1
|
Bu W, Di J, Zhao J, Liu R, Wu Y, Ran J, Li T. Dynein Light Intermediate Chains Exhibit Different Arginine Methylation Patterns. J Clin Lab Anal 2024; 38:e25030. [PMID: 38525916 PMCID: PMC11033342 DOI: 10.1002/jcla.25030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/26/2024] Open
Abstract
BACKGROUND The motor protein dynein is integral to retrograde transport along microtubules and interacts with numerous cargoes through the recruitment of cargo-specific adaptor proteins. This interaction is mediated by dynein light intermediate chain subunits LIC1 (DYNC1LI1) and LIC2 (DYNC1LI2), which govern the adaptor binding and are present in distinct dynein complexes with overlapping and unique functions. METHODS Using bioinformatics, we analyzed the C-terminal domains (CTDs) of LIC1 and LIC2, revealing similar structural features but diverse post-translational modifications (PTMs). The methylation status of LIC2 and the proteins involved in this modification were examined through immunoprecipitation and immunoblotting analyses. The specific methylation sites on LIC2 were identified through a site-directed mutagenesis analysis, contributing to a deeper understanding of the regulatory mechanisms of the dynein complex. RESULTS We found that LIC2 is specifically methylated at the arginine 397 residue, a reaction that is catalyzed by protein arginine methyltransferase 1 (PRMT1). CONCLUSIONS The distinct PTMs of the LIC subunits offer a versatile mechanism for dynein to transport diverse cargoes efficiently. Understanding how these PTMs influence the functions of LIC2, and how they differ from LIC1, is crucial for elucidating the role of dynein-related transport pathways in a range of diseases. The discovery of the arginine 397 methylation site on LIC2 enhances our insight into the regulatory PTMs of dynein functions.
Collapse
Affiliation(s)
- Weiwen Bu
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life SciencesNankai UniversityTianjinChina
| | - Jie Di
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life SciencesNankai UniversityTianjinChina
| | - Junkui Zhao
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life SciencesNankai UniversityTianjinChina
| | - Ruming Liu
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life SciencesNankai UniversityTianjinChina
| | - Yue Wu
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life SciencesShandong Normal UniversityJinanChina
| | - Jie Ran
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life SciencesShandong Normal UniversityJinanChina
| | - Te Li
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life SciencesNankai UniversityTianjinChina
| |
Collapse
|
2
|
Rao L, Gennerich A. Structure and Function of Dynein's Non-Catalytic Subunits. Cells 2024; 13:330. [PMID: 38391943 PMCID: PMC10886578 DOI: 10.3390/cells13040330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
Dynein, an ancient microtubule-based motor protein, performs diverse cellular functions in nearly all eukaryotic cells, with the exception of land plants. It has evolved into three subfamilies-cytoplasmic dynein-1, cytoplasmic dynein-2, and axonemal dyneins-each differentiated by their cellular functions. These megadalton complexes consist of multiple subunits, with the heavy chain being the largest subunit that generates motion and force along microtubules by converting the chemical energy of ATP hydrolysis into mechanical work. Beyond this catalytic core, the functionality of dynein is significantly enhanced by numerous non-catalytic subunits. These subunits are integral to the complex, contributing to its stability, regulating its enzymatic activities, targeting it to specific cellular locations, and mediating its interactions with other cofactors. The diversity of non-catalytic subunits expands dynein's cellular roles, enabling it to perform critical tasks despite the conservation of its heavy chains. In this review, we discuss recent findings and insights regarding these non-catalytic subunits.
Collapse
Affiliation(s)
- Lu Rao
- Department of Biochemistry and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Arne Gennerich
- Department of Biochemistry and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
3
|
Zhang Y, Yan M, Yu Y, Wang J, Jiao Y, Zheng M, Zhang S. 14-3-3ε: a protein with complex physiology function but promising therapeutic potential in cancer. Cell Commun Signal 2024; 22:72. [PMID: 38279176 PMCID: PMC10811864 DOI: 10.1186/s12964-023-01420-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/02/2023] [Indexed: 01/28/2024] Open
Abstract
Over the past decade, the role of the 14-3-3 protein has received increasing interest. Seven subtypes of 14-3-3 proteins exhibit high homology; however, each subtype maintains its specificity. The 14-3-3ε protein is involved in various physiological processes, including signal transduction, cell proliferation, apoptosis, autophagy, cell cycle regulation, repolarization of cardiac action, cardiac development, intracellular electrolyte homeostasis, neurodevelopment, and innate immunity. It also plays a significant role in the development and progression of various diseases, such as cardiovascular diseases, inflammatory diseases, neurodegenerative disorders, and cancer. These immense and various involvements of 14-3-3ε in diverse processes makes it a promising target for drug development. Although extensive research has been conducted on 14-3-3 dimers, studies on 14-3-3 monomers are limited. This review aimed to provide an overview of recent reports on the molecular mechanisms involved in the regulation of binding partners by 14-3-3ε, focusing on issues that could help advance the frontiers of this field. Video Abstract.
Collapse
Affiliation(s)
- Yue Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Man Yan
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Yongjun Yu
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121, People's Republic of China
| | - Jiangping Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Yuqi Jiao
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300071, People's Republic of China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300071, People's Republic of China.
| |
Collapse
|
4
|
Kumar C, Mylavarapu SVS. Nucleolin is required for multiple centrosome-associated functions in early vertebrate mitosis. Chromosoma 2023; 132:305-315. [PMID: 37615728 DOI: 10.1007/s00412-023-00808-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/10/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023]
Abstract
Nucleolin is a multifunctional RNA-binding protein that resides predominantly not only in the nucleolus, but also in multiple other subcellular pools in the cytoplasm in mammalian cells, and is best known for its roles in ribosome biogenesis, RNA stability, and translation. During early mitosis, nucleolin is required for equatorial mitotic chromosome alignment prior to metaphase. Using high resolution fluorescence imaging, we reveal that nucleolin is required for multiple centrosome-associated functions at the G2-prophase boundary. Nucleolin depletion led to dissociation of the centrosomes from the G2 nuclear envelope, a delay in the onset of nuclear envelope breakdown, reduced inter-centrosome separation, and longer metaphase spindles. Our results reveal novel roles for nucleolin in early mammalian mitosis, establishing multiple important functions for nucleolin during mammalian cell division.
Collapse
Affiliation(s)
- Chandan Kumar
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, -121001, India
| | - Sivaram V S Mylavarapu
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, -121001, India.
| |
Collapse
|
5
|
Henen MA, Paukovich N, Prekeris R, Vögeli B. Solution NMR Backbone Assignment of the C-Terminal Region of Human Dynein Light Intermediate Chain 2 (LIC2-C) Unveils Structural Resemblance with Its Homologue LIC1-C. MAGNETOCHEMISTRY (BASEL, SWITZERLAND) 2023; 9:166. [PMID: 37476506 PMCID: PMC10358425 DOI: 10.3390/magnetochemistry9070166] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Dynein, a homodimeric protein complex, plays a pivotal role in retrograde transportation along microtubules within cells. It consists of various subunits, among which the light intermediate chain (LIC) performs diverse functions, including cargo adaptor binding. In contrast to the vertebrate LIC homolog LIC1, LIC2 has received relatively limited characterization thus far, despite partially orthogonal functional roles. In this study, we present a near-to-complete backbone NMR chemical shift assignment of the C-terminal region of the light intermediate chain 2 of human dynein 1 (LIC2-C). We perform a comparative analysis of the secondary structure propensity of LIC2-C with the one previously reported for LIC1-C and show that the two transient helices in LIC1 that interact with motor adaptors are also present in LIC2.
Collapse
Affiliation(s)
- Morkos A. Henen
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Natasia Paukovich
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Beat Vögeli
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
6
|
Garner KE, Salter A, Lau CK, Gurusaran M, Villemant CM, Granger EP, McNee G, Woodman PG, Davies OR, Burke BE, Allan VJ. The meiotic LINC complex component KASH5 is an activating adaptor for cytoplasmic dynein. J Cell Biol 2023; 222:e202204042. [PMID: 36946995 PMCID: PMC10071310 DOI: 10.1083/jcb.202204042] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 12/15/2022] [Accepted: 02/10/2023] [Indexed: 03/23/2023] Open
Abstract
Cytoplasmic dynein-driven movement of chromosomes during prophase I of mammalian meiosis is essential for synapsis and genetic exchange. Dynein connects to chromosome telomeres via KASH5 and SUN1 or SUN2, which together span the nuclear envelope. Here, we show that KASH5 promotes dynein motility in vitro, and cytosolic KASH5 inhibits dynein's interphase functions. KASH5 interacts with a dynein light intermediate chain (DYNC1LI1 or DYNC1LI2) via a conserved helix in the LIC C-terminal, and this region is also needed for dynein's recruitment to other cellular membranes. KASH5's N-terminal EF-hands are essential as the interaction with dynein is disrupted by mutation of key calcium-binding residues, although it is not regulated by cellular calcium levels. Dynein can be recruited to KASH5 at the nuclear envelope independently of dynactin, while LIS1 is essential for dynactin incorporation into the KASH5-dynein complex. Altogether, we show that the transmembrane protein KASH5 is an activating adaptor for dynein and shed light on the hierarchy of assembly of KASH5-dynein-dynactin complexes.
Collapse
Affiliation(s)
- Kirsten E.L. Garner
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Anna Salter
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- A*STAR Institute of Medical Biology, Singapore, Singapore
| | - Clinton K. Lau
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK
| | - Manickam Gurusaran
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Cécile M. Villemant
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Elizabeth P. Granger
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Gavin McNee
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Philip G. Woodman
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Owen R. Davies
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Brian E. Burke
- A*STAR Institute of Medical Biology, Singapore, Singapore
| | - Victoria J. Allan
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- A*STAR Institute of Medical Biology, Singapore, Singapore
| |
Collapse
|
7
|
Lu W, Lakonishok M, Serpinskaya AS, Gelfand VI. A novel mechanism of bulk cytoplasmic transport by cortical dynein in Drosophila ovary. eLife 2022; 11:e75538. [PMID: 35170428 PMCID: PMC8896832 DOI: 10.7554/elife.75538] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 02/16/2022] [Indexed: 11/22/2022] Open
Abstract
Cytoplasmic dynein, a major minus-end directed microtubule motor, plays essential roles in eukaryotic cells. Drosophila oocyte growth is mainly dependent on the contribution of cytoplasmic contents from the interconnected sister cells, nurse cells. We have previously shown that cytoplasmic dynein is required for Drosophila oocyte growth and assumed that it simply transports cargoes along microtubule tracks from nurse cells to the oocyte. Here, we report that instead of transporting individual cargoes along stationary microtubules into the oocyte, cortical dynein actively moves microtubules within nurse cells and from nurse cells to the oocyte via the cytoplasmic bridges, the ring canals. This robust microtubule movement is sufficient to drag even inert cytoplasmic particles through the ring canals to the oocyte. Furthermore, replacing dynein with a minus-end directed plant kinesin linked to the actin cortex is sufficient for transporting organelles and cytoplasm to the oocyte and driving its growth. These experiments show that cortical dynein performs bulk cytoplasmic transport by gliding microtubules along the cell cortex and through the ring canals to the oocyte. We propose that the dynein-driven microtubule flow could serve as a novel mode of fast cytoplasmic transport.
Collapse
Affiliation(s)
- Wen Lu
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | - Margot Lakonishok
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | - Anna S Serpinskaya
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | - Vladimir I Gelfand
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| |
Collapse
|
8
|
Kumari A, Kumar C, Pergu R, Kumar M, Mahale SP, Wasnik N, Mylavarapu SVS. Phosphorylation and Pin1 binding to the LIC1 subunit selectively regulate mitotic dynein functions. J Cell Biol 2021; 220:212736. [PMID: 34709360 PMCID: PMC8562849 DOI: 10.1083/jcb.202005184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 05/13/2021] [Accepted: 09/22/2021] [Indexed: 01/31/2023] Open
Abstract
The dynein motor performs multiple functions in mitosis by engaging with a wide cargo spectrum. One way to regulate dynein's cargo-binding selectivity is through the C-terminal domain (CTD) of its light intermediate chain 1 subunit (LIC1), which binds directly with cargo adaptors. Here we show that mitotic phosphorylation of LIC1-CTD at its three cdk1 sites is required for proper mitotic progression, for dynein loading onto prometaphase kinetochores, and for spindle assembly checkpoint inactivation in human cells. Mitotic LIC1-CTD phosphorylation also engages the prolyl isomerase Pin1 predominantly to Hook2-dynein-Nde1-Lis1 complexes, but not to dynein-spindly-dynactin complexes. LIC1-CTD dephosphorylation abrogates dynein-Pin1 binding, promotes prophase centrosome-nuclear envelope detachment, and impairs metaphase chromosome congression and mitotic Golgi fragmentation, without affecting interphase membrane transport. Phosphomutation of a conserved LIC1-CTD SP site in zebrafish leads to early developmental defects. Our work reveals that LIC1-CTD phosphorylation differentially regulates distinct mitotic dynein pools and suggests the evolutionary conservation of this phosphoregulation.
Collapse
Affiliation(s)
- Amrita Kumari
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, third Milestone Faridabad-Gurgaon Expressway, Faridabad Haryana, India.,Manipal Academy of Higher Education, Manipal Karnataka, India
| | - Chandan Kumar
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, third Milestone Faridabad-Gurgaon Expressway, Faridabad Haryana, India
| | - Rajaiah Pergu
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, third Milestone Faridabad-Gurgaon Expressway, Faridabad Haryana, India.,Manipal Academy of Higher Education, Manipal Karnataka, India
| | - Megha Kumar
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, third Milestone Faridabad-Gurgaon Expressway, Faridabad Haryana, India.,Council of Scientific and Industrial Research, Centre for Cellular and Molecular Biology, Habsiguda, Hyderabad, Telangana, India.,Academy of Scientific and Innovative Research, New Delhi, India
| | - Sagar P Mahale
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, third Milestone Faridabad-Gurgaon Expressway, Faridabad Haryana, India.,Manipal Academy of Higher Education, Manipal Karnataka, India
| | - Neeraj Wasnik
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, third Milestone Faridabad-Gurgaon Expressway, Faridabad Haryana, India
| | - Sivaram V S Mylavarapu
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, third Milestone Faridabad-Gurgaon Expressway, Faridabad Haryana, India.,Manipal Academy of Higher Education, Manipal Karnataka, India
| |
Collapse
|
9
|
Zhao X, Garcia JQ, Tong K, Chen X, Yang B, Li Q, Dai Z, Shi X, Seiple IB, Huang B, Guo S. Polarized endosome dynamics engage cytoplasmic Par-3 that recruits dynein during asymmetric cell division. SCIENCE ADVANCES 2021; 7:eabg1244. [PMID: 34117063 PMCID: PMC8195473 DOI: 10.1126/sciadv.abg1244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
In the developing embryos, the cortical polarity regulator Par-3 is critical for establishing Notch signaling asymmetry between daughter cells during asymmetric cell division (ACD). How cortically localized Par-3 establishes asymmetric Notch activity in the nucleus is not understood. Here, using in vivo time-lapse imaging of mitotic radial glia progenitors in the developing zebrafish forebrain, we uncover that during horizontal ACD along the anteroposterior embryonic axis, endosomes containing the Notch ligand DeltaD (Dld) move toward the cleavage plane and preferentially segregate into the posterior (subsequently basal) Notchhi daughter. This asymmetric segregation requires the activity of Par-3 and dynein motor complex. Using label retention expansion microscopy, we further detect Par-3 in the cytosol colocalizing the dynein light intermediate chain 1 (Dlic1) onto Dld endosomes. Par-3, Dlic1, and Dld are associated in protein complexes in vivo. Our data reveal an unanticipated mechanism by which cytoplasmic Par-3 directly polarizes Notch signaling components during ACD.
Collapse
Affiliation(s)
- Xiang Zhao
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jason Q Garcia
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kai Tong
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
- State Key Laboratory of Genetic Engineering, Department of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Xingye Chen
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Bin Yang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94143, USA
| | - Qi Li
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Zhipeng Dai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Xiaoyu Shi
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ian B Seiple
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Bo Huang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94143, USA
| | - Su Guo
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA.
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
- Programs in Human Genetics and Biological Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
10
|
Kumari A, Kumar C, Wasnik N, Mylavarapu SVS. Dynein light intermediate chains as pivotal determinants of dynein multifunctionality. J Cell Sci 2021; 134:268315. [PMID: 34014309 DOI: 10.1242/jcs.254870] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In animal cells, a single cytoplasmic dynein motor mediates microtubule minus-end-directed transport, counterbalancing dozens of plus-end-directed kinesins. The remarkable ability of dynein to interact with a diverse cargo spectrum stems from its tightly regulated recruitment of cargo-specific adaptor proteins, which engage the dynactin complex to make a tripartite processive motor. Adaptor binding is governed by the homologous dynein light intermediate chain subunits LIC1 (DYNC1LI1) and LIC2 (DYNC1LI2), which exist in mutually exclusive dynein complexes that can perform both unique and overlapping functions. The intrinsically disordered and variable C-terminal domains of the LICs are indispensable for engaging a variety of structurally divergent adaptors. Here, we hypothesize that numerous spatiotemporally regulated permutations of posttranslational modifications of the LICs, as well as of the adaptors and cargoes, exponentially expand the spectrum of dynein-adaptor-cargo complexes. We thematically illustrate the possibilities that could generate a vast set of biochemical variations required to support the wide range of dynein functions.
Collapse
Affiliation(s)
- Amrita Kumari
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India.,Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Chandan Kumar
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Neeraj Wasnik
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Sivaram V S Mylavarapu
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India.,Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
11
|
Ali MM, Di Marco M, Mahale S, Jachimowicz D, Kosalai ST, Reischl S, Statello L, Mishra K, Darnfors C, Kanduri M, Kanduri C. LY6K-AS lncRNA is a lung adenocarcinoma prognostic biomarker and regulator of mitotic progression. Oncogene 2021; 40:2463-2478. [PMID: 33674747 DOI: 10.1038/s41388-021-01696-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/28/2021] [Accepted: 02/03/2021] [Indexed: 01/31/2023]
Abstract
Recent advances in genomics unraveled several actionable mutational drivers in lung cancer, leading to promising therapies such as tyrosine kinase inhibitors and immune checkpoint inhibitors. However, the tumors' acquired resistance to the newly-developed as well as existing therapies restricts life quality improvements. Therefore, we investigated the noncoding portion of the human transcriptome in search of alternative actionable targets. We identified an antisense transcript, LY6K-AS, with elevated expression in lung adenocarcinoma (LUAD) patients, and its higher expression in LUAD patients predicts poor survival outcomes. LY6K-AS abrogation interfered with the mitotic progression of lung cancer cells resulting in unfaithful chromosomal segregation. LY6K-AS interacts with and stabilizes 14-3-3 proteins to regulate the transcription of kinetochore and mitotic checkpoint proteins. We also show that LY6K-AS regulates the levels of histone H3 lysine 4 trimethylation (H3K4me3) at the promoters of kinetochore members. Cisplatin treatment and LY6K-AS silencing affect many common pathways enriched in cell cycle-related functions. LY6K-AS silencing affects the growth of xenografts derived from wildtype and cisplatin-resistant lung cancer cells. Collectively, these data indicate that LY6K-AS silencing is a promising therapeutic option for LUAD that inhibits oncogenic mitotic progression.
Collapse
Affiliation(s)
- Mohamad Moustafa Ali
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Mirco Di Marco
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Sagar Mahale
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Daniel Jachimowicz
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Subazini Thankaswamy Kosalai
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Silke Reischl
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Luisa Statello
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Kankadeb Mishra
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Catarina Darnfors
- Department of Clinical Pathology and Genetics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Meena Kanduri
- Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Chandrasekhar Kanduri
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
12
|
Chen Y, Sun M. Two-dimensional WS 2/MoS 2 heterostructures: properties and applications. NANOSCALE 2021; 13:5594-5619. [PMID: 33720254 DOI: 10.1039/d1nr00455g] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The successful fabrication of WS2/MoS2 heterostructures provides more possibilities for optoelectronic and thermoelectric applications than graphene because of their direct bandgap characteristics; therefore, scientific investigations on WS2/MoS2 heterostructures are more significant and thriving. In this paper, we review the latest research progress in WS2/MoS2 heterostructures, and look forward to their properties and applications. Firstly, we analyze the crystal structure and electronic structure of WS2, MoS2, and their heterostructures. Secondly, we comprehensively present the widely used methods for preparing heterostructures. Finally, based on the unique physical characteristics of WS2/MoS2 heterostructures, we focus on their properties and applications in mechanics, electronics, optoelectronics, and thermoelectronics.
Collapse
Affiliation(s)
- Yichuan Chen
- School of Mathematics and Physics, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China.
| | | |
Collapse
|
13
|
Role of Useful Fungi in Agriculture Sustainability. Fungal Biol 2021. [DOI: 10.1007/978-3-030-60659-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Sharma A, Dagar S, Mylavarapu SVS. Transgelin-2 and phosphoregulation of the LIC2 subunit of dynein govern mitotic spindle orientation. J Cell Sci 2020; 133:jcs239673. [PMID: 32467330 DOI: 10.1242/jcs.239673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 04/29/2020] [Indexed: 08/31/2023] Open
Abstract
The molecular motor dynein is essential for mitotic spindle orientation, which defines the axis of cell division. The light intermediate chain subunits, LIC1 and LIC2, define biochemically and functionally distinct vertebrate dynein complexes, with LIC2-dynein playing a crucial role in ensuring spindle orientation. We reveal a novel, mitosis-specific interaction of LIC2-dynein with the cortical actin-bundling protein transgelin-2. Transgelin-2 is required for maintaining proper spindle length, equatorial metaphase chromosome alignment, spindle orientation and timely anaphase onset. We show that transgelin-2 stabilizes the cortical recruitment of LGN-NuMA, which together with dynein is required for spindle orientation. The opposing actions of transgelin-2 and LIC2-dynein maintain optimal cortical levels of LGN-NuMA. In addition, we show that the highly conserved serine 194 phosphorylation of LIC2 is required for proper spindle orientation, by maintaining mitotic centrosome integrity to ensure optimal astral microtubule nucleation. The work reveals two specific mechanisms through which LIC2-dynein regulates mitotic spindle orientation; namely, through a new interactor transgelin-2, which is required for engagement of LGN-NuMA with the actin cortex, and through mitotic phosphoregulation of LIC2 to control microtubule nucleation from the poles.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Amit Sharma
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
- Affiliated to the Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sunayana Dagar
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
- Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha 751024, India
| | - Sivaram V S Mylavarapu
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
- Affiliated to the Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
- Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha 751024, India
| |
Collapse
|
15
|
Williams K, Johnson MH. Adapting the 14-day rule for embryo research to encompass evolving technologies. REPRODUCTIVE BIOMEDICINE & SOCIETY ONLINE 2020; 10:1-9. [PMID: 32154395 PMCID: PMC7052500 DOI: 10.1016/j.rbms.2019.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/11/2019] [Accepted: 12/19/2019] [Indexed: 05/04/2023]
Abstract
We consider the scientific evidence that research on in-vitro development of embryos beyond 14 days is necessary. We then examine potential new developments in the use of stem cells to make embryoids or synthetic human entities with embryo-like features, and consider whether they also require legal control. Next, we consider the arguments advanced against extending the 14-day period during which research on human embryos is currently permitted, and find none of them to be convincing. We end by proposing a new objective limit that could serve as a mechanism for regulating the use of embryos for research in vitro.
Collapse
Affiliation(s)
- Kate Williams
- St John’s College, University of Cambridge, Cambridge, UK
| | - Martin H. Johnson
- School of Anatomy, Department of Physiology, Development and Neuroscience, Downing College, University of Cambridge, Cambridge, UK
- Corresponding author.
| |
Collapse
|
16
|
Renna C, Rizzelli F, Carminati M, Gaddoni C, Pirovano L, Cecatiello V, Pasqualato S, Mapelli M. Organizational Principles of the NuMA-Dynein Interaction Interface and Implications for Mitotic Spindle Functions. Structure 2020; 28:820-829.e6. [PMID: 32413290 DOI: 10.1016/j.str.2020.04.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/18/2020] [Accepted: 04/22/2020] [Indexed: 01/01/2023]
Abstract
Mitotic progression is orchestrated by the microtubule-based motor dynein, which sustains all mitotic spindle functions. During cell division, cytoplasmic dynein acts with the high-molecular-weight complex dynactin and nuclear mitotic apparatus (NuMA) to organize and position the spindle. Here, we analyze the interaction interface between NuMA and the light intermediate chain (LIC) of eukaryotic dynein. Structural studies show that NuMA contains a hook domain contacting directly LIC1 and LIC2 chains through a conserved hydrophobic patch shared among other Hook adaptors. In addition, we identify a LIC-binding motif within the coiled-coil region of NuMA that is homologous to CC1-boxes. Analysis of mitotic cells revealed that both LIC-binding sites of NuMA are essential for correct spindle placement and cell division. Collectively, our evidence depicts NuMA as the dynein-activating adaptor acting in the mitotic processes of spindle organization and positioning.
Collapse
Affiliation(s)
- Cristina Renna
- IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | | | | | - Chiara Gaddoni
- IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Laura Pirovano
- IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | | | | | - Marina Mapelli
- IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy.
| |
Collapse
|
17
|
Pirovano L, Culurgioni S, Carminati M, Alfieri A, Monzani S, Cecatiello V, Gaddoni C, Rizzelli F, Foadi J, Pasqualato S, Mapelli M. Hexameric NuMA:LGN structures promote multivalent interactions required for planar epithelial divisions. Nat Commun 2019; 10:2208. [PMID: 31101817 PMCID: PMC6525239 DOI: 10.1038/s41467-019-09999-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 04/11/2019] [Indexed: 12/12/2022] Open
Abstract
Cortical force generators connect epithelial polarity sites with astral microtubules, allowing dynein movement to orient the mitotic spindle as astral microtubules depolymerize. Complexes of the LGN and NuMA proteins, fundamental components of force generators, are recruited to the cortex by Gαi-subunits of heterotrimeric G-proteins. They associate with dynein/dynactin and activate the motor activity pulling on astral microtubules. The architecture of cortical force generators is unknown. Here we report the crystal structure of NuMA:LGN hetero-hexamers, and unveil their role in promoting the assembly of active cortical dynein/dynactin motors that are required in orchestrating oriented divisions in polarized cells. Our work elucidates the basis for the structural organization of essential spindle orientation motors. LGN and NuMA link epithelial polarity sites with astral microtubules and associate with dynein, but the architecture of such cortical force-generating complexes is unknown. Here, the authors report the crystal structure of NuMA:LGN hetero-hexamers, and unveil their role in promoting the assembly of active cortical dynein/dynactin motors.
Collapse
Affiliation(s)
- Laura Pirovano
- IEO, European Institute of Oncology IRCCS, 20141, MILANO, Italy
| | - Simone Culurgioni
- IEO, European Institute of Oncology IRCCS, 20141, MILANO, Italy.,Exscientia Ltd., The Schröedinger Building, Heatley Road, Oxford Science Park, Oxford, OX4 4GE, UK
| | - Manuel Carminati
- IEO, European Institute of Oncology IRCCS, 20141, MILANO, Italy.,MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Andrea Alfieri
- IEO, European Institute of Oncology IRCCS, 20141, MILANO, Italy.,Department of Biosciences, Università degli Studi di Milano, 20133, Milan, Italy
| | - Silvia Monzani
- IEO, European Institute of Oncology IRCCS, 20141, MILANO, Italy
| | | | - Chiara Gaddoni
- IEO, European Institute of Oncology IRCCS, 20141, MILANO, Italy
| | | | - James Foadi
- Department of Mathematical Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | | | - Marina Mapelli
- IEO, European Institute of Oncology IRCCS, 20141, MILANO, Italy.
| |
Collapse
|
18
|
Nakajima YI, Lee ZT, McKinney SA, Swanson SK, Florens L, Gibson MC. Junctional tumor suppressors interact with 14-3-3 proteins to control planar spindle alignment. J Cell Biol 2019; 218:1824-1838. [PMID: 31088859 PMCID: PMC6548121 DOI: 10.1083/jcb.201803116] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 03/01/2019] [Accepted: 04/25/2019] [Indexed: 12/15/2022] Open
Abstract
Nakajima et al. reveal a novel mechanism of planar spindle alignment through junctional tumor suppressors Scrib/Dlg and 14-3-3 proteins in the Drosophila wing disc epithelium. Their results suggest that 14-3-3 proteins interact with Scrib/Dlg to control planar spindle orientation and maintain epithelial architecture. Proper orientation of the mitotic spindle is essential for cell fate determination, tissue morphogenesis, and homeostasis. During epithelial proliferation, planar spindle alignment ensures the maintenance of polarized tissue architecture, and aberrant spindle orientation can disrupt epithelial integrity. Nevertheless, in vivo mechanisms that restrict the mitotic spindle to the plane of the epithelium remain poorly understood. Here we show that the junction-localized tumor suppressors Scribbled (Scrib) and Discs large (Dlg) control planar spindle orientation via Mud and 14-3-3 proteins in the Drosophila wing disc epithelium. During mitosis, Scrib is required for the junctional localization of Dlg, and both affect mitotic spindle movements. Using coimmunoprecipitation and mass spectrometry, we identify 14-3-3 proteins as Dlg-interacting partners and further report that loss of 14-3-3s causes both abnormal spindle orientation and disruption of epithelial architecture as a consequence of basal cell delamination and apoptosis. Combined, these biochemical and genetic analyses indicate that 14-3-3s function together with Scrib, Dlg, and Mud during planar cell division.
Collapse
Affiliation(s)
- Yu-Ichiro Nakajima
- Stowers Institute for Medical Research, Kansas City, MO .,Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan.,Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Zachary T Lee
- Stowers Institute for Medical Research, Kansas City, MO
| | | | | | | | - Matthew C Gibson
- Stowers Institute for Medical Research, Kansas City, MO.,Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS
| |
Collapse
|
19
|
Gonçalves JC, Dantas TJ, Vallee RB. Distinct roles for dynein light intermediate chains in neurogenesis, migration, and terminal somal translocation. J Cell Biol 2019; 218:808-819. [PMID: 30674581 PMCID: PMC6400572 DOI: 10.1083/jcb.201806112] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 11/21/2018] [Accepted: 01/02/2019] [Indexed: 12/16/2022] Open
Abstract
Cytoplasmic dynein participates in multiple aspects of neocortical development. These include neural progenitor proliferation, morphogenesis, and neuronal migration. The cytoplasmic dynein light intermediate chains (LICs) 1 and 2 are cargo-binding subunits, though their relative roles are not well understood. Here, we used in utero electroporation of shRNAs or LIC functional domains to determine the relative contributions of the two LICs in the developing rat brain. We find that LIC1, through BicD2, is required for apical nuclear migration in neural progenitors. In newborn neurons, we observe specific roles for LIC1 in the multipolar to bipolar transition and glial-guided neuronal migration. In contrast, LIC2 contributes to a novel dynein role in the little-studied mode of migration, terminal somal translocation. Together, our results provide novel insight into the LICs' unique functions during brain development and dynein regulation overall.
