1
|
Ames SR, Lotoski LC, Rodriguez L, Brodin P, Mandhane PJ, Moraes TJ, Simons E, Turvey SE, Subbarao P, Azad MB. Human milk feeding practices and serum immune profiles of one-year-old infants in the CHILD birth cohort study. Am J Clin Nutr 2025; 121:60-73. [PMID: 39486685 PMCID: PMC11747196 DOI: 10.1016/j.ajcnut.2024.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/08/2024] [Accepted: 10/16/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Breastfeeding and human milk consumption are associated with immune system development; however, the underlying mechanisms and the impact of different infant feeding practices are unclear. OBJECTIVES This study aimed to investigate how current human milk feeding (HMF) status is related to infant immune biomarker profiles, as well as explore relationships with HMF history (i.e., duration, exclusivity, and method: directly from the breast or pumped and bottled). METHODS This observational birth cohort study involved 605 infants from the Canadian CHILD Cohort Study. Infant feeding was captured from hospital birth records and parent questionnaires. Ninety-two biomarkers reflecting immune system activity and development were measured in serum collected at 1 y (12.6 ± 1.4 mo) using the Olink Target 96 Inflammation panel. Associations were determined using multivariable regression (adjusted for sex, time until blood sample centrifugation, and study site). RESULTS Nearly half (42.6%) of infants were still receiving HMF at the time of blood sampling. Compared with non-HMF infants, HMF infants had higher levels of serum fibroblast growth factor 21 (FGF-21, adjusted standardized β coefficient: 0.56; 95% CI: 0.41, 0.72), cluster of differentiation 244 (CD244, β: 0.35; 95% CI: 0.19, 0.50), chemokine ligand 6 (CXCL6, β: 0.34; 95% CI: 0.18, 0.50), and chemokine ligand 20 (CCL20, β: 0.26; 95% CI: 0.09, 0.42) and lower extracellular newly identified receptor for advanced glycation end-products binding protein (EN-RAGE, β: -0.16; 95% CI: -0.29, -0.03). Among non-HMF infants, serum interleukin 7 (IL-7) had a marginally positive association with past HMF duration (β: 0.05; 95% CI: 0.02, 0.08) that persisted for ≤5 mo post-HMF cessation. Exclusive HMF duration and HMF method (at 3 mo of age) were not associated with any biomarkers. CONCLUSIONS Current HMF status and (to a lesser extent) HMF history are associated with several inflammation-associated biomarkers in 1-y-old infants. These results provide new evidence that HMF impacts immune activity and development and suggest hypotheses about the underlying mechanisms. They also highlight the importance of including current HMF status in immune system-focused infant serum proteomic studies.
Collapse
Affiliation(s)
- Spencer R Ames
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada; Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Larisa C Lotoski
- Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada; Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lucie Rodriguez
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Petter Brodin
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden; Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | | | - Theo J Moraes
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Elinor Simons
- Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada; Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Stuart E Turvey
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Padmaja Subbarao
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Meghan B Azad
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada; Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada; Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
2
|
Zhang T, Jiang D, Zhang X, Chen L, Jiang J, Zhang C, Li S, Li Q. The role of nonmyocardial cells in the development of diabetic cardiomyopathy and the protective effects of FGF21: a current understanding. Cell Commun Signal 2024; 22:446. [PMID: 39327594 PMCID: PMC11426003 DOI: 10.1186/s12964-024-01842-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) represents a unique myocardial disease originating from diabetic metabolic disturbances that is characterized by myocardial fibrosis and diastolic dysfunction. While recent research regarding the pathogenesis and treatment of DCM has focused primarily on myocardial cells, nonmyocardial cells-including fibroblasts, vascular smooth muscle cells (VSMCs), endothelial cells (ECs), and immune cells-also contribute significantly to the pathogenesis of DCM. Among various therapeutic targets, fibroblast growth factor 21 (FGF21) has been identified as a promising agent because of its cardioprotective effects that extend to nonmyocardial cells. In this review, we aim to elucidate the role of nonmyocardial cells in DCM and underscore the potential of FGF21 as a therapeutic strategy for these cells.
Collapse
Affiliation(s)
- Tianyi Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Donghui Jiang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xiao Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Ligang Chen
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jun Jiang
- Department of General Surgery (Thyroid Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, China
| | - Chunxiang Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Shengbiao Li
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Qiuhong Li
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
3
|
Trusz GJ. Fibroblast growth factor 21. Differentiation 2024; 139:100793. [PMID: 38991938 DOI: 10.1016/j.diff.2024.100793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 06/23/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024]
Abstract
Fibroblast growth factor 21 (FGF21) belongs to the FGF19 subfamily and acts systemically, playing a key role in inter-organ crosstalk. Ranging from metabolism, reproduction, and immunity, FGF21 is a pleiotropic hormone which contributes to various physiological processes. Although most of its production across species stems from hepatic tissues, expression of FGF21 in mice has also been identified in adipose tissue, thymus, heart, pancreas, and skeletal muscle. Elevated FGF21 levels are affiliated with various diseases and conditions, such as obesity, type 2 diabetes, preeclampsia, as well as cancer. Murine knockout models are viable and show modest weight gain, while overexpression and gain-of-function models display resistance to weight gain, altered bone volume, and enhanced immunity. In addition, FGF21-based therapies are at the forefront of biopharmaceutical strategies aimed at treating metabolic dysfunction-associated steatotic liver disease.
Collapse
Affiliation(s)
- Guillaume J Trusz
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| |
Collapse
|
4
|
Yang L, Nao J. Focus on Alzheimer's Disease: The Role of Fibroblast Growth Factor 21 and Autophagy. Neuroscience 2023; 511:13-28. [PMID: 36372296 DOI: 10.1016/j.neuroscience.2022.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/24/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
Alzheimer's disease (AD) is a disorder of the central nervous system that is typically marked by progressive cognitive impairment and memory loss. Amyloid β plaque deposition and neurofibrillary tangles with hyperphosphorylated tau are the two hallmark pathologies of AD. In mammalian cells, autophagy clears aberrant protein aggregates, thus maintaining proteostasis as well as neuronal health. Autophagy affects production and metabolism of amyloid β and accumulation of phosphorylated tau proteins, whose malfunction can lead to the progression of AD. On the other hand, defective autophagy has been found to induce the production of the neuroprotective factor fibroblast growth factor 21 (FGF21), although the underlying mechanism is unclear. In this review, we highlight the significance of aberrant autophagy in the pathogenesis of AD, discuss the possible mechanisms by which defective autophagy induces FