1
|
Niu D, Zhao Q, Xu L, Lin K. Physiological and Molecular Mechanisms of Lepidopteran Insects: Genomic Insights and Applications of Genome Editing for Future Research. Int J Mol Sci 2024; 25:12360. [PMID: 39596426 PMCID: PMC11594828 DOI: 10.3390/ijms252212360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/12/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
Lepidopteran insects are a major threat to global agriculture, causing significant crop losses and economic damage. Traditional pest control methods are becoming less effective due to the rapid evolution of insecticide resistance. This study explores the current status and genomic characteristics of 1315 Lepidopteran records, alongside an overview of relevant research, utilizing advanced functional genomics techniques, including RNA-seq and CRISPR/Cas9 gene-editing technologies to uncover the molecular mechanisms underlying insecticide resistance. Our genomic analysis revealed significant variability in genome size, assembly quality, and chromosome number, which may influence species' biology and resistance mechanisms. We identified key resistance-associated genes and pathways, including detoxification and metabolic pathways, which help these insects evade chemical control. By employing CRISPR/Cas9 gene-editing techniques, we directly manipulated resistance-associated genes to confirm their roles in resistance, demonstrating their potential for targeted interventions in pest management. These findings emphasize the value of integrating genomic data into the development of effective and sustainable pest control strategies, reducing reliance on chemical insecticides and promoting environmentally friendly integrated pest management (IPM) approaches. Our study highlights the critical role of functional genomics in IPM and its potential to provide long-term solutions to the growing challenge of Lepidopteran resistance.
Collapse
Affiliation(s)
- Dongsheng Niu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010000, China; (D.N.); (Q.Z.)
- Inner Mongolia-CABI Joint Laboratory for Grassland Protection and Sustainable Utilization, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
- Inner Mongolia Key Laboratory of Grassland Protection Ecology, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
| | - Qing Zhao
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010000, China; (D.N.); (Q.Z.)
- Inner Mongolia-CABI Joint Laboratory for Grassland Protection and Sustainable Utilization, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
- Inner Mongolia Key Laboratory of Grassland Protection Ecology, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
| | - Linbo Xu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010000, China; (D.N.); (Q.Z.)
- Inner Mongolia-CABI Joint Laboratory for Grassland Protection and Sustainable Utilization, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
- Inner Mongolia Key Laboratory of Grassland Protection Ecology, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
| | - Kejian Lin
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010000, China; (D.N.); (Q.Z.)
- Inner Mongolia-CABI Joint Laboratory for Grassland Protection and Sustainable Utilization, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
- Key Laboratory of Biohazard Monitoring, Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
- Inner Mongolia Key Laboratory of Grassland Protection Ecology, Chinese Academy of Agricultural Sciences, Hohhot 010000, China
| |
Collapse
|
2
|
Wang S, Li H, Shi R, Fu Y. Symbiont-mediated antisense RNA delivery controls Nosema ceranae infections in Apis mellifera. J Invertebr Pathol 2024; 207:108185. [PMID: 39242021 DOI: 10.1016/j.jip.2024.108185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
Nosema ceranae is a main parasite for honeybees (Apis mellifera) which causes colony collapse in spring. Effective management of N. ceranae infections in bees is imperative for beekeepers. RNA interference (RNAi) has been proven a promising method to control bee pathogens, including IAPV, Varroa destructor, and Nosema. Most studies in this field focused on oral inoculation of double-stranded RNA (dsRNA). We developed an easier method with long-term RNAi effects by engineering the bee symbiont, Bacillus subtilis, to deliver single-stranded antisense RNA (asRNA) in the bee guts, targeting N. ceranae genes. We interfered with the expression of a spore wall protein (SWP12) and a polar tube protein (PTP3) of N. ceranae, resulting in a 60.5% increase in bee lifespan and a 72.7% decrease in Nosema spore load. Our research introduced a novel approach to bee parasite control: B. subtilis-mediated asRNA delivery. Our strategy simplifies the procedure of RNAi, presenting a more efficient mechanism with both prophylactic and therapeutic effects on N. ceranae-infected bees.
