1
|
Kersten S, Taschke H, Vorländer M. Influence of the cochlear partition's flexibility on the macro mechanisms in the inner ear. Hear Res 2024; 453:109127. [PMID: 39447318 DOI: 10.1016/j.heares.2024.109127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/18/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024]
Abstract
Recent studies have highlighted the anatomy of the cochlear partition (CP), revealing insights into the flexible nature of the osseous spiral lamina (OSL) and the existence of a flexible cochlear partition bridge (CPB) between the OSL and the basilar membrane (BM). However, most existing inner ear models treat the OSL as a rigid structure and ignore the CPB, neglecting their potential impact on intracochlear sound pressure and motion of the BM. In this paper, we investigate the effect of the CP's flexibility by including the OSL and CPB as either rigid or flexible structures in a numerical anatomical model of the human inner ear. Our findings demonstrate that the flexibility of the OSL and the presence of the CPB significantly affect cochlear macro mechanisms, including differential intracochlear sound pressure, resistive behavior in cochlear impedances, CP stiffness, and BM velocity. These results emphasize the importance of considering the flexibility of the entire CP to enhance our understanding of cochlear function and to accurately interpret experimental data on inner ear mechanics.
Collapse
Affiliation(s)
- Simon Kersten
- Institute for Hearing Technology and Acoustics, RWTH Aachen University, Aachen, Germany.
| | - Henning Taschke
- formerly at: Institute of Communication Acoustics, Ruhr University Bochum, Bochum, Germany
| | - Michael Vorländer
- Institute for Hearing Technology and Acoustics, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
2
|
Tubelli AA, Secchia PA, Nakajima HH, Puria S. Computational model of the human cochlea with motion of the layered osseous spiral lamina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.16.608342. [PMID: 39229101 PMCID: PMC11370453 DOI: 10.1101/2024.08.16.608342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Purpose In the base of the human cochlea, the partition anatomy is distinct from the commonly recognized anatomy of laboratory animals. The human features a radially wide, osseous spiral lamina (OSL) and a soft-tissue bridge region that connects the OSL to the basilar membrane proper. In addition to the basilar membrane, the human OSL and bridge move considerably. We investigated the complex cochlear partition in human emphasizing the layered structure of the OSL with a finite element model. Model results were calibrated with experimental measurements of motion from optical coherence tomography. Methods The box model contained two fluid chambers separated by a cochlear partition and a helicotrema. Model geometrical and material properties either came from literature, measurements, or were tuned to produce a frequency-place map for the passive human cochlea as well as motion results similar to experimental measurements. Results The model motion results of the cochlear partition were similar to experimental results mostly within 5 dB but with differences at the high frequencies in both magnitude and phase beyond the best frequency. Around the best frequency location, the radial profile of cochlear partition motion was generally similar in both shape and magnitude. Sensitivity analysis, changing material-property parameters of the middle layer where the cochlear nerve fibers run between the layers of OSL plates, produced small changes in the model response and also showed negligible stress compared to the outer OSL plates. Conclusion These results suggest that the layered OSL anatomy is favorable as a conduit and protection for the nerve fibers while simultaneously functioning as a mechanical lever.
Collapse
Affiliation(s)
| | - Paul A Secchia
- Eaton-Peabody Laboratories, Mass Eye and Ear, Boston, MA, USA
- Speech and Hearing Bioscience and Technology Program, Harvard University, Boston, MA, USA
| | - Hideko Heidi Nakajima
- Eaton-Peabody Laboratories, Mass Eye and Ear, Boston, MA, USA
- Speech and Hearing Bioscience and Technology Program, Harvard University, Boston, MA, USA
- Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Sunil Puria
- Eaton-Peabody Laboratories, Mass Eye and Ear, Boston, MA, USA
- Speech and Hearing Bioscience and Technology Program, Harvard University, Boston, MA, USA
- Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
de Sousa Lobo Ferreira Querido R, Ji X, Lakha R, Goodyear RJ, Richardson GP, Vizcarra CL, Olson ES. Visualizing Collagen Fibrils in the Cochlea's Tectorial and Basilar Membranes Using a Fluorescently Labeled Collagen-Binding Protein Fragment. J Assoc Res Otolaryngol 2023; 24:147-157. [PMID: 36725777 PMCID: PMC10121988 DOI: 10.1007/s10162-023-00889-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/16/2023] [Indexed: 02/03/2023] Open
Abstract
PURPOSE A probe that binds to unfixed collagen fibrils was used to image the shapes and fibrous properties of the TM and BM. The probe (CNA35) is derived from the bacterial adhesion protein CNA. We present confocal images of hydrated gerbil TM, BM, and other cochlear structures stained with fluorescently labeled CNA35. A primary purpose of this article is to describe the use of the CNA35 collagen probe in the cochlea. METHODS Recombinant poly-histidine-tagged CNA35 was expressed in Escherichia coli, purified by cobalt-affinity chromatography, fluorescence labeled, and further purified by gel filtration chromatography. Cochleae from freshly harvested gerbil bullae were irrigated with and then incubated in CNA35 for periods ranging from 2 h - overnight. The cochleae were fixed, decalcified, and dissected. Isolated cochlear turns were imaged by confocal microscopy. RESULTS The CNA35 probe stained the BM and TM, and volumetric imaging revealed the shape of these structures and the collagen fibrils within them. The limbal zone of the TM stained intensely. In samples from the cochlear base, intense staining was detected on the side of the TM that faces hair cells. In the BM pectinate zone, staining was intense at the upper and lower boundaries. The BM arcuate zone was characterized by a prominent longitudinal collagenous structure. The spiral ligament, limbus and lamina stained for collagen, and within the spiral limbus the habenula perforata were outlined with intense staining. CONCLUSION The CNA35 probe provides a unique and useful view of collagenous structures in the cochlea.
Collapse
Affiliation(s)
| | - Xiang Ji
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Chemistry, Barnard College, New York, NY, USA
| | - Rabina Lakha
- Department of Chemistry, Barnard College, New York, NY, USA
| | - Richard J Goodyear
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK
| | - Guy P Richardson
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK
| | | | - Elizabeth S Olson
- Department of Otolaryngology, Head and Neck Surgery, Columbia University, New York, NY, USA.
- Department of Biomedical Engineering, Columbia University, New York, NY, USA.
| |
Collapse
|
4
|
Cho NH, Puria S. Cochlear motion across the reticular lamina implies that it is not a stiff plate. Sci Rep 2022; 12:18715. [PMID: 36333415 PMCID: PMC9636238 DOI: 10.1038/s41598-022-23525-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Within the cochlea, the basilar membrane (BM) is coupled to the reticular lamina (RL) through three rows of piezo-like outer hair cells (OHCs) and supporting cells that endow mammals with sensitive hearing. Anatomical differences across OHC rows suggest differences in their motion. Using optical coherence tomography, we measured in vivo and postmortem displacements through the gerbil round-window membrane from approximately the 40-47 kHz best-frequency (BF) regions. Our high spatial resolution allowed measurements across the RL surface at the tops of the three rows of individual OHCs and their bottoms, and across the BM. RL motion varied radially; the third-row gain was more than 3 times greater than that of the first row near BF, whereas the OHC-bottom motions remained similar. This implies that the RL mosaic, comprised of OHC and phalangeal-process tops joined together by adhesion molecules, is much more flexible than the Deiters' cells connected to the OHCs at their bottom surfaces. Postmortem, the measured points moved together approximately in phase. These imply that in vivo, the RL does not move as a stiff plate hinging around the pillar-cell heads near the first row as has been assumed, but that its mosaic-like structure may instead bend and/or stretch.
Collapse
Affiliation(s)
- Nam Hyun Cho
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, 02114, USA
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, 02114, USA
| | - Sunil Puria
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, 02114, USA.
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, 02114, USA.
- Speech and Hearing Bioscience and Technology Program, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
5
|
Cho NH, Wang H, Puria S. Cochlear Fluid Spaces and Structures of the Gerbil High-Frequency Region Measured Using Optical Coherence Tomography (OCT). J Assoc Res Otolaryngol 2022; 23:195-211. [PMID: 35194695 PMCID: PMC8964889 DOI: 10.1007/s10162-022-00836-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 01/04/2022] [Indexed: 10/19/2022] Open
Abstract
Since it has been difficult to directly observe the morphology of the living cochlea, our ability to infer the mechanical functioning of the living ear has been limited. Nearly all our knowledge about cochlear morphology comes from postmortem tissue that was fixed and processed using procedures that possibly distort the structures and fluid spaces of the organ of Corti. In this study, optical coherence tomography was employed to obtain volumetric images of the high-frequency hook region of the gerbil cochlea, as viewed through the round window, with far better resolution capability than had been possible before. The anatomical structures and fluid spaces of the organ of Corti were segmented and quantified in vivo and over a 90-min postmortem period. We find that the arcuate-zone and pectinate-zone widths change very little postmortem. The volume of the scala tympani between the round-window membrane and basilar membrane and the volume of the inner spiral sulcus decrease in the first 60-min postmortem. While textbook drawings of the mammalian organ of Corti and cortilymph prominently depict the tunnel of Corti, the outer tunnel is typically missing. This is likely because textbook drawings are typically made from images obtained by histological methods. Here, we show that the outer tunnel is nearly twice as big as the tunnel of Corti or the space of Nuel. This larger outer tunnel fluid space could have a substantial, little-appreciated effect on cochlear micromechanics. We speculate that the outer tunnel forms a resonant structure that may affect reticular-lamina motion.
Collapse
Affiliation(s)
- Nam Hyun Cho
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, 02114, USA
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, 02114, USA
| | - Haobing Wang
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, 02114, USA
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, 02114, USA
| | - Sunil Puria
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, 02114, USA.
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, 02114, USA.
- Speech and Hearing Bioscience and Technology Program, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
6
|
Frost BL, Strimbu CE, Olson ES. Using volumetric optical coherence tomography to achieve spatially resolved organ of Corti vibration measurements. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 151:1115. [PMID: 35232061 PMCID: PMC8853734 DOI: 10.1121/10.0009576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/03/2022] [Accepted: 01/26/2022] [Indexed: 05/22/2023]
Abstract
Optical coherence tomography (OCT) has become a powerful tool for measuring vibrations within the organ of Corti complex (OCC) in cochlear mechanics experiments. However, the one-dimensional nature of OCT measurements, combined with experimental and anatomical constraints, make these data ambiguous: Both the relative positions of measured structures and their orientation relative to the direction of measured vibrations are not known a priori. We present a method by which these measurement features can be determined via the use of a volumetric OCT scan to determine the relationship between the imaging/measurement axes and the canonical anatomical axes. We provide evidence that the method is functional by replicating previously measured radial vibration patterns of the basilar membrane (BM). We used the method to compare outer hair cell and BM vibration phase in the same anatomical cross section (but different optical cross sections), and found that outer hair cell region vibrations lead those of the BM across the entire measured frequency range. In contrast, a phase lead is only present at low frequencies in measurements taken within a single optical cross section. Relative phase is critical to the workings of the cochlea, and these results emphasize the importance of anatomically oriented measurement and analysis.
Collapse
Affiliation(s)
- Brian L Frost
- Department of Electrical Engineering, Columbia University, 500 W. 120th St., Mudd 1310, New York, New York 1002, USA
| | - Clark Elliott Strimbu
- Department of Otolaryngology Head and Neck Surgery, Vagelos College of Physicians and Surgeons, Columbia University, 630 W. 168th St., New York, New York 10032, USA
| | - Elizabeth S Olson
- Department of Otolaryngology Head and Neck Surgery, Vagelos College of Physicians and Surgeons, Columbia University, 630 W. 168th St., New York, New York 10032, USA
| |
Collapse
|
7
|
Fallah E, Strimbu CE, Olson ES. Nonlinearity of intracochlear motion and local cochlear microphonic: Comparison between guinea pig and gerbil. Hear Res 2021; 405:108234. [PMID: 33930834 DOI: 10.1016/j.heares.2021.108234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/08/2021] [Accepted: 03/26/2021] [Indexed: 12/19/2022]
Abstract
Studying the in-vivo mechanical and electrophysiological cochlear responses in several species helps us to have a comprehensive view of the sensitivity and frequency selectivity of the cochlea. Different species might use different mechanisms to achieve the sharp frequency-place map. The outer hair cells (OHC) play an important role in mediating frequency tuning. In the present work, we measured the OHC-generated local cochlear microphonic (LCM) and the motion of different layers in the organ of Corti using optical coherence tomography (OCT) in the first turn of the cochlea in guinea pig. In the best frequency (BF) band, our observations were similar to our previous measurements in gerbil: a nonlinear peak in LCM responses and in the basilar membrane (BM) and OHC-region displacements, and higher motion in the OHC region than the BM. Sub-BF the responses in the two species were different. In both species the sub-BF displacement of the BM was linear and LCM was nonlinear. Sub-BF in the OHC-region, nonlinearity was only observed in a subset of healthy guinea pig cochleae while in gerbil, robust nonlinearity was observed in all healthy cochleae. The differences suggest that gerbils and guinea pigs employ different mechanisms for filtering sub-BF OHC activity from BM responses. However, it cannot be ruled out that the differences are due to technical measurement differences across the species.
Collapse
Affiliation(s)
- Elika Fallah
- Department of Biomedical Engineering, Columbia University, New York City, NY, United States
| | - C Elliott Strimbu
- Department of Otolaryngology-Head and Neck Surgery, Columbia University, New York City, NY, United States
| | - Elizabeth S Olson
- Department of Biomedical Engineering, Columbia University, New York City, NY, United States; Department of Otolaryngology-Head and Neck Surgery, Columbia University, New York City, NY, United States.
| |
Collapse
|
8
|
Kozhevnikova JD, Volodin IA, Zaytseva AS, Ilchenko OG, Volodina EV. Pup ultrasonic isolation calls of six gerbil species and the relationship between acoustic traits and body size. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201558. [PMID: 33959325 PMCID: PMC8074943 DOI: 10.1098/rsos.201558] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/10/2021] [Indexed: 05/04/2023]
Abstract
Among Gerbillinae rodents, ultrasonic calls of adults of small-sized species are typically higher frequency than those of adults of large-sized species. This study investigates whether a similar relationship can be found in pups of six gerbil species (Dipodillus campestris, Gerbillus perpallidus, Meriones unguiculatus, Meriones vinogradovi, Sekeetamys calurus and Pachyuromys duprasi). We compared the average values of acoustic variables (duration, fundamental and peak frequency) of ultrasonic calls (20 calls per pup, 1200 in total) recorded from 6- to 10-day-old pups (10 pups per species, 60 in total) isolated for 2 min at 22°C and then weighed and measured for body variables. The longest calls (56 ± 33 ms) were found in the largest species, and the highest frequency calls (74.8 ± 5.59 kHz) were found in the smallest species. However, across species, call duration (ranging from 56 to 159 ms among species) did not display a significant relationship with pup body size; and, among frequency variables, only the minimum fundamental frequency depended on pup body size. Discriminant analysis assigned 100% of calls to the correct species. The effect of species identity on the acoustics was stronger than the effect of body size. We discuss these results with the hypotheses of acoustic adaptation, social complexity, hearing ranges and phylogeny.
Collapse
Affiliation(s)
- Julia D. Kozhevnikova
- Department of Vertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Vorobievy Gory, 1/12, 119234 Moscow, Russia
| | - Ilya A. Volodin
- Department of Vertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Vorobievy Gory, 1/12, 119234 Moscow, Russia
- Department of Behaviour and Behavioural Ecology, A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow 119071, Russia
| | - Alexandra S. Zaytseva
- Department of Vertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Vorobievy Gory, 1/12, 119234 Moscow, Russia
- Department of Small Mammals, Moscow Zoo, Moscow, Russia
| | | | - Elena V. Volodina
- Department of Behaviour and Behavioural Ecology, A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow 119071, Russia
| |
Collapse
|
9
|
Russell IJ, Lukashkina VA, Levic S, Cho YW, Lukashkin AN, Ng L, Forrest D. Emilin 2 promotes the mechanical gradient of the cochlear basilar membrane and resolution of frequencies in sound. SCIENCE ADVANCES 2020; 6:eaba2634. [PMID: 32577518 PMCID: PMC7286672 DOI: 10.1126/sciadv.aba2634] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
The detection of different frequencies in sound is accomplished with remarkable precision by the basilar membrane (BM), an elastic, ribbon-like structure with graded stiffness along the cochlear spiral. Sound stimulates a wave of displacement along the BM with maximal magnitude at precise, frequency-specific locations to excite neural signals that carry frequency information to the brain. Perceptual frequency discrimination requires fine resolution of this frequency map, but little is known of the intrinsic molecular features that demarcate the place of response on the BM. To investigate the role of BM microarchitecture in frequency discrimination, we deleted extracellular matrix protein emilin 2, which disturbed the filamentous organization in the BM. Emilin2 -/- mice displayed broadened mechanical and neural frequency tuning with multiple response peaks that are shifted to lower frequencies than normal. Thus, emilin 2 confers a stiffness gradient on the BM that is critical for accurate frequency resolution.
Collapse
Affiliation(s)
- Ian J. Russell
- Sensory Neuroscience Research Group, School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Brighton BN2 4GJ, UK
| | - Victoria A. Lukashkina
- Sensory Neuroscience Research Group, School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Brighton BN2 4GJ, UK
| | - Snezana Levic
- Sensory Neuroscience Research Group, School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Brighton BN2 4GJ, UK
- Brighton and Sussex Medical School, University of Sussex, Brighton BN1 9PX, UK
| | - Young-Wook Cho
- Laboratory of Endocrinology and Receptor Biology, NIDDK, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Andrei N. Lukashkin
- Sensory Neuroscience Research Group, School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Brighton BN2 4GJ, UK
| | - Lily Ng
- Laboratory of Endocrinology and Receptor Biology, NIDDK, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Douglas Forrest
- Laboratory of Endocrinology and Receptor Biology, NIDDK, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| |
Collapse
|
10
|
Altoè A, Shera CA. Nonlinear cochlear mechanics without direct vibration-amplification feedback. PHYSICAL REVIEW RESEARCH 2020; 2:013218. [PMID: 33403361 PMCID: PMC7781069 DOI: 10.1103/physrevresearch.2.013218] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recent in vivo recordings from the mammalian cochlea indicate that although the motion of the basilar membrane appears actively amplified and nonlinear only at frequencies relatively close to the peak of the response, the internal motions of the organ of Corti display these same features over a much wider range of frequencies. These experimental findings are not easily explained by the textbook view of cochlear mechanics, in which cochlear amplification is controlled by the motion of the basilar membrane (BM) in a tight, closed-loop feedback configuration. This study shows that a simple phenomenological model of the cochlea inspired by the work of Zweig [J. Acoust. Soc. Am. 138, 1102 (2015)] can account for recent data in mouse and gerbil. In this model, the active forces are regulated indirectly, through the effect of BM motion on the pressure field across the cochlear partition, rather than via direct coupling between active-force generation and BM vibration. The absence of strong vibration-amplification feedback in the cochlea also provides a compelling explanation for the observed intensity invariance of fine time structure in the BM response to acoustic clicks.
Collapse
Affiliation(s)
| | - Christopher A. Shera
- Auditory Research Center, Caruso Department of Otolaryngology, University of Southern California, Los Angeles, California 90033, USA
- Department of Physics & Astronomy, University of Southern California, California 90089, USA
| |
Collapse
|
11
|
Cochlear partition anatomy and motion in humans differ from the classic view of mammals. Proc Natl Acad Sci U S A 2019; 116:13977-13982. [PMID: 31235601 DOI: 10.1073/pnas.1900787116] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mammals detect sound through mechanosensitive cells of the cochlear organ of Corti that rest on the basilar membrane (BM). Motions of the BM and organ of Corti have been studied at the cochlear base in various laboratory animals, and the assumption has been that the cochleas of all mammals work similarly. In the classic view, the BM attaches to a stationary osseous spiral lamina (OSL), the tectorial membrane (TM) attaches to the limbus above the stationary OSL, and the BM is the major moving element, with a peak displacement near its center. Here, we measured the motion and studied the anatomy of the human cochlear partition (CP) at the cochlear base of fresh human cadaveric specimens. Unlike the classic view, we identified a soft-tissue structure between the BM and OSL in humans, which we name the CP "bridge." We measured CP transverse motion in humans and found that the OSL moved like a plate hinged near the modiolus, with motion increasing from the modiolus to the bridge. The bridge moved almost as much as the BM, with the maximum CP motion near the bridge-BM connection. BM motion accounts for 100% of CP volume displacement in the classic view, but accounts for only 27 to 43% in the base of humans. In humans, the TM-limbus attachment is above the moving bridge, not above a fixed structure. These results challenge long-held assumptions about cochlear mechanics in humans. In addition, animal apical anatomy (in SI Appendix) doesn't always fit the classic view.
Collapse
|
12
|
Cochlear amplification and tuning depend on the cellular arrangement within the organ of Corti. Proc Natl Acad Sci U S A 2018; 115:5762-5767. [PMID: 29760098 PMCID: PMC5984506 DOI: 10.1073/pnas.1720979115] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The field of cochlear mechanics has been undergoing a revolution due to recent findings made possible by advancements in measurement techniques. While it has long been assumed that basilar-membrane (BM) motion is the most important determinant of sound transduction by the inner hair cells (IHCs), it turns out that other parts of the sensory epithelium closer to the IHCs, such as the reticular lamina (RL), move with significantly greater amplitude for weaker sounds. It has not been established how these findings are related to the complex cytoarchitecture of the organ of Corti between the BM and RL, which is composed of a lattice of asymmetric Y-shaped elements, each consisting of a basally slanted outer hair cell (OHC), an apically slanted phalangeal process (PhP), and a supporting Deiters' cell (DC). Here, a computational model of the mouse cochlea supports the hypothesis that the OHC micromotors require this Y-shaped geometry for their contribution to the exquisite sensitivity and frequency selectivity of the mammalian cochlea. By varying only the OHC gain parameter, the model can reproduce measurements of BM and RL gain and tuning for a variety of input sound levels. Malformations such as reversing the orientations of the OHCs and PhPs or removing the PhPs altogether greatly reduce the effectiveness of the OHC motors. These results imply that the DCs and PhPs must be properly accounted for in emerging OHC regeneration therapies.
Collapse
|
13
|
Gauvin DV, Yoder J, Zimmermann ZJ, Tapp R. Ototoxicity: The Radical Drum Beat and Rhythm of Cochlear Hair Cell Life and Death. Int J Toxicol 2018; 37:195-206. [PMID: 29575954 DOI: 10.1177/1091581818761128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The function and structure of the auditory information processing system establishes a unique sensory environment for the "perfect storm." The battle between life and death pits the cascade of an apoptotic storm, programmed cell death cascades, against simple cell death (necrosis) pathways. Live or die, the free radical biology of oxygen and hydroxylation, and the destruction of transition metal migration through the mechanical gate sensory processes of the hair cell lead to direct access to the cytoplasm, cytoplasmic reticulum, and mitochondria of the inner workings of the hair cells. These lead to subsequent interactions with nuclear DNA resulting in permanent hearing loss. The yin and yang of pharmaceutical product development is to document what kills, why it kills, and how do we mitigate it. This review highlights the processes of cell death within the cochlea.
Collapse
Affiliation(s)
- David V Gauvin
- 1 Neurobehavioral Sciences Department, MPI Research, Inc., Mattawan, MI, USA
| | - Joshua Yoder
- 1 Neurobehavioral Sciences Department, MPI Research, Inc., Mattawan, MI, USA
| | | | - Rachel Tapp
- 1 Neurobehavioral Sciences Department, MPI Research, Inc., Mattawan, MI, USA
| |
Collapse
|
14
|
Marnell D, Jabeen T, Nam JH. Hydrostatic measurement and finite element simulation of the compliance of the organ of Corti complex. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 143:735. [PMID: 29495686 PMCID: PMC5803005 DOI: 10.1121/1.5023206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 12/15/2017] [Accepted: 01/17/2018] [Indexed: 06/08/2023]
Abstract
In the mammalian cochlea, the geometrical and mechanical properties of the organ of Corti complex (OCC, consisting of the tectorial membrane, the organ of Corti, and the basilar membrane) have fundamental consequences for understanding the physics of hearing. Despite efforts to correlate the mechanical properties of the OCC with cochlear function, experimental data of OCC stiffness are limited due to difficulties in measurement. Modern measurements of the OCC stiffness use microprobes exclusively, but suffer ambiguity when defining the physiologically relevant stiffness due to the high nonlinearity in the force-displacement relationship. The nonlinearity stems from two sources. First, microprobes apply local force instead of fluid pressure across the OCC. Second, to obtain the functionally relevant stiffness, the OCC is deformed well beyond in vivo levels (>10 μm). The objective of this study was to develop an alternative technique to overcome challenges intrinsic to the microprobe method. Using a custom-designed microfluidic chamber system, hydrostatic pressures were applied to the excised gerbil cochlea. Deformations of the OCC due to hydrostatic pressures were analyzed through optical-axis image correlation. The pressure-displacement relationship was linear within nanoscale displacement ranges (<1 μm). To compare the results in this paper with existing measurements, a three-dimensional finite element model was used.
Collapse
Affiliation(s)
- Daniel Marnell
- Department of Biomedical Engineering, University of Rochester, 204 Goergen Hall, Rochester, New York 14627, USA
| | - Talat Jabeen
- Department of Biomedical Engineering, University of Rochester, 204 Goergen Hall, Rochester, New York 14627, USA
| | - Jong-Hoon Nam
- Department of Mechanical Engineering, University of Rochester, 212 Hopeman Engineering Building, Rochester, New York 14627, USA
| |
Collapse
|