun Gao
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
| | - Tong Wu
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
| | - Chang Ye
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
| | - Pingluan Wang
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA.
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA.
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA.
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
4
|
Xiao H, Chen H, Zhang L, Duolikun M, Zhen B, Kuerban S, Li X, Wang Y, Chen L, Lin J. Cytoskeletal gene alterations linked to sorafenib resistance in hepatocellular carcinoma. World J Surg Oncol 2024; 22:152. [PMID: 38849867 PMCID: PMC11157844 DOI: 10.1186/s12957-024-03417-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/20/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Although sorafenib has been consistently used as a first-line treatment for advanced hepatocellular carcinoma (HCC), most patients will develop resistance, and the mechanism of resistance to sorafenib needs further study. METHODS Using KAS-seq technology, we obtained the ssDNA profiles within the whole genome range of SMMC-7721 cells treated with sorafenib for differential analysis. We then intersected the differential genes obtained from the analysis of hepatocellular carcinoma patients in GSE109211 who were ineffective and effective with sorafenib treatment, constructed a PPI network, and obtained hub genes. We then analyzed the relationship between the expression of these genes and the prognosis of hepatocellular carcinoma patients. RESULTS In this study, we identified 7 hub ERGs (ACTB, CFL1, ACTG1, ACTN1, WDR1, TAGLN2, HSPA8) related to drug resistance, and these genes are associated with the cytoskeleton. CONCLUSIONS The cytoskeleton is associated with sorafenib resistance in hepatocellular carcinoma. Using KAS-seq to analyze the early changes in tumor cells treated with drugs is feasible for studying the drug resistance of tumors, which provides reference significance for future research.
Collapse
Affiliation(s)
- Hong Xiao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Hainan, China
| | - Hangyu Chen
- Department of Pharmacy, Peking University Third Hospital, 49 Huayuan North Rd, Haidian District, Beijing, 100191, China
| | - Lei Zhang
- Department of Pharmacy, Peking University Third Hospital, 49 Huayuan North Rd, Haidian District, Beijing, 100191, China
| | - Maimaitiyasen Duolikun
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Hainan, China
| | - Baixin Zhen
- Department of Pharmacology, Xinjiang Medical University, Urumqi, China
| | - Subinuer Kuerban
- Department of Pharmacology, Xinjiang Medical University, Urumqi, China
| | - Xuehui Li
- Department of Pharmacology, Xinjiang Medical University, Urumqi, China
| | - Yuxi Wang
- Department of Pharmacy, Peking University Third Hospital, 49 Huayuan North Rd, Haidian District, Beijing, 100191, China
| | - Long Chen
- Department of Pharmacy, Peking University Third Hospital, 49 Huayuan North Rd, Haidian District, Beijing, 100191, China.
- Peking University, Third Hospital Cancer Center, 49 Huayuan North Rd, Haidian District, Beijing, 100191, China.
| | - Jian Lin
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Hainan, China.
- Department of Pharmacy, Peking University Third Hospital, 49 Huayuan North Rd, Haidian District, Beijing, 100191, China.
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Peking University, 49 Huayuan North Rd, Haidian District, Beijing, 100191, China.
- Peking University, Third Hospital Cancer Center, 49 Huayuan North Rd, Haidian District, Beijing, 100191, China.
| |
Collapse
|
5
|
Liu X, He W, Hu L. Exploring transient global transcriptional changes induced by ascorbic acid revealed via atKAS-seq profiling. Funct Integr Genomics 2024; 24:66. [PMID: 38526630 DOI: 10.1007/s10142-024-01349-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 03/27/2024]
Abstract
Transcription initiates the formation of single-stranded DNA (ssDNA) regions within the genome, delineating transcription bubbles, a highly dynamic genomic process. Kethoxal-assisted single-stranded DNA sequencing (KAS-seq) utilizing N3-kethoxal has emerged as a potent tool for mapping specific guanine positions in ssDNA on a genome-wide scale. However, the original KAS-seq method required the costly Accel-NGS Methyl-seq DNA library kit. This study introduces an optimized iteration of the KAS-seq technique, referred to as adapter-tagged KAS-seq (atKAS-seq), incorporating an adapter tagging strategy. This modification involves integrating sequencing adapters via complementary strand synthesis using random N9 tagging. Additionally, by harnessing the potential of ascorbic acid (ASC), recognized for inducing global epigenetic changes, we employed the atKAS-seq methodology to elucidate critical pathways influenced by short-term, high-dose ASC treatment. Our findings underscore that atKAS-seq enables rapid and precise analyses of transcription dynamics and enhancer activities concurrently. This method offers a streamlined, cost-efficient, and low-input approach, affirming its utility in probing intricate genomic regulatory mechanisms.
Collapse
Affiliation(s)
- Xiangyue Liu
- Cancer Institute, Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Weizhi He
- Cancer Institute, Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Lulu Hu
- Cancer Institute, Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Shanghai Medical College of Fudan University, Shanghai, 200032, China.
| |
Collapse
|
6
|
Esain-Garcia I, Kirchner A, Melidis L, Tavares RDCA, Dhir S, Simeone A, Yu Z, Madden SK, Hermann R, Tannahill D, Balasubramanian S. G-quadruplex DNA structure is a positive regulator of MYC transcription. Proc Natl Acad Sci U S A 2024; 121:e2320240121. [PMID: 38315865 PMCID: PMC10873556 DOI: 10.1073/pnas.2320240121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024] Open
Abstract
DNA structure can regulate genome function. Four-stranded DNA G-quadruplex (G4) structures have been implicated in transcriptional regulation; however, previous studies have not directly addressed the role of an individual G4 within its endogenous cellular context. Using CRISPR to genetically abrogate endogenous G4 structure folding, we directly interrogate the G4 found within the upstream regulatory region of the critical human MYC oncogene. G4 loss leads to suppression of MYC transcription from the P1 promoter that is mediated by the deposition of a de novo nucleosome alongside alterations in RNA polymerase recruitment. We also show that replacement of the endogenous MYC G4 with a different G4 structure from the KRAS oncogene restores G4 folding and MYC transcription. Moreover, we demonstrate that the MYC G4 structure itself, rather than its sequence, recruits transcription factors and histone modifiers. Overall, our work establishes that G4 structures are important features of transcriptional regulation that coordinate recruitment of key chromatin proteins and the transcriptional machinery through interactions with DNA secondary structure, rather than primary sequence.
Collapse
Affiliation(s)
- Isabel Esain-Garcia
- Cancer Research UK Cambridge Institute, University of Cambridge, CambridgeCB2 0RE, United Kingdom
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Angie Kirchner
- Cancer Research UK Cambridge Institute, University of Cambridge, CambridgeCB2 0RE, United Kingdom
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Larry Melidis
- Cancer Research UK Cambridge Institute, University of Cambridge, CambridgeCB2 0RE, United Kingdom
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | | | - Somdutta Dhir
- Cancer Research UK Cambridge Institute, University of Cambridge, CambridgeCB2 0RE, United Kingdom
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Angela Simeone
- Cancer Research UK Cambridge Institute, University of Cambridge, CambridgeCB2 0RE, United Kingdom
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Zutao Yu
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Sarah K. Madden
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Regina Hermann
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - David Tannahill
- Cancer Research UK Cambridge Institute, University of Cambridge, CambridgeCB2 0RE, United Kingdom
| | - Shankar Balasubramanian
- Cancer Research UK Cambridge Institute, University of Cambridge, CambridgeCB2 0RE, United Kingdom
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
- School of Clinical Medicine, University of Cambridge, CambridgeCB2 0SP, United Kingdom
| |
Collapse
|
7
|
Fan H, Xia S, Xiang J, Li Y, Ross MO, Lim SA, Yang F, Tu J, Xie L, Dougherty U, Zhang FQ, Zheng Z, Zhang R, Wu R, Dong L, Su R, Chen X, Althaus T, Riedell PA, Jonker PB, Muir A, Lesinski GB, Rafiq S, Dhodapkar MV, Stock W, Odenike O, Patel AA, Opferman J, Tsuji T, Matsuzaki J, Shah H, Faubert B, Elf SE, Layden B, Bissonnette BM, He YY, Kline J, Mao H, Odunsi K, Gao X, Chi H, He C, Chen J. Trans-vaccenic acid reprograms CD8 + T cells and anti-tumour immunity. Nature 2023; 623:1034-1043. [PMID: 37993715 PMCID: PMC10686835 DOI: 10.1038/s41586-023-06749-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/16/2023] [Indexed: 11/24/2023]
Abstract
Diet-derived nutrients are inextricably linked to human physiology by providing energy and biosynthetic building blocks and by functioning as regulatory molecules. However, the mechanisms by which circulating nutrients in the human body influence specific physiological processes remain largely unknown. Here we use a blood nutrient compound library-based screening approach to demonstrate that dietary trans-vaccenic acid (TVA) directly promotes effector CD8+ T cell function and anti-tumour immunity in vivo. TVA is the predominant form of trans-fatty acids enriched in human milk, but the human body cannot produce TVA endogenously1. Circulating TVA in humans is mainly from ruminant-derived foods including beef, lamb and dairy products such as milk and butter2,3, but only around 19% or 12% of dietary TVA is converted to rumenic acid by humans or mice, respectively4,5. Mechanistically, TVA inactivates the cell-surface receptor GPR43, an immunomodulatory G protein-coupled receptor activated by its short-chain fatty acid ligands6-8. TVA thus antagonizes the short-chain fatty acid agonists of GPR43, leading to activation of the cAMP-PKA-CREB axis for enhanced CD8+ T cell function. These findings reveal that diet-derived TVA represents a mechanism for host-extrinsic reprogramming of CD8+ T cells as opposed to the intrahost gut microbiota-derived short-chain fatty acids. TVA thus has translational potential for the treatment of tumours.