Collapse
Affiliation(s)
- Sihan Wang
- Hangzhou Foreign Language School, Hangzhou, Zhejiang, China
| | - Haoyang Li
- Department of Biochemistry, Emory University, Atlanta, GA, USA
| | - Ruyi Shi
- Hangzhou Sipu Edu & Tech Co., Ltd., Hangzhou, Zhejiang, China
| | - Yuqi Fu
- Hangzhou Sipu Edu & Tech Co., Ltd., Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Motta EVS, Lariviere PJ, Jones KR, Song Y, Moran NA. Type VI secretion systems promote intraspecific competition and host interactions in a bee gut symbiont. Proc Natl Acad Sci U S A 2024; 121:e2414882121. [PMID: 39441627 PMCID: PMC11536156 DOI: 10.1073/pnas.2414882121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
The Type VI Secretion System (T6SS) is a sophisticated mechanism utilized by gram-negative bacteria to deliver toxic effector proteins into target cells, influencing microbial community dynamics and host interactions. In this study, we investigated the role of T6SSs in Snodgrassella alvi wkB2, a core bacterial symbiont of the honey bee gut microbiota. We generated single- and double-knockout mutants targeting essential genes (tssD and tssE) in both T6SS-1 and T6SS-2 and assessed their colonization and competition capabilities in vivo. Our results indicate that T6SSs are nonessential for colonization of the bee gut, although T6SS-2 mutant strains exhibited significantly lower colonization levels compared to the wild-type (WT) strain. Further, a defined community experiment showed that S. alvi wkB2 T6SSs do not significantly impact interspecific competition among core gut bacteria. However, cocolonization experiments with closely related S. alvi strains demonstrated that T6SS-1 plays a role in mediating intraspecific competition. Transcriptomic analysis of bee guts monocolonized by WT or T6SS mutants revealed differential expression of host immunity-related genes relative to microbiota-deprived bees, such as upregulation of the antimicrobial peptide apidaecin in the presence of WT S. alvi and the antimicrobial peptide defensin in the presence of T6SS-2 mutant S. alvi, suggesting that T6SSs contribute to shaping host immune responses. These findings provide insight into the ecological roles of T6SSs in the honey bee gut microbiota, emphasizing their importance in maintaining competitive dynamics and influencing host-bacterial interactions.
Collapse
Affiliation(s)
- Erick V. S. Motta
- Department of Integrative Biology, The University of Texas at Austin, TX78712
- Department of Entomology, Texas A&M University, College Station, TX77843
| | - Patrick J. Lariviere
- Department of Integrative Biology, The University of Texas at Austin, TX78712
- Department of Molecular Biosciences, The University of Texas at Austin, TX78712
| | - Korin R. Jones
- Department of Integrative Biology, The University of Texas at Austin, TX78712
| | - Yulin Song
- Department of Integrative Biology, The University of Texas at Austin, TX78712
| | - Nancy A. Moran
- Department of Integrative Biology, The University of Texas at Austin, TX78712
| |
Collapse
|
4
|
Lariviere PJ, Ashraf AHMZ, Gifford I, Tanguma SL, Barrick JE, Moran NA. Virulence-linked adhesin drives mutualist colonization of the bee gut via biofilm formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618124. [PMID: 39464101 PMCID: PMC11507737 DOI: 10.1101/2024.10.14.618124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Bacterial biofilms are stable multicellular structures that can enable long term host association. Yet, the role of biofilms in supporting gut mutualism is still not fully understood. Here, we investigate Snodgrassella alvi, a beneficial bacterial symbiont of honey bees, and find that biofilm formation is required for its colonization of the bee gut. We constructed fifteen S. alvi mutants containing knockouts of genes known to promote colonization with putative roles in biofilm formation. Genes required for colonization included staA and staB, encoding trimeric autotransporter adhesins (TAAs) and mltA, encoding a lytic transglycosylase. Intriguingly, TAAs are considered virulence factors in pathogens but support mutualism by the symbiont S. alvi. In vitro, biofilm formation was reduced in ΔstaB cells and abolished in the other two mutants. Loss of staA also reduced auto-aggregation and cell-cell connections. Based on structural predictions, StaA/B are massive (>300 nm) TAAs with many repeats in their stalk regions. Further, we find that StaA/B are conserved across Snodgrassella species, suggesting that StaA/B-dependent colonization is characteristic of this symbiont lineage. Finally, staA deletion increases sensitivity to bactericidal antimicrobials, suggesting that the biofilm indirectly buffers against antibiotic stress. In all, the inability of two biofilm-deficient strains (ΔstaA and ΔmltA) to effectively mono-colonize bees indicates that S. alvi biofilm formation is required for colonization of the bee gut. We envision the bee gut system as a genetically tractable model for studying the physical basis of biofilm-mutualist-gut interactions.
Collapse
Affiliation(s)
- Patrick J. Lariviere
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - A. H. M. Zuberi Ashraf
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Isaac Gifford
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Sylvia L. Tanguma
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jeffrey E. Barrick
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Nancy A. Moran
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
5
|
Lariviere PJ, Ashraf AHMZ, Navarro-Escalante L, Leonard SP, Miller LG, Moran NA, Barrick JE. One-step genome engineering in bee gut bacterial symbionts. mBio 2024; 15:e0139224. [PMID: 39105596 PMCID: PMC11389375 DOI: 10.1128/mbio.01392-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/24/2024] [Indexed: 08/07/2024] Open
Abstract
Mechanistic understanding of interactions in many host-microbe systems, including the honey bee microbiome, is limited by a lack of easy-to-use genome engineering approaches. To this end, we demonstrate a one-step genome engineering approach for making gene deletions and insertions in the chromosomes of honey bee gut bacterial symbionts. Electroporation of linear or non-replicating plasmid DNA containing an antibiotic resistance cassette flanked by regions with homology to a symbiont genome reliably results in chromosomal integration. This lightweight approach does not require expressing any exogenous recombination machinery. The high concentrations of large DNAs with long homology regions needed to make the process efficient can be readily produced using modern DNA synthesis and assembly methods. We use this approach to knock out genes, including genes involved in biofilm formation, and insert fluorescent protein genes into the chromosome of the betaproteobacterial bee gut symbiont Snodgrassella alvi. We are also able to engineer the genomes of multiple strains of S. alvi and another species, Snodgrassella communis, which is found in the bumble bee gut microbiome. Finally, we use the same method to engineer the chromosome of another bee symbiont, Bartonella apis, which is an alphaproteobacterium. As expected, gene knockout in S. alvi using this approach is recA-dependent, suggesting that this straightforward procedure can be applied to other microbes that lack convenient genome engineering methods. IMPORTANCE Honey bees are ecologically and economically important crop pollinators with bacterial gut symbionts that influence their health. Microbiome-based strategies for studying or improving bee health have utilized wild-type or plasmid-engineered bacteria. We demonstrate that a straightforward, single-step method can be used to insert cassettes and replace genes in the chromosomes of multiple bee gut bacteria. This method can be used for investigating the mechanisms of host-microbe interactions in the bee gut community and stably engineering symbionts that benefit pollinator health.
Collapse
Affiliation(s)
- Patrick J Lariviere
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - A H M Zuberi Ashraf
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | | | - Sean P Leonard
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Laurel G Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Nancy A Moran
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Jeffrey E Barrick
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
6
|
Parrella P, Elikan AB, Snow JW. Pathogen- and host-directed pharmacologic strategies for control of Vairimorpha (Nosema) spp. infection in honey bees. J Eukaryot Microbiol 2024; 71:e13026. [PMID: 38572630 DOI: 10.1111/jeu.13026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/07/2024] [Indexed: 04/05/2024]
Abstract
Microsporidia are obligate intracellular parasites of the Fungal Kingdom that cause widespread infections in nature, with important effects on invertebrates involved in food production systems. The two microsporidian species Vairimorpha (Nosema) ceranae (and the less common Vairimorpha (Nosema) apis) can cause individual disease in honey bees and contribute to colony collapse. The efficacy, safety, and availability of fumagillin, the only drug currently approved to treat microsporidia infection in bees, is uncertain. In this review, we will discuss some of the most promising alternative strategies for the mitigation of Vairimorpha spp. with an emphasis on infection by V. ceranae, now the dominant species infecting bees. We will focus on pharmacologic interventions where the mechanism of action is known and examine both pathogen-directed and host-directed approaches. As limiting toxicity to host cells has been especially emphasized in treating bees that are already facing numerous stressors, strategies that disrupt pathogen-specific targets may be especially advantageous. Therefore, efforts to increase the knowledge and tools for facilitating the discovery of such targets and pharmacologic agents directed against them should be prioritized.
Collapse
Affiliation(s)
- Parker Parrella
- Department of Biology, Barnard College, New York, New York, USA
| | | | - Jonathan W Snow
- Department of Biology, Barnard College, New York, New York, USA
| |
Collapse
|
7
|
Foster LJ, Tsvetkov N, McAfee A. Mechanisms of Pathogen and Pesticide Resistance in Honey Bees. Physiology (Bethesda) 2024; 39:0. [PMID: 38411571 PMCID: PMC11368521 DOI: 10.1152/physiol.00033.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024] Open
Abstract
Bees are the most important insect pollinators of the crops humans grow, and Apis mellifera, the Western honey bee, is the most commonly managed species for this purpose. In addition to providing agricultural services, the complex biology of honey bees has been the subject of scientific study since the 18th century, and the intricate behaviors of honey bees and ants, fellow hymenopterans, inspired much sociobiological inquest. Unfortunately, honey bees are constantly exposed to parasites, pathogens, and xenobiotics, all of which pose threats to their health. Despite our curiosity about and dependence on honey bees, defining the molecular mechanisms underlying their interactions with biotic and abiotic stressors has been challenging. The very aspects of their physiology and behavior that make them so important to agriculture also make them challenging to study, relative to canonical model organisms. However, because we rely on A. mellifera so much for pollination, we must continue our efforts to understand what ails them. Here, we review major advancements in our knowledge of honey bee physiology, focusing on immunity and detoxification, and highlight some challenges that remain.
Collapse
Affiliation(s)
- Leonard J Foster
- Department of Biochemistry and Molecular Biology and Michael Smith LaboratoriesUniversity of British Columbia, Vancouver, British Columbia, Canada
| | - Nadejda Tsvetkov
- Department of Biochemistry and Molecular Biology and Michael Smith LaboratoriesUniversity of British Columbia, Vancouver, British Columbia, Canada
| | - Alison McAfee
- Department of Biochemistry and Molecular Biology and Michael Smith LaboratoriesUniversity of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
8
|
Tadano H, Kohno H, Takeuchi H, Kubo T. Unique spatially and temporary-regulated/sex-specific expression of a long ncRNA, Nb-1, suggesting its pleiotropic functions associated with honey bee lifecycle. Sci Rep 2024; 14:8701. [PMID: 38622193 PMCID: PMC11018616 DOI: 10.1038/s41598-024-59494-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/11/2024] [Indexed: 04/17/2024] Open
Abstract
Honey bees are social insects, and each colony member has unique morphological and physiological traits associated with their social tasks. Previously, we identified a long non-coding RNA from honey bees, termed Nb-1, whose expression in the brain decreases associated with the age-polyethism of workers and is detected in some neurosecretory cells and octopaminergic neurons, suggesting its role in the regulation of worker labor transition. Herein, we investigated its spatially and temporary-regulated/sex-specific expression. Nb-1 was expressed as an abundant maternal RNA during oogenesis and embryogenesis in both sexes. In addition, Nb-1 was expressed preferentially in the proliferating neuroblasts of the mushroom bodies (a higher-order center of the insect brain) in the pupal brains, suggesting its role in embryogenesis and mushroom body development. On the contrary, Nb-1 was expressed in a drone-specific manner in the pupal and adult retina, suggesting its role in the drone visual development and/or sense. Subcellular localization of Nb-1 in the brain during development differed depending on the cell type. Considering that Nb-1 is conserved only in Apidae, our findings suggest that Nb-1 potentially has pleiotropic functions in the expression of multiple developmental, behavioral, and physiological traits, which are closely associated with the honey bee lifecycle.