Collapse
Affiliation(s)
- João Carlos Gonçalves
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Tiago J Dantas
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY
- I3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| | - Richard B Vallee
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY
| |
Collapse
|
20
|
Even I, Reidenbach S, Schlechter T, Berns N, Herold R, Roth W, Krunic D, Riechmann V, Hofmann I. DLIC
1
, but not
DLIC
2
, is upregulated in colon cancer and this contributes to proliferative overgrowth and migratory characteristics of cancer cells. FEBS J 2019; 286:803-820. [DOI: 10.1111/febs.14755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 10/25/2018] [Accepted: 01/14/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Ipek Even
- Division of Vascular Oncology and Metastasis German Cancer Research Center DKFZ‐ZMBH Alliance Heidelberg Germany
- Department of Vascular Biology and Tumor Angiogenesis (CBTM) Medical Faculty Mannheim Heidelberg University Mannheim Germany
| | - Sonja Reidenbach
- Division of Vascular Oncology and Metastasis German Cancer Research Center DKFZ‐ZMBH Alliance Heidelberg Germany
| | - Tanja Schlechter
- Division of Vascular Oncology and Metastasis German Cancer Research Center DKFZ‐ZMBH Alliance Heidelberg Germany
| | - Nicola Berns
- Department for Cell and Molecular Biology Medical Faculty Mannheim Heidelberg University Mannheim Germany
| | - Rosanna Herold
- Division of Vascular Oncology and Metastasis German Cancer Research Center DKFZ‐ZMBH Alliance Heidelberg Germany
| | - Wilfried Roth
- Clinical Cooperation Unit Molecular Tumor Pathology German Cancer Research Center Heidelberg Germany
| | - Damir Krunic
- Light Microscopy Facility German Cancer Research Center (DKFZ) Heidelberg Germany
| | - Veit Riechmann
- Department for Cell and Molecular Biology Medical Faculty Mannheim Heidelberg University Mannheim Germany
| | - Ilse Hofmann
- Division of Vascular Oncology and Metastasis German Cancer Research Center DKFZ‐ZMBH Alliance Heidelberg Germany
- Department of Vascular Biology and Tumor Angiogenesis (CBTM) Medical Faculty Mannheim Heidelberg University Mannheim Germany
| |
Collapse
|
21
|
Celestino R, Henen MA, Gama JB, Carvalho C, McCabe M, Barbosa DJ, Born A, Nichols PJ, Carvalho AX, Gassmann R, Vögeli B. A transient helix in the disordered region of dynein light intermediate chain links the motor to structurally diverse adaptors for cargo transport. PLoS Biol 2019; 17:e3000100. [PMID: 30615611 PMCID: PMC6336354 DOI: 10.1371/journal.pbio.3000100] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/17/2019] [Accepted: 12/14/2018] [Indexed: 12/14/2022] Open
Abstract
All animal cells use the motor cytoplasmic dynein 1 (dynein) to transport diverse cargo toward microtubule minus ends and to organize and position microtubule arrays such as the mitotic spindle. Cargo-specific adaptors engage with dynein to recruit and activate the motor, but the molecular mechanisms remain incompletely understood. Here, we use structural and dynamic nuclear magnetic resonance (NMR) analysis to demonstrate that the C-terminal region of human dynein light intermediate chain 1 (LIC1) is intrinsically disordered and contains two short conserved segments with helical propensity. NMR titration experiments reveal that the first helical segment (helix 1) constitutes the main interaction site for the adaptors Spindly (SPDL1), bicaudal D homolog 2 (BICD2), and Hook homolog 3 (HOOK3). In vitro binding assays show that helix 1, but not helix 2, is essential in both LIC1 and LIC2 for binding to SPDL1, BICD2, HOOK3, RAB-interacting lysosomal protein (RILP), RAB11 family-interacting protein 3 (RAB11FIP3), ninein (NIN), and trafficking kinesin-binding protein 1 (TRAK1). Helix 1 is sufficient to bind RILP, whereas other adaptors require additional segments preceding helix 1 for efficient binding. Point mutations in the C-terminal helix 1 of Caenorhabditis elegans LIC, introduced by genome editing, severely affect development, locomotion, and life span of the animal and disrupt the distribution and transport kinetics of membrane cargo in axons of mechanosensory neurons, identical to what is observed when the entire LIC C-terminal region is deleted. Deletion of the C-terminal helix 2 delays dynein-dependent spindle positioning in the one-cell embryo but overall does not significantly perturb dynein function. We conclude that helix 1 in the intrinsically disordered region of LIC provides a conserved link between dynein and structurally diverse cargo adaptor families that is critical for dynein function in vivo. A highly conserved mechanism links the microtubule minus end–directed motor dynein to structurally diverse cargo adaptors through its light intermediate chain; this interaction is crucial for dynein function in vivo. The large size and complex organization of animal cells make the correct and efficient distribution of intracellular content a challenge. The solution is to use motor proteins, which harness energy from ATP hydrolysis to walk along actin filaments or microtubules, for directional transport of cargo. The multi-subunit motor cytoplasmic dynein 1 (dynein) is responsible for transport directed toward the minus ends of microtubules. An important question is how dynein is recruited to its diverse cargo, which includes organelles such as endosomes and mitochondria, proteins, and mRNA. In this study, we use nuclear magnetic resonance spectroscopy to show that the light intermediate chain (LIC) subunit of human dynein uses a short helix in its disordered C-terminal region to bind structurally distinct adaptor proteins that connect the motor to specific cargo. We then use genome editing in the animal model C. elegans to demonstrate the functional relevance of the C-terminal LIC helix for dynein-dependent cargo transport in neurons. Thus, dynein recruitment to cargo involves a highly conserved interaction between LIC and adaptor proteins.