Collapse
Affiliation(s)
- Hao Fan
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Siyuan Xia
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology School of Medicine, Shenzhen, China
| | - Junhong Xiang
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Yuancheng Li
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | - Matthew O Ross
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Seon Ah Lim
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Fan Yang
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Jiayi Tu
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Lishi Xie
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | | | - Freya Q Zhang
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Zhong Zheng
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Rukang Zhang
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Rong Wu
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Lei Dong
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Rui Su
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Xiufen Chen
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Thomas Althaus
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Peter A Riedell
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Patrick B Jonker
- The Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA
| | - Alexander Muir
- The Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA
| | - Gregory B Lesinski
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Sarwish Rafiq
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Madhav V Dhodapkar
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Wendy Stock
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | | | - Anand A Patel
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Joseph Opferman
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Takemasa Tsuji
- Department of Obstetrics and Gynecology, The University of Chicago, Chicago, IL, USA
| | - Junko Matsuzaki
- Department of Obstetrics and Gynecology, The University of Chicago, Chicago, IL, USA
| | - Hardik Shah
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Brandon Faubert
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Shannon E Elf
- The Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA
| | - Brian Layden
- Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | | | - Yu-Ying He
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Justin Kline
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Hui Mao
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | - Kunle Odunsi
- Department of Obstetrics and Gynecology, The University of Chicago, Chicago, IL, USA
| | - Xue Gao
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
- Department of Medicine, The University of Chicago, Chicago, IL, USA
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Hongbo Chi
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA.
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.
| | - Jing Chen
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.
- Department of Medicine, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
8
|
Matos-Rodrigues G, Hisey JA, Nussenzweig A, Mirkin SM. Detection of alternative DNA structures and its implications for human disease. Mol Cell 2023; 83:3622-3641. [PMID: 37863029 DOI: 10.1016/j.molcel.2023.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/01/2023] [Accepted: 08/16/2023] [Indexed: 10/22/2023]
Abstract
Around 3% of the genome consists of simple DNA repeats that are prone to forming alternative (non-B) DNA structures, such as hairpins, cruciforms, triplexes (H-DNA), four-stranded guanine quadruplexes (G4-DNA), and others, as well as composite RNA:DNA structures (e.g., R-loops, G-loops, and H-loops). These DNA structures are dynamic and favored by the unwinding of duplex DNA. For many years, the association of alternative DNA structures with genome function was limited by the lack of methods to detect them in vivo. Here, we review the recent advancements in the field and present state-of-the-art technologies and methods to study alternative DNA structures. We discuss the limitations of these methods as well as how they are beginning to provide insights into causal relationships between alternative DNA structures, genome function and stability, and human disease.
Collapse
Affiliation(s)
| | - Julia A Hisey
- Department of Biology, Tufts University, Medford, MA, USA
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA.
| | | |
Collapse
|
9
|
Lyu R, Wu T, Park G, He YY, Chen M, He C. KAS-Analyzer: a novel computational framework for exploring KAS-seq data. BIOINFORMATICS ADVANCES 2023; 3:vbad121. [PMID: 37745002 PMCID: PMC10516523 DOI: 10.1093/bioadv/vbad121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/09/2023] [Accepted: 09/06/2023] [Indexed: 09/26/2023]
Abstract
Motivation Kethoxal-assisted ssDNA sequencing (KAS-seq) is rapidly gaining popularity as a robust and effective approach to study the nascent dynamics of transcriptionally engaged RNA polymerases through profiling of genome-wide single-stranded DNA (ssDNA). Its latest variant, spKAS-seq, a strand-specific version of KAS-seq, has been developed to map genome-wide R-loop structures by detecting imbalances of ssDNA on two strands. However, user-friendly, open-source computational tools tailored for KAS-seq data are still lacking. Results Here, we introduce KAS-Analyzer, the first comprehensive computational framework aimed at streamlining and enhancing the analysis and interpretation of KAS-seq and spKAS-seq data. In addition to standard analyses, KAS-Analyzer offers many novel tools specifically designed for KAS-seq data, including, but not limited to: calculation of transcription-related metrics, identification of single-stranded transcribing (SST) enhancers, high-resolution mapping of R-loops, and differential RNA polymerase activity analysis. We provided a detailed overview of KAS-seq data and its diverse applications through the implementation of KAS-Analyzer. Using the example time-course KAS-seq datasets, we further showcase the robust capabilities of KAS-Analyzer for investigating dynamic transcriptional regulatory programs in response to UVB radiation. Availability and implementation KAS-Analyzer is available at https://github.com/Ruitulyu/KAS-Analyzer.
Collapse
Affiliation(s)
- Ruitu Lyu
- Department of Chemistry, The University of Chicago, IL 60637, United States
- Howard Hughes Medical Institute, The University of Chicago, IL 60637, United States
| | - Tong Wu
- Department of Chemistry, The University of Chicago, IL 60637, United States
- Howard Hughes Medical Institute, The University of Chicago, IL 60637, United States
| | - Gayoung Park
- Department of Medicine, The University of Chicago, Chicago, IL 60637, United States
| | - Yu-Ying He
- Department of Medicine, The University of Chicago, Chicago, IL 60637, United States
| | - Mengjie Chen
- Department of Medicine, The University of Chicago, Chicago, IL 60637, United States
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, United States
| | - Chuan He
- Department of Chemistry, The University of Chicago, IL 60637, United States
- Howard Hughes Medical Institute, The University of Chicago, IL 60637, United States
- Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, IL 60637, United States
| |
Collapse
|
10
|
Vayani OR, Kaufman ME, Moore K, Chennakesavalu M, TerHaar R, Chaves G, Chlenski A, He C, Cohn SL, Applebaum MA. Adrenergic and mesenchymal signatures are identifiable in cell-free DNA and correlate with metastatic disease burden in children with neuroblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.554943. [PMID: 37693610 PMCID: PMC10491182 DOI: 10.1101/2023.08.30.554943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Background Cell free DNA (cfDNA) profiles of 5-hydroxymethylcytosine (5-hmC), an epigenetic marker of open chromatin and active gene expression, are correlated with metastatic disease burden in patients with neuroblastoma. Neuroblastoma tumors are comprised of adrenergic (ADRN) and mesenchymal (MES) cells, and the relative abundance of each in tumor biopsies has prognostic implications. We hypothesized that ADRN and MES specific signatures could be quantified in cfDNA 5-hmC profiles and would augment the detection of metastatic burden in patients with neuroblastoma. Methods We previously performed an integrative analysis to identify ADRN and MES specific genes (n=373 and n=159, respectively). Purified DNA from cell lines was serial diluted with healthy donor cfDNA. Using Gene Set Variation Analysis (GSVA), ADRN and MES signatures were optimized. We then quantified signature scores, and our prior neuroblastoma signature, in cfDNA from 84 samples from 46 high-risk patients including 21 patients with serial samples. Results Samples from patients with higher metastatic burden had increased GSVA scores for both ADRN and MES gene signatures (p < 0.001). While ADRN and MES signature scores tracked together in serially collected samples, we identified instances of patients with increases in either MES or ADRN score at relapse. Conclusions While it is feasible to identify ADRN and MES signatures using 5-hmC profiles of cfDNA from neuroblastoma patients and correlate these signatures to metastatic burden, additional data are needed to determine the optimal strategies for clinical implementation. Prospective evaluation in larger cohorts is ongoing.
Collapse
|
11
|
Xu C, Li C, Chen J, Xiong Y, Qiao Z, Fan P, Li C, Ma S, Liu J, Song A, Tao B, Xu T, Xu W, Chi Y, Xue J, Wang P, Ye D, Gu H, Zhang P, Wang Q, Xiao R, Cheng J, Zheng H, Yu X, Zhang Z, Wu J, Liang K, Liu YJ, Lu H, Chen FX. R-loop-dependent promoter-proximal termination ensures genome stability. Nature 2023; 621:610-619. [PMID: 37557913 PMCID: PMC10511320 DOI: 10.1038/s41586-023-06515-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 08/03/2023] [Indexed: 08/11/2023]
Abstract
The proper regulation of transcription is essential for maintaining genome integrity and executing other downstream cellular functions1,2. Here we identify a stable association between the genome-stability regulator sensor of single-stranded DNA (SOSS)3 and the transcription regulator Integrator-PP2A (INTAC)4-6. Through SSB1-mediated recognition of single-stranded DNA, SOSS-INTAC stimulates promoter-proximal termination of transcription and attenuates R-loops associated with paused RNA polymerase II to prevent R-loop-induced genome instability. SOSS-INTAC-dependent attenuation of R-loops is enhanced by the ability of SSB1 to form liquid-like condensates. Deletion of NABP2 (encoding SSB1) or introduction of cancer-associated mutations into its intrinsically disordered region leads to a pervasive accumulation of R-loops, highlighting a genome surveillance function of SOSS-INTAC that enables timely termination of transcription at promoters to constrain R-loop accumulation and ensure genome stability.
Collapse
Affiliation(s)
- Congling Xu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, Human Phenome Institute, Fudan University, Shanghai, China
| | - Chengyu Li
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jiwei Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, Human Phenome Institute, Fudan University, Shanghai, China
| | - Yan Xiong
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, Human Phenome Institute, Fudan University, Shanghai, China
| | - Zhibin Qiao
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, Human Phenome Institute, Fudan University, Shanghai, China
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Pengyu Fan
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, Human Phenome Institute, Fudan University, Shanghai, China
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Conghui Li
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Shuangyu Ma
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Liu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, Human Phenome Institute, Fudan University, Shanghai, China
| | - Aixia Song
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, Human Phenome Institute, Fudan University, Shanghai, China
| | - Bolin Tao
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, Human Phenome Institute, Fudan University, Shanghai, China
| | - Tao Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Wei Xu
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yayun Chi
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jingyan Xue
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Pu Wang
- Huashan Hospital, Fudan University, Shanghai Key Laboratory of Medical Epigenetics, Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Dan Ye
- Huashan Hospital, Fudan University, Shanghai Key Laboratory of Medical Epigenetics, Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Hongzhou Gu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, Human Phenome Institute, Fudan University, Shanghai, China
| | - Peng Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qiong Wang
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruijing Xiao
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jingdong Cheng
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, Human Phenome Institute, Fudan University, Shanghai, China
| | - Hai Zheng
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, Human Phenome Institute, Fudan University, Shanghai, China
| | - Xiaoli Yu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Zhen Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Jiong Wu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Kaiwei Liang
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yan-Jun Liu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, Human Phenome Institute, Fudan University, Shanghai, China
| | - Huasong Lu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.
| | - Fei Xavier Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, Human Phenome Institute, Fudan University, Shanghai, China.