Collapse
Affiliation(s)
- Hiroto Tadano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroki Kohno
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hideaki Takeuchi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| | - Takeo Kubo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
9
|
Motta EVS, Moran NA. The honeybee microbiota and its impact on health and disease. Nat Rev Microbiol 2024; 22:122-137. [PMID: 38049554 PMCID: PMC10998682 DOI: 10.1038/s41579-023-00990-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 12/06/2023]
Abstract
Honeybees (Apis mellifera) are key pollinators that support global agriculture and are long-established models for developmental and behavioural research. Recently, they have emerged as models for studying gut microbial communities. Earlier research established that hindguts of adult worker bees harbour a conserved set of host-restricted bacterial species, each showing extensive strain variation. These bacteria can be cultured axenically and introduced to gnotobiotic hosts, and some have basic genetic tools available. In this Review, we explore the most recent research showing how the microbiota establishes itself in the gut and impacts bee biology and health. Microbiota members occupy specific niches within the gut where they interact with each other and the host. They engage in cross-feeding and antagonistic interactions, which likely contribute to the stability of the community and prevent pathogen invasion. An intact gut microbiota provides protection against diverse pathogens and parasites and contributes to the processing of refractory components of the pollen coat and dietary toxins. Absence or disruption of the microbiota results in altered expression of genes that underlie immunity, metabolism, behaviour and development. In the field, such disruption by agrochemicals may negatively impact bees. These findings demonstrate a key developmental and protective role of the microbiota, with broad implications for bee health.
Collapse
Affiliation(s)
- Erick V S Motta
- Department of Integrative Biology, University of Texas, Austin, TX, USA
| | - Nancy A Moran
- Department of Integrative Biology, University of Texas, Austin, TX, USA.
| |
Collapse
|
10
|
Zhang TY, Gong CW, Pu J, Peng AC, Li XY, Wang YM, Wang XG. Enhancement of tolerance against flonicamid in Solenopsis invicta (Hymenoptera: Formicidae) through overexpression of CYP6A14. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105651. [PMID: 38072526 DOI: 10.1016/j.pestbp.2023.105651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/04/2023] [Accepted: 10/15/2023] [Indexed: 12/18/2023]
Abstract
Solenopsis invicta is a main issue in southern China and is causing significant damage to the local ecological environment. The extensive use of insecticides has resulted in the development of tolerance in S. invicta. In our study, ten S. invicta colonies from Sichuan Province exhibited varying degrees of tolerance against flonicamid, with LC50 values from 0.49 mg/L to 8.54 mg/L. The sensitivity of S. invicta to flonicamid significantly increased after treatment with the P450 enzyme inhibitor piperonyl butoxide (PBO). Additionally, the activity of P450 in S. invicta was significantly enhanced after being treated with flonicamid. Flonicamid induced the expression levels of CYP4aa1, CYP9e2, CYP4C1, and CYP6A14. The expression levels of these P450 genes were significantly higher in the tolerant colonies compared to the sensitive colonies, and the relative copy numbers of CYP6A14 in the tolerant colonies were 2.01-2.15 fold. RNAi feeding treatment effectively inhibited the expression of P450 genes, thereby reducing the tolerance of S. invicta against flonicamid. In addition, the overexpression of CYP6A14 in D. melanogaster resulted in reduced sensitivity to flonicamid. Our investigations revealed hydrophobic interactions between flonicamid and seven amino acid residues of CYP6A14, along with the formation of a hydrogen bond between Glu306 and flonicamid. Our findings suggest that flonicamid can effectively control S. invicta and P450 plays a pivotal role in the tolerance of S. invicta against flonicamid. The overexpression of CYP6A14 also increased tolerance to flonicamid.
Collapse
Affiliation(s)
- Tian-Yi Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Chang-Wei Gong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jian Pu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - An-Chun Peng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xu-Yang Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yu-Meng Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xue-Gui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; College of Agriculture, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
11
|
Cheatle Jarvela AM, Wexler JR. Advances in genome sequencing reveal changes in gene content that contribute to arthropod macroevolution. Dev Genes Evol 2023; 233:59-76. [PMID: 37982820 DOI: 10.1007/s00427-023-00712-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/05/2023] [Indexed: 11/21/2023]
Abstract
Current sequencing technology allows for the relatively affordable generation of highly contiguous genomes. Technological advances have made it possible for researchers to investigate the consequences of diverse sorts of genomic variants, such as gene gain and loss. With the extraordinary number of high-quality genomes now available, we take stock of how these genomic variants impact phenotypic evolution. We take care to point out that the identification of genomic variants of interest is only the first step in understanding their impact. Painstaking lab or fieldwork is still required to establish causal relationships between genomic variants and phenotypic evolution. We focus mostly on arthropod research, as this phylum has an impressive degree of phenotypic diversity and is also the subject of much evolutionary genetics research. This article is intended to both highlight recent advances in the field and also to be a primer for learning about evolutionary genetics and genomics.
