1
|
Wang B, Zhang R, Sun W, Yang J. A nearly telomere-to-telomere diploid genome assembly of Firmiana kwangsiensis, a threatened species in China. Sci Data 2024; 11:1394. [PMID: 39695221 DOI: 10.1038/s41597-024-04250-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/05/2024] [Indexed: 12/20/2024] Open
Abstract
Firmiana kwangsiensis is a tree species of high ornamental value. The species is critically endangered in the wild, and is listed as a first-class national protected wild plant in China, and a Plant Species with Extremely Small Populations in need of urgent protection. We have assembled a chromosome-scale, haplotype-resolved genome for F. kwangsiensis using a combination of PacBio HiFi sequencing, ONT sequencing, and Hi-C sequencing. The final assembled genome is 2.3 G in size and comprises 2n = 40 chromosomes. All chromosomal ends contain telomeric characteristic motifs (TTTAGGG), and there are only 2 gaps within the rDNA regions, both close to a T2T genome assembly. Two complete sets of haplotypes are present, Haplotype A (1169.19 Mb) and Haplotype B (1157.87 Mb), with contig N50 lengths of 58.37 Mb and 57.27 Mb, respectively. The genome contains a total of 67,527 coding genes, with 62,351 genes functionally annotated here. This is the first report of the genome of F. kwangsiensis, and lays the foundation for future conservation genomics research into this species.
Collapse
Affiliation(s)
- Boqiang Wang
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Rengang Zhang
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Weibang Sun
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
- University of Chinese Academy of Sciences, Beijing, 101408, China.
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
- Kunming Botanical Garden, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| | - Jing Yang
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
- University of Chinese Academy of Sciences, Beijing, 101408, China.
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
- Kunming Botanical Garden, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| |
Collapse
|
2
|
Luo L, Ye P, Lin Q, Liu M, Hao G, Wei T, Sahu SK. From sequences to sustainability: Exploring dipterocarp genomes for oleoresin production, timber quality, and conservation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112139. [PMID: 38838990 DOI: 10.1016/j.plantsci.2024.112139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/23/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
Dipterocarp species dominate tropical forest ecosystems and provide key ecological and economic value through their use of aromatic resins, medicinal chemicals, and high-quality timber. However, habitat loss and unsustainable logging have endangered many Dipterocarpaceae species. Genomic strategies provide new opportunities for both elucidating the molecular pathways underlying these desirable traits and informing conservation efforts for at-risk taxa. This review summarizes the progress in dipterocarp genomics analysis and applications. We describe 16 recently published Dipterocarpaceae genome sequences, representing crucial genetic blueprints. Phylogenetic comparisons delineate evolutionary relationships among species and provide frameworks for pinpointing functional changes underlying specialized metabolism and wood development patterns. We also discuss connections revealed thus far between specific gene families and both oleoresin biosynthesis and wood quality traits-including the identification of key terpenoid synthases and cellulose synthases likely governing pathway flux. Moreover, the characterization of adaptive genomic markers offers vital resources for supporting conservation practices prioritizing resilient genotypes displaying valuable oleoresin and timber traits. Overall, progress in dipterocarp functional and comparative genomics provides key tools for addressing the intertwined challenges of preserving biodiversity in endangered tropical forest ecosystems while sustainably deriving aromatic chemicals and quality lumber that support diverse human activities.
Collapse
Affiliation(s)
- Liuming Luo
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China; College of Life Science, South China Agricultural University, Guangzhou 510642, China
| | - Peng Ye
- College of Life Science, South China Agricultural University, Guangzhou 510642, China
| | - Qiongqiong Lin
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China; College of Life Science, South China Agricultural University, Guangzhou 510642, China
| | - Min Liu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China; BGI Research, Wuhan 430074, China
| | - Gang Hao
- College of Life Science, South China Agricultural University, Guangzhou 510642, China
| | - Tong Wei
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China; BGI Research, Wuhan 430074, China
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen 518083, China; BGI Research, Wuhan 430074, China.
| |
Collapse
|
3
|
Kwon JS, Shilpha J, Lee J, Yeom SI. Beyond NGS data sharing for plant ecological resilience and improvement of agronomic traits. Sci Data 2024; 11:466. [PMID: 38719829 PMCID: PMC11079010 DOI: 10.1038/s41597-024-03305-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024] Open
Abstract
Decoding complex plant omics is essential for advancing our understanding of plant biology, evolution, and breeding as well as for practical applications in agriculture, conservation, and biotechnology. The advent of Next-Generation Sequencing (NGS) has revolutionized global plant genomic research, offering high-throughput, cost-effective, and accurate methods for generating genomic data. However, challenges still exist that suggest an entirely unresolved genome characterized by high heterozygosity, extensive repetitive sequences, and complex ploidy features. In addition, individual investigation of genomic information from various genetic resources is essential for omics research, as there are differences in traits within a single breed beyond a species due to the uniqueness of sequence variation. This article provides high-quality genomic and transcriptomic insights targeted at the agronomical background.
Collapse
Affiliation(s)
- Ji-Su Kwon
- Department of Horticulture, Division of Applied Life Science (BK21 Four), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Korea
| | - Jayabalan Shilpha
- Department of Horticulture, Division of Applied Life Science (BK21 Four), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Korea
| | - Junesung Lee
- Department of Horticulture, Division of Applied Life Science (BK21 Four), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Korea
| | - Seon-In Yeom
- Department of Horticulture, Division of Applied Life Science (BK21 Four), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Korea.
| |
Collapse
|
4
|
Sun P, Lu Z, Wang Z, Wang S, Zhao K, Mei D, Yang J, Yang Y, Renner SS, Liu J. Subgenome-aware analyses reveal the genomic consequences of ancient allopolyploid hybridizations throughout the cotton family. Proc Natl Acad Sci U S A 2024; 121:e2313921121. [PMID: 38568968 PMCID: PMC11009661 DOI: 10.1073/pnas.2313921121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 02/27/2024] [Indexed: 04/05/2024] Open
Abstract
Malvaceae comprise some 4,225 species in 243 genera and nine subfamilies and include economically important species, such as cacao, cotton, durian, and jute, with cotton an important model system for studying the domestication of polyploids. Here, we use chromosome-level genome assemblies from representatives of five or six subfamilies (depending on the placement of Ochroma) to differentiate coexisting subgenomes and their evolution during the family's deep history. The results reveal that the allohexaploid Helicteroideae partially derive from an allotetraploid Sterculioideae and also form a component of the allodecaploid Bombacoideae and Malvoideae. The ancestral Malvaceae karyotype consists of 11 protochromosomes. Four subfamilies share a unique reciprocal chromosome translocation, and two other subfamilies share a chromosome fusion. DNA alignments of single-copy nuclear genes do not yield the same relationships as inferred from chromosome structural traits, probably because of genes originating from different ancestral subgenomes. These results illustrate how chromosome-structural data can unravel the evolutionary history of groups with ancient hybrid genomes.
Collapse
Affiliation(s)
- Pengchuan Sun
- Key Laboratory for Bio-Resources and Eco-Environment, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu610065, China
| | - Zhiqiang Lu
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan666303, China
| | - Zhenyue Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Shang Wang
- Key Laboratory for Bio-Resources and Eco-Environment, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu610065, China
| | - Kexin Zhao
- Key Laboratory for Bio-Resources and Eco-Environment, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu610065, China
| | - Dong Mei
- Key Laboratory for Bio-Resources and Eco-Environment, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu610065, China
| | - Jiao Yang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Yongzhi Yang
- Key Laboratory for Bio-Resources and Eco-Environment, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu610065, China
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou730000, China
| | | | - Jianquan Liu
- Key Laboratory for Bio-Resources and Eco-Environment, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu610065, China
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou730000, China
| |
Collapse
|
5
|
Zhu Y, Li L. Wood of trees: Cellular structure, molecular formation, and genetic engineering. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:443-467. [PMID: 38032010 DOI: 10.1111/jipb.13589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/28/2023] [Indexed: 12/01/2023]
Abstract
Wood is an invaluable asset to human society due to its renewable nature, making it suitable for both sustainable energy production and material manufacturing. Additionally, wood derived from forest trees plays a crucial role in sequestering a significant portion of the carbon dioxide fixed during photosynthesis by terrestrial plants. Nevertheless, with the expansion of the global population and ongoing industrialization, forest coverage has been substantially decreased, resulting in significant challenges for wood production and supply. Wood production practices have changed away from natural forests toward plantation forests. Thus, understanding the underlying genetic mechanisms of wood formation is the foundation for developing high-quality, fast-growing plantation trees. Breeding ideal forest trees for wood production using genetic technologies has attracted the interest of many. Tremendous studies have been carried out in recent years on the molecular, genetic, and cell-biological mechanisms of wood formation, and considerable progress and findings have been achieved. These studies and findings indicate enormous possibilities and prospects for tree improvement. This review will outline and assess the cellular and molecular mechanisms of wood formation, as well as studies on genetically improving forest trees, and address future development prospects.
Collapse
Affiliation(s)
- Yingying Zhu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems and College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Laigeng Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
6
|
Cui J, Li X, Lu Z, Jin B. Plant secondary metabolites involved in the stress tolerance of long-lived trees. TREE PHYSIOLOGY 2024; 44:tpae002. [PMID: 38196002 DOI: 10.1093/treephys/tpae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/29/2023] [Indexed: 01/11/2024]
Abstract
Ancient trees are natural wonders because of their longevity, having lived for hundreds or thousands of years, and their ability to withstand changing environments and a variety of stresses. These long-lived trees have sophisticated defense mechanisms, such as the production of specialized plant metabolites (SPMs). In this review, we provide an overview of the major biotic and abiotic stresses that long-lived trees often face, as well as an analysis of renowned ancient tree species and their unique protective SPMs against environmental stressors. We also discuss the synthesis and accumulation of defensive SPMs induced by environmental factors and endophytes in these trees. Furthermore, we conducted a comparative genomic analysis of 17 long-lived tree species and discovered significant expansions of SPM biosynthesis gene families in these species. Our comprehensive review reveals the crucial role of SPMs in high resistance in long-lived trees, providing a novel natural resource for plant defense, crop improvement and even the pharmaceutical industry.
Collapse
Affiliation(s)
- Jiawen Cui
- College of Horticulture and Landscape, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China
| | - Xiang Li
- College of Horticulture and Landscape, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China
| | - Zhaogeng Lu
- College of Horticulture and Landscape, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China
| | - Biao Jin
- College of Horticulture and Landscape, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College, Yangzhou University, 48 East Wenhui Road, Yangzhou, China
| |
Collapse
|
7
|
Sahu SK, Liu M, Wang G, Chen Y, Li R, Fang D, Sahu DN, Mu W, Wei J, Liu J, Zhao Y, Zhang S, Lisby M, Liu X, Xu X, Li L, Wang S, Liu H, He C. Chromosome-scale genomes of commercially important mahoganies, Swietenia macrophylla and Khaya senegalensis. Sci Data 2023; 10:832. [PMID: 38007506 PMCID: PMC10676371 DOI: 10.1038/s41597-023-02707-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/31/2023] [Indexed: 11/27/2023] Open
Abstract
Mahogany species (family Meliaceae) are highly valued for their aesthetic and durable wood. Despite their economic and ecological importance, genomic resources for mahogany species are limited, hindering genetic improvement and conservation efforts. Here we perform chromosome-scale genome assemblies of two commercially important mahogany species: Swietenia macrophylla and Khaya senegalensis. By combining 10X sequencing and Hi-C data, we assemble high-quality genomes of 274.49 Mb (S. macrophylla) and 406.50 Mb (K. senegalensis), with scaffold N50 lengths of 8.51 Mb and 7.85 Mb, respectively. A total of 99.38% and 98.05% of the assembled sequences are anchored to 28 pseudo-chromosomes in S. macrophylla and K. senegalensis, respectively. We predict 34,129 and 31,908 protein-coding genes in S. macrophylla and K. senegalensis, respectively, of which 97.44% and 98.49% are functionally annotated. The chromosome-scale genome assemblies of these mahogany species could serve as a vital genetic resource, especially in understanding the properties of non-model woody plants. These high-quality genomes could support the development of molecular markers for breeding programs, conservation efforts, and the sustainable management of these valuable forest resources.
Collapse
Affiliation(s)
- Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Min Liu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
- BGI Life Science Joint Research Center, Northeast Forestry University, Harbin, 150400, China
| | - Guanlong Wang
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
- College of Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yewen Chen
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Ruirui Li
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
- College of Life Sciences, Chongqing Normal University, Chongqing, 400047, China
| | - Dongming Fang
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Durgesh Nandini Sahu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Weixue Mu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Jinpu Wei
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Jie Liu
- Forestry Bureau of Ruili, Yunnan Dehong, Ruili, 678600, China
| | - Yuxian Zhao
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Shouzhou Zhang
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen, Chinese Academy of Sciences, Shenzhen, 518004, China
| | - Michael Lisby
- Department of Biology, University of Copenhagen, Copenhagen, DK-2100, Denmark
| | - Xin Liu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Xun Xu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, 518083, China
| | - Laigeng Li
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Sibo Wang
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China.
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China.
- BGI Life Science Joint Research Center, Northeast Forestry University, Harbin, 150400, China.
| | - Chengzhong He
- Key Laboratory for Forest Genetic & Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China.
| |
Collapse
|
8
|
Chen YL, Wang ZF, Jian SG, Liao HM, Liu DM. Genome Assembly of Cordia subcordata, a Coastal Protection Species in Tropical Coral Islands. Int J Mol Sci 2023; 24:16273. [PMID: 38003462 PMCID: PMC10671804 DOI: 10.3390/ijms242216273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Cordia subcordata trees or shrubs, belonging to the Boraginaceae family, have strong resistance and have adapted to their habitat on a tropical coral island in China, but the lack of genome information regarding its genetic background is unclear. In this study, the genome was assembled using both short/long whole genome sequencing reads and Hi-C reads. The assembled genome was 475.3 Mb, with 468.7 Mb (99.22%) of the sequences assembled into 16 chromosomes. Repeat sequences accounted for 54.41% of the assembled genome. A total of 26,615 genes were predicted, and 25,730 genes were functionally annotated using different annotation databases. Based on its genome and the other 17 species, phylogenetic analysis using 336 single-copy genes obtained from ortholog analysis showed that C. subcordata was a sister to Coffea eugenioides, and the divergence time was estimated to be 77 MYA between the two species. Gene family evolution analysis indicated that the significantly expanded gene families were functionally related to chemical defenses against diseases. These results can provide a reference to a deeper understanding of the genetic background of C. subcordata and can be helpful in exploring its adaptation mechanism on tropical coral islands in the future.
Collapse
Affiliation(s)
- Yi-Lan Chen
- Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
- Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering, College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Zheng-Feng Wang
- Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Key Laboratory of Carbon Sequestration in Terrestrial Ecosystem, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Shu-Guang Jian
- Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Hai-Min Liao
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Key Laboratory of Carbon Sequestration in Terrestrial Ecosystem, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Dong-Ming Liu
- Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
9
|
Yang J, Liu M, Sahu SK, Li R, Wang G, Guo X, Liu J, Cheng L, Jiang H, Zhao F, Wei S, Luo S, Liu H. Chromosome-scale genomes of five Hongmu species in Leguminosae. Sci Data 2023; 10:710. [PMID: 37848504 PMCID: PMC10582184 DOI: 10.1038/s41597-023-02593-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/25/2023] [Indexed: 10/19/2023] Open
Abstract
The Legume family (Leguminosae or Fabaceae), is one of the largest and economically important flowering plants. Heartwood, the core of a tree trunk or branch, is a valuable and renewable resource employed for centuries in constructing sturdy and sustainable structures. Hongmu refers to a category of precious timber trees in China, encompassing 29 woody species, primarily from the legume genus. Due to the lack of genome data, detailed studies on their economic and ecological importance are limited. Therefore, this study generates chromosome-scale assemblies of five Hongmu species in Leguminosae: Pterocarpus santalinus, Pterocarpus macrocarpus, Dalbergia cochinchinensis, Dalbergia cultrata, and Senna siamea, using a combination of short-reads, long-read nanopore, and Hi-C data. We obtained 623.86 Mb, 634.58 Mb, 700.60 Mb, 645.98 Mb, and 437.29 Mb of pseudochromosome level assemblies with the scaffold N50 lengths of 63.1 Mb, 63.7 Mb, 70.4 Mb, 61.1 Mb and 32.2 Mb for P. santalinus, P. macrocarpus, D. cochinchinensis, D. cultrata and S. siamea, respectively. These genome data will serve as a valuable resource for studying crucial traits, like wood quality, disease resistance, and environmental adaptation in Hongmu.
Collapse
Affiliation(s)
- Jinlong Yang
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Min Liu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Ruirui Li
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guanlong Wang
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
- College of Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xing Guo
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Jianmei Liu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Le Cheng
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Huayan Jiang
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Feng Zhao
- Key Laboratory of Ethnic Medical Resources Research and Southeast Asian International Cooperation in Yunnan Province, School of Tea and Coffee & School of Bioinformatics and Engineering, Pu'er University, Puer, 665000, China
| | - Shuguang Wei
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
- Key Laboratory of Ministry of Public Health for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Shixiao Luo
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China.
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China.
- BGI Life Science Joint Research Center, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
10
|
Sahu SK, Liu M, Li R, Chen Y, Wang G, Fang D, Sahu DN, Wei J, Wang S, Liu H, He C. Chromosome-scale genome of Indian rosewood ( Dalbergia sissoo). FRONTIERS IN PLANT SCIENCE 2023; 14:1218515. [PMID: 37662156 PMCID: PMC10470032 DOI: 10.3389/fpls.2023.1218515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/27/2023] [Indexed: 09/05/2023]
Affiliation(s)
- Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, China
| | - Min Liu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, China
- BGI Life Science Joint Research Center, Northeast Forestry University, Harbin, China
| | - Ruirui Li
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, China
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Yewen Chen
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, China
| | - Guanlong Wang
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, China
- College of Science, South China Agricultural University, Guangzhou, China
| | - Dongming Fang
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, China
| | - Durgesh Nandini Sahu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, China
| | - Jinpu Wei
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, China
| | - Sibo Wang
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, China
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, China
- BGI Life Science Joint Research Center, Northeast Forestry University, Harbin, China
| | - Chengzhong He
- Key Laboratory for Forest Genetic & Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, China
| |
Collapse
|