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.
| |
Collapse
|
12
|
Ross MO, Xie Y, Owyang RC, Ye C, Zbihley ONP, Lyu R, Wu T, Wang P, Karginova O, Olopade OI, Zhao M, He C. PTPN2 copper-sensing rapidly relays copper level fluctuations into EGFR/CREB activation and associated CTR1 transcriptional repression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.29.555401. [PMID: 37693440 PMCID: PMC10491225 DOI: 10.1101/2023.08.29.555401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Fluxes in human intra- and extracellular copper levels recently garnered attention for roles in cellular signaling, including affecting levels of the signaling molecule cyclic adenosine monophosphate (cAMP). We herein applied an unbiased temporal evaluation of the whole-genome transcriptional activities modulated by fluctuations in copper levels to identify the copper sensor proteins responsible for driving these activities. We found that fluctuations in physiologically-relevant copper levels rapidly modulate EGFR/MAPK/ERK signal transduction and activation of the transcription factor cAMP response element-binding protein (CREB). Both intracellular and extracellular assays support Cu 1+ inhibition of the EGFR-phosphatase PTPN2 (and potentially the homologous PTPN1)-via direct ligation to the PTPN2 active site cysteine side chain-as the underlying mechanism of copper-stimulated EGFR signal transduction activation. Depletion of copper represses this signaling pathway. We additionally show i ) copper supplementation drives transcriptional repression of the copper importer CTR1 and ii ) CREB activity is inversely correlated with CTR1 expression. In summary, our study reveals PTPN2 as a physiological copper sensor and defines a regulatory mechanism linking feedback control of copper-stimulated MAPK/ERK/CREB-signaling and CTR1 expression, thereby uncovering a previously unrecognized link between copper levels and cellular signal transduction.
Collapse
|
13
|
Chennakesavalu M, Moore K, Chaves G, Veeravalli S, TerHaar R, Wu T, Lyu R, Chlenski A, He C, Piunti A, Applebaum MA. 5-hydroxymethylcytosine profiling of cell-free DNA identifies bivalent genes that are prognostic of survival in high-risk neuroblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.27.538309. [PMID: 37163024 PMCID: PMC10168384 DOI: 10.1101/2023.04.27.538309] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Neuroblastoma is the most common extra-cranial solid tumor in childhood and epigenetic dysregulation is a key driver of this embryonal disease. In cell-free DNA from neuroblastoma patients with high-risk disease, we found increased 5-hydroxymethylcytosine (5-hmC) deposition on Polycomb Repressive Complex 2 (PRC2) target genes, a finding previously described in the context of bivalent genes. As bivalent genes, defined as genes bearing both activating (H3K4me3) and repressive (H3K27me3) chromatin modifications, have been shown to play an important role in development and cancer, we investigated the potential role of bivalent genes in maintaining a de-differentiated state in neuroblastoma and their potential use as a biomarker. We identified 313 genes that bore bivalent chromatin marks, were enriched for mediators of neuronal differentiation, and were transcriptionally repressed across a panel of heterogenous neuroblastoma cell lines. Through gene set variance analysis, we developed a clinically implementable bivalent signature. In three distinct clinical cohorts, low bivalent signature was significantly and independently associated with worse clinical outcome in high-risk neuroblastoma patients. Thus, low expression of bivalent genes is a biomarker of ultra-high-risk disease and may represent a therapeutic opportunity in neuroblastoma.