Collapse
Affiliation(s)
- Alys M Cheatle Jarvela
- Department of Entomology, University of Maryland, College Park, MD, USA.
- HHMI Janelia Research Campus, Ashburn, VA, USA.
| | - Judith R Wexler
- Department of Ecology, Evolution, and Behavior, The Hebrew University in Jerusalem, Jerusalem, Israel.
| |
Collapse
|
12
|
Lange C, Boyer S, Bezemer TM, Lefort MC, Dhami MK, Biggs E, Groenteman R, Fowler SV, Paynter Q, Verdecia Mogena AM, Kaltenpoth M. Impact of intraspecific variation in insect microbiomes on host phenotype and evolution. THE ISME JOURNAL 2023; 17:1798-1807. [PMID: 37660231 PMCID: PMC10579242 DOI: 10.1038/s41396-023-01500-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/04/2023]
Abstract
Microbes can be an important source of phenotypic plasticity in insects. Insect physiology, behaviour, and ecology are influenced by individual variation in the microbial communities held within the insect gut, reproductive organs, bacteriome, and other tissues. It is becoming increasingly clear how important the insect microbiome is for insect fitness, expansion into novel ecological niches, and novel environments. These investigations have garnered heightened interest recently, yet a comprehensive understanding of how intraspecific variation in the assembly and function of these insect-associated microbial communities can shape the plasticity of insects is still lacking. Most research focuses on the core microbiome associated with a species of interest and ignores intraspecific variation. We argue that microbiome variation among insects can be an important driver of evolution, and we provide examples showing how such variation can influence fitness and health of insects, insect invasions, their persistence in new environments, and their responses to global environmental changes. A and B are two stages of an individual or a population of the same species. The drivers lead to a shift in the insect associated microbial community, which has consequences for the host. The complex interplay of those consequences affects insect adaptation and evolution and influences insect population resilience or invasion.
Collapse
Affiliation(s)
- Claudia Lange
- Manaaki Whenua Landcare Research, Lincoln, New Zealand.
| | - Stéphane Boyer
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS - Université de Tours, Tours, France
| | - T Martijn Bezemer
- Above-Belowground Interactions Group, Institute of Biology, Leiden University, Leiden, The Netherlands
| | | | | | - Eva Biggs
- Manaaki Whenua Landcare Research, Lincoln, New Zealand
| | | | | | | | | | - Martin Kaltenpoth
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
13
|
Luo X, Fang G, Chen K, Song Y, Lu T, Tomberlin JK, Zhan S, Huang Y. A gut commensal bacterium promotes black soldier fly larval growth and development partly via modulation of intestinal protein metabolism. mBio 2023; 14:e0117423. [PMID: 37706881 PMCID: PMC10653789 DOI: 10.1128/mbio.01174-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 06/22/2023] [Indexed: 09/15/2023] Open
Abstract
IMPORTANCE Black solider fly larvae and the gut microbiota can recycle nutrients from various organic wastes into valuable insect biomass. We found that Citrobacter amalonaticus, a gut commensal bacterium of the insect, exerts beneficial effects on larval growth and development and that the expression of many metabolic larval genes was significantly impacted by the symbiont. To identify the larval genes involved in the host-symbiont interaction, we engineered the symbiont to produce double-strand RNA and enabled the strain to silence host genes in the larval gut environment where the interaction takes place. With this approach, we confirmed that two intestinal protease families are involved in the interaction and provided further evidence that intestinal protein metabolism plays a role in the interaction. This work expands the genetic toolkits available to study the insect functional genomics and host-symbiont interaction and provide the prospective for the future application of gut microbiota on the large-scale bioconversion.