Collapse
Affiliation(s)
- Ricardo Celestino
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Morkos A. Henen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
- Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - José B. Gama
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Cátia Carvalho
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Maxwell McCabe
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Daniel J. Barbosa
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Alexandra Born
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Parker J. Nichols
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Ana X. Carvalho
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Reto Gassmann
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- * E-mail: (RG); (BV)
| | - Beat Vögeli
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
- * E-mail: (RG); (BV)
| |
Collapse
|
22
|
Liu HW, Wei DX, Deng JZ, Zhu JJ, Xu K, Hu WH, Xiao SH, Zhou YG. Combined antibacterial and osteogenic in situ effects of a bifunctional titanium alloy with nanoscale hydroxyapatite coating. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S460-S470. [PMID: 30260249 DOI: 10.1080/21691401.2018.1499662] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
To resolve the problems of bacterial infections and the low efficiency of osteogenesis of implanted titanium alloys in clinical dental and bone therapy, we developed a bifunctional titanium alloy (Ti) with a nano-hydroxyapatite (HA) coating (HBD + BMP/HA-Ti), which enables the sustained release of the natural antimicrobial peptide human β-defensin 3 (HBD-3) and bone morphogenetic protein-2 (BMP-2). Due to the poriferous nano-sized structure of the HA coating with a 20-30 μm thickness, the HBD + BMP/HA-Ti material had a high encapsulation efficiency (>74%) and exhibited synchronized slow release of HBD-3 and BMP-2. In an antibacterial test, HBD + BMP/HA-Ti prevented the growth of bacteria in an inoculated medium, and its surface remained free from viable bacteria after a continuous incubation with Gram-negative and Gram-positive strains for 7 days. Furthermore, good adhesion, proliferation and osteogenic differentiation of hBMSCs in contact with HBD + BMP/HA-Ti were achieved in 7 days. Therefore, the bifunctional titanium alloy HBD + BMP/HA-Ti has a great potential for eventual applications in the protection of implants against bacteria in the orthopaedic and dental clinic.
Collapse
Affiliation(s)
- Hua-Wei Liu
- a Beijing Tsinghua Changgung Hospital, School of Clinical Medicine , Tsinghua University , Beijing , China
| | - Dai-Xu Wei
- b School of Life Sciences, Tsinghua-Peking Center for Life Sciences , Tsinghua University , Beijing , China
| | - Jiu-Zheng Deng
- a Beijing Tsinghua Changgung Hospital, School of Clinical Medicine , Tsinghua University , Beijing , China
| | - Jian-Jin Zhu
- a Beijing Tsinghua Changgung Hospital, School of Clinical Medicine , Tsinghua University , Beijing , China
| | - Kai Xu
- a Beijing Tsinghua Changgung Hospital, School of Clinical Medicine , Tsinghua University , Beijing , China
| | - Wen-Hao Hu
- c Department of Orthopedics , Chinese PLA General Hospital , Beijing , China
| | - Song-Hua Xiao
- a Beijing Tsinghua Changgung Hospital, School of Clinical Medicine , Tsinghua University , Beijing , China
| | - Yong-Gang Zhou
- c Department of Orthopedics , Chinese PLA General Hospital , Beijing , China
| |
Collapse
|
23
|
Treesubsuntorn C, Dhurakit P, Khaksar G, Thiravetyan P. Effect of microorganisms on reducing cadmium uptake and toxicity in rice (Oryza sativa L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:25690-25701. [PMID: 28480489 DOI: 10.1007/s11356-017-9058-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/18/2017] [Indexed: 05/27/2023]
Abstract
This study analyzed the application of three microorganism inoculums, including Bacillus subtilis, Bacillus cereus, and commercial effective microorganism (EM) solution in order to determine cadmium (Cd) reduction in rice (Oryza sativa L.) and rice growth promotion. Rice was grown in Cd-contaminated soil (120 mg/kg) and selected microorganisms were inoculated. Cd concentration and rice weight were measured at 45 and 120 days of the experiment. The result showed that B. subtilis inoculation into rice can highly reduce Cd accumulation in every part of rice roots and shoots (45 days), and grains (120 days). This species can effectively absorb Cd compared to other inoculums, which might be the main mechanism to reduce Cd transportation in rice plants. Interestingly, plants that were inoculated with bacterial species individually harbored higher calcium (Ca) and magnesium (Mg) accumulation; B. subtilis-inoculated plants had the highest levels of Ca and Mg compared to other inoculated ones. Moreover, inoculating rice plants with these microorganisms could increase the dry weight of the plant and protect them from Cd stress because all the inoculums presented the ability to solubilize phosphate, produce indole-3-acetic acid (IAA), and control ethylene levels by 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. After 120 days, quantification of each inoculum by quantitative polymerase chain reaction (qPCR) confirmed the root colonization of bacterial species, with B. subtilis showing higher 16S rRNA gene copy numbers than the other species. B. subtilis was classified as a non-human pathogenic strain, reassuring the safe application of this plant growth-promoting bacterium as a crop inoculum.
Collapse
Affiliation(s)
- Chairat Treesubsuntorn
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology, Bangkok, 10150, Thailand
| | - Prapai Dhurakit
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Gholamreza Khaksar
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Paitip Thiravetyan
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand.
| |
Collapse
|
24
|
Di Francesco L, Verrico A, Asteriti IA, Rovella P, Cirigliano P, Guarguaglini G, Schininà ME, Lavia P. Visualization of human karyopherin beta-1/importin beta-1 interactions with protein partners in mitotic cells by co-immunoprecipitation and proximity ligation assays. Sci Rep 2018; 8:1850. [PMID: 29382863 PMCID: PMC5789818 DOI: 10.1038/s41598-018-19351-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 12/29/2017] [Indexed: 12/29/2022] Open
Abstract
Karyopherin beta-1/Importin beta-1 is a conserved nuclear transport receptor, acting in protein nuclear import in interphase and as a global regulator of mitosis. These pleiotropic functions reflect its ability to interact with, and regulate, different pathways during the cell cycle, operating as a major effector of the GTPase RAN. Importin beta-1 is overexpressed in cancers characterized by high genetic instability, an observation that highlights the importance of identifying its partners in mitosis. Here we present the first comprehensive profile of importin beta-1 interactors from human mitotic cells. By combining co-immunoprecipitation and proteome-wide mass spectrometry analysis of synchronized cell extracts, we identified expected (e.g., RAN and SUMO pathway factors) and novel mitotic interactors of importin beta-1, many with RNA-binding ability, that had not been previously associated with importin beta-1. These data complement interactomic studies of interphase transport pathways. We further developed automated proximity ligation assay (PLA) protocols to validate selected interactors. We succeeded in obtaining spatial and temporal resolution of genuine importin beta-1 interactions, which were visualized and localized in situ in intact mitotic cells. Further developments of PLA protocols will be helpful to dissect importin beta-1-orchestrated pathways during mitosis.