Collapse
|
14
|
Makova KD, Weissensteiner MH. Noncanonical DNA structures are drivers of genome evolution. Trends Genet 2023; 39:109-124. [PMID: 36604282 PMCID: PMC9877202 DOI: 10.1016/j.tig.2022.11.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/04/2022] [Accepted: 11/28/2022] [Indexed: 01/05/2023]
Abstract
In addition to the canonical right-handed double helix, other DNA structures, termed 'non-B DNA', can form in the genomes across the tree of life. Non-B DNA regulates multiple cellular processes, including replication and transcription, yet its presence is associated with elevated mutagenicity and genome instability. These discordant cellular roles fuel the enormous potential of non-B DNA to drive genomic and phenotypic evolution. Here we discuss recent studies establishing non-B DNA structures as novel functional elements subject to natural selection, affecting evolution of transposable elements (TEs), and specifying centromeres. By highlighting the contributions of non-B DNA to repeated evolution and adaptation to changing environments, we conclude that evolutionary analyses should include a perspective of not only DNA sequence, but also its structure.
Collapse
Affiliation(s)
- Kateryna D Makova
- Department of Biology, Penn State University, 310 Wartik Laboratory, University Park, PA 16802, USA.
| | | |
Collapse
|
15
|
Wu T, Lyu R, He C. spKAS-seq reveals R-loop dynamics using low-input materials by detecting single-stranded DNA with strand specificity. SCIENCE ADVANCES 2022; 8:eabq2166. [PMID: 36449625 PMCID: PMC9710868 DOI: 10.1126/sciadv.abq2166] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 10/13/2022] [Indexed: 05/26/2023]
Abstract
R-loops affect transcription and genome stability. Dysregulation of R-loops is related to human diseases. Genome-wide R-loop mapping typically uses the S9.6 antibody or inactive ribonuclease H, both requiring a large number of cells with varying results observed depending on the approach applied. Here, we present strand-specific kethoxal-assisted single-stranded DNA (ssDNA) sequencing (spKAS-seq) to map R-loops by taking advantage of the presence of a ssDNA in the triplex structure. We show that spKAS-seq detects R-loops and their dynamics at coding sequences, enhancers, and other intergenic regions with as few as 50,000 cells. A joint analysis of R-loops and chromatin-bound RNA binding proteins (RBPs) suggested that R-loops can be RBP binding hotspots on the chromatin.
Collapse
Affiliation(s)
- Tong Wu
- Department of Chemistry, University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, University of Chicago, Chicago, IL, USA
| | - Ruitu Lyu
- Department of Chemistry, University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, University of Chicago, Chicago, IL, USA
| | - Chuan He
- Department of Chemistry, University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, University of Chicago, Chicago, IL, USA
- Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
| |
Collapse
|
16
|
Masnovo C, Lobo AF, Mirkin SM. Replication dependent and independent mechanisms of GAA repeat instability. DNA Repair (Amst) 2022; 118:103385. [PMID: 35952488 PMCID: PMC9675320 DOI: 10.1016/j.dnarep.2022.103385] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 11/20/2022]
Abstract
Trinucleotide repeat instability is a driver of human disease. Large expansions of (GAA)n repeats in the first intron of the FXN gene are the cause Friedreich's ataxia (FRDA), a progressive degenerative disorder which cannot yet be prevented or treated. (GAA)n repeat instability arises during both replication-dependent processes, such as cell division and intergenerational transmission, as well as in terminally differentiated somatic tissues. Here, we provide a brief historical overview on the discovery of (GAA)n repeat expansions and their association to FRDA, followed by recent advances in the identification of triplex H-DNA formation and replication fork stalling. The main body of this review focuses on the last decade of progress in understanding the mechanism of (GAA)n repeat instability during DNA replication and/or DNA repair. We propose that the discovery of additional mechanisms of (GAA)n repeat instability can be achieved via both comparative approaches to other repeat expansion diseases and genome-wide association studies. Finally, we discuss the advances towards FRDA prevention or amelioration that specifically target (GAA)n repeat expansions.
Collapse
Affiliation(s)
- Chiara Masnovo
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Ayesha F Lobo
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|