Collapse
Affiliation(s)
- Xingyu Luo
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Gangqi Fang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Kuangqin Chen
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yu Song
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tianyi Lu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | | | - Shuai Zhan
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yongping Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
14
|
Zhang Y, Zhang S, Xu L. The pivotal roles of gut microbiota in insect plant interactions for sustainable pest management. NPJ Biofilms Microbiomes 2023; 9:66. [PMID: 37735530 PMCID: PMC10514296 DOI: 10.1038/s41522-023-00435-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023] Open
Abstract
The gut microbiota serves as a critical "organ" in the life cycle of animals, particularly in the intricate interplay between herbivorous pests and plants. This review summarizes the pivotal functions of the gut microbiota in mediating the insect-plant interactions, encompassing their influence on host insects, modulation of plant physiology, and regulation of the third trophic level species within the ecological network. Given these significant functions, it is plausible to harness these interactions and their underlying mechanisms to develop novel eco-friendly pest control strategies. In this context, we also outline some emerging pest control methods based on the intestinal microbiota or bacteria-mediated interactions, such as symbiont-mediated RNAi and paratransgenesis, albeit these are still in their nascent stages and confront numerous challenges. Overall, both opportunities and challenges coexist in the exploration of the intestinal microbiota-mediated interactions between insect pests and plants, which will not only enrich the fundamental knowledge of plant-insect interactions but also facilitate the development of sustainable pest control strategies.
Collapse
Affiliation(s)
- Yuxin Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, 430062, Wuhan, China
| | - Shouke Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, 311300, Hangzhou, China.
| | - Letian Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, 430062, Wuhan, China.
| |
Collapse
|
15
|
Lariviere PJ, Ashraf AHMZ, Leonard SP, Miller LG, Moran NA, Barrick JE. Single-step genome engineering in the bee gut symbiont Snodgrassella alvi. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.19.558440. [PMID: 37786689 PMCID: PMC10541602 DOI: 10.1101/2023.09.19.558440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Honey bees are economically relevant pollinators experiencing population declines due to a number of threats. As in humans, the health of bees is influenced by their microbiome. The bacterium Snodgrassella alvi is a key member of the bee gut microbiome and has a role in excluding pathogens. Despite this importance, there are not currently any easy-to-use methods for modifying the S. alvi chromosome to study its genetics. To solve this problem, we developed a one-step procedure that uses electroporation and homologous recombination, which we term SnODIFY (Snodgrassella-specific One-step gene Deletion or Insertion to alter FunctionalitY). We used SnODIFY to create seven single-gene knockout mutants and recovered mutants for all constructs tested. Nearly all transformants had the designed genome modifications, indicating that SnODIFY is highly accurate. Mutant phenotypes were validated through knockout of Type 4 pilus genes, which led to reduced biofilm formation. We also used SnODIFY to insert heterologous sequences into the genome by integrating fluorescent protein-coding genes. Finally, we confirmed that genome modification is dependent on S. alvi's endogenous RecA protein. Because it does not require expression of exogenous recombination machinery, SnODIFY is a straightforward, accurate, and lightweight method for genome editing in S. alvi. This workflow can be used to study the functions of S. alvi genes and to engineer this symbiont for applications including protection of honey bee health.
Collapse
Affiliation(s)
- Patrick J. Lariviere
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - A. H. M. Zuberi Ashraf
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Sean P. Leonard
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Laurel G. Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Nancy A. Moran
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jeffrey E. Barrick
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
16
|
Lang H, Wang H, Wang H, Zhong Z, Xie X, Zhang W, Guo J, Meng L, Hu X, Zhang X, Zheng H. Engineered symbiotic bacteria interfering Nosema redox system inhibit microsporidia parasitism in honeybees. Nat Commun 2023; 14:2778. [PMID: 37210527 DOI: 10.1038/s41467-023-38498-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/05/2023] [Indexed: 05/22/2023] Open
Abstract
Nosema ceranae is an intracellular parasite invading the midgut of honeybees, which causes serious nosemosis implicated in honeybee colony losses worldwide. The core gut microbiota is involved in protecting against parasitism, and the genetically engineering of the native gut symbionts provides a novel and efficient way to fight pathogens. Here, using laboratory-generated bees mono-associated with gut members, we find that Snodgrassella alvi inhibit microsporidia proliferation, potentially via the stimulation of host oxidant-mediated immune response. Accordingly, N. ceranae employs the thioredoxin and glutathione systems to defend against oxidative stress and maintain a balanced redox equilibrium, which is essential for the infection process. We knock down the gene expression using nanoparticle-mediated RNA interference, which targets the γ-glutamyl-cysteine synthetase and thioredoxin reductase genes of microsporidia. It significantly reduces the spore load, confirming the importance of the antioxidant mechanism for the intracellular invasion of the N. ceranae parasite. Finally, we genetically modify the symbiotic S. alvi to deliver dsRNA corresponding to the genes involved in the redox system of the microsporidia. The engineered S. alvi induces RNA interference and represses parasite gene expression, thereby inhibits the parasitism significantly. Specifically, N. ceranae is most suppressed by the recombinant strain corresponding to the glutathione synthetase or by a mixture of bacteria expressing variable dsRNA. Our findings extend our previous understanding of the protection of gut symbionts against N. ceranae and provide a symbiont-mediated RNAi system for inhibiting microsporidia infection in honeybees.
Collapse
Affiliation(s)
- Haoyu Lang
- College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China
| | - Hao Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China
| | - Haoqing Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China
| | - Zhaopeng Zhong
- College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China
| | - Xianbing Xie
- Department of Laboratory Animal Science, Nanchang University, 330006, Nanchang, China
| | - Wenhao Zhang
- Faculty of Agriculture and Food, Kunming University of Science and Technology, 650031, Kunming, China
| | - Jun Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650031, Kunming, China
| | - Liang Meng
- BGI-Qingdao, BGI-Shenzhen, 266555, Qingdao, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China
| | - Xue Zhang
- College of Plant Protection, China Agricultural University, 100083, Beijing, China
| | - Hao Zheng
- College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China.
| |
Collapse
|
17
|
Elston KM, Maeda GP, Perreau J, Barrick JE. Addressing the challenges of symbiont-mediated RNAi in aphids. PeerJ 2023; 11:e14961. [PMID: 36874963 PMCID: PMC9983426 DOI: 10.7717/peerj.14961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/05/2023] [Indexed: 03/06/2023] Open
Abstract
Because aphids are global agricultural pests and models for bacterial endosymbiosis, there is a need for reliable methods to study and control their gene function. However, current methods available for aphid gene knockout and knockdown of gene expression are often unreliable and time consuming. Techniques like CRISPR-Cas genome editing can take several months to achieve a single gene knockout because they rely on aphids going through a cycle of sexual reproduction, and aphids often lack strong, consistent levels of knockdown when fed or injected with molecules that induce an RNA interference (RNAi) response. In the hopes of addressing these challenges, we attempted to adapt a new method called symbiont-mediated RNAi (smRNAi) for use in aphids. smRNAi involves engineering a bacterial symbiont of the insect to continuously supply double-stranded RNA (dsRNA) inside the insect body. This approach has been successful in thrips, kissing bugs, and honeybees. We engineered the laboratory Escherichia coli strain HT115 and the native aphid symbiont Serratia symbiotica CWBI-2.3T to produce dsRNA inside the gut of the pea aphid (Acyrthosiphon pisum) targeting salivary effector protein (C002) or ecdysone receptor genes. For C002 assays, we also tested co-knockdown with an aphid nuclease (Nuc1) to reduce RNA degradation. However, we found that smRNAi was not a reliable method for aphid gene knockdown under our conditions. We were unable to consistently achieve the expected phenotypic changes with either target. However, we did see indications that elements of the RNAi pathway were modestly upregulated, and expression of some targeted genes appeared to be somewhat reduced in some trials. We conclude with a discussion of the possible avenues through which smRNAi, and aphid RNAi in general, could be improved in the future.
Collapse
Affiliation(s)
- Katherine M Elston
- Department of Molecular Biosciences, The University of Texas, Austin, Texas, United States
| | - Gerald P Maeda
- Department of Integrative Biology, The University of Texas, Austin, Texas, United States
| | - Julie Perreau
- Department of Molecular Biosciences, The University of Texas, Austin, Texas, United States.,Department of Integrative Biology, The University of Texas, Austin, Texas, United States
| | - Jeffrey E Barrick
- Department of Molecular Biosciences, The University of Texas, Austin, Texas, United States
| |
Collapse
|