Collapse
Affiliation(s)
- Laura Di Francesco
- Dipartimento di Scienze Biochimiche, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.,Unit of Human Microbiome, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Annalisa Verrico
- Institute of Molecular Biology and Pathology (IBPM), CNR National Research Council of Italy, Via degli Apuli 4, 00185, Rome, Italy
| | - Italia Anna Asteriti
- Institute of Molecular Biology and Pathology (IBPM), CNR National Research Council of Italy, Via degli Apuli 4, 00185, Rome, Italy
| | - Paola Rovella
- Institute of Molecular Biology and Pathology (IBPM), CNR National Research Council of Italy, Via degli Apuli 4, 00185, Rome, Italy
| | | | - Giulia Guarguaglini
- Institute of Molecular Biology and Pathology (IBPM), CNR National Research Council of Italy, Via degli Apuli 4, 00185, Rome, Italy
| | - Maria Eugenia Schininà
- Dipartimento di Scienze Biochimiche, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Patrizia Lavia
- Institute of Molecular Biology and Pathology (IBPM), CNR National Research Council of Italy, Via degli Apuli 4, 00185, Rome, Italy.
| |
Collapse
|
25
|
Sarasamma S, Varikkodan MM, Liang ST, Lin YC, Wang WP, Hsiao CD. Zebrafish: A Premier Vertebrate Model for Biomedical Research in Indian Scenario. Zebrafish 2017; 14:589-605. [PMID: 29023224 DOI: 10.1089/zeb.2017.1447] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The zebrafish (Danio rerio) is a versatile model organism that has been used in biomedical research for several decades to study a wide range of biological phenomena. There are many technical advantages of using zebrafish over other vertebrate models. They are readily available, hardy, easy, and inexpensive to maintain in the laboratory, have a short life cycle, and have excellent fecundity. Due to its optical clarity and reproducible capabilities, it has become one of the predominant models of human genetic diseases. Zebrafish research has made rapid strides in the United States and Europe, but in India the field is at an early stage and many researchers still remain unaware of the full research potential of this tiny fish. The zebrafish model system was introduced into India in the early 2000s. Up to now, more than 200 scientific referred articles have been published by Indian researchers. This review gives an overview of the current state of knowledge for zebrafish research in India, with the aim of promoting wider utilization of zebrafish for high level biological studies.
Collapse
Affiliation(s)
- Sreeja Sarasamma
- 1 Department of Chemistry, Chung Yuan Christian University , Chung-Li, Taiwan .,2 Department of Bioscience Technology, Chung Yuan Christian University , Chung-Li, Taiwan .,3 Department of Chemical Biology, Rajiv Gandhi Centre for Biotechnology , Thiruvananthapuram, Kerala, India
| | - Muhammed Muhsin Varikkodan
- 1 Department of Chemistry, Chung Yuan Christian University , Chung-Li, Taiwan .,2 Department of Bioscience Technology, Chung Yuan Christian University , Chung-Li, Taiwan .,4 Department of Biotechnology and Genetic Engineering, Bharathidasan University , Tiruchirapalli, India
| | - Sung-Tzu Liang
- 1 Department of Chemistry, Chung Yuan Christian University , Chung-Li, Taiwan
| | - Yen-Chang Lin
- 5 Graduate Institute of Biotechnology, Chinese Culture University , Taipei, Taiwan
| | - Wen-Pin Wang
- 6 Institute of Medical Sciences, Tzu-Chi University , Hualien, Taiwan .,7 Department of Molecular Biology and Human Genetics, Tzu-Chi University , Hualien, Taiwan
| | - Chung-Der Hsiao
- 1 Department of Chemistry, Chung Yuan Christian University , Chung-Li, Taiwan .,8 Center for Biomedical Technology, Chung Yuan Christian University , Chung-Li, Taiwan .,9 Center for Nanotechnology, Chung Yuan Christian University , Chung-Li, Taiwan
| |
Collapse
|
26
|
Han L, Qian L, Liu R, Chen M, Yan J, Hu Q. Lead adsorption by biochar under the elevated competition of cadmium and aluminum. Sci Rep 2017; 7:2264. [PMID: 28536418 PMCID: PMC5442113 DOI: 10.1038/s41598-017-02353-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/10/2017] [Indexed: 11/09/2022] Open
Abstract
Competitive adsorption studies are important to accurately estimate the lead adsorption capacity on biochar in soil. The structure of biochars was evaluated by Fourier-Transform Infrared Spectroscopy and X-ray Diffraction, and the competitive of Cadmium (Cd) and Aluminum (Al) with Lead (Pb) adsorption were determined by kinetic experiments and pH effects. Adsorption kinetics indicated that the adsorption amount (mg g−1) of Pb by biochar was in the decreasing order of CM400 (90.9) > BB600 (56.5) > CM100 (29.2), the presence of the oxygen-containing functional groups, Si-containing mineral, PO43− and CO32− significantly contributed to Pb adsorption by biochars. With the presence of Cd, Pb adsorption amount was reduced by 42.6%, 23.7% and 19.3% for CM100, CM400 and BB600, respectively. The Si-containing mineral, PO43− and CO32− that were rich in CM400 and BB600 has led to less competition by Cd. In addition, Al showed a strong competition with Pb leading to the adsorption being reduced by 95.8%, 82.3% and 80.6%, respectively for CM100, CM400 and BB600. This was mainly attributed to the additional acidification effect by Al resulting in a counteractive of biochar’s liming effect. Results from this study are important for accurately estimating the heavy metal adsorption by biochar in soil.
Collapse
Affiliation(s)
- Lu Han
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Linbo Qian
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Rongqin Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.,School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Mengfang Chen
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jingchun Yan
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Qinhong Hu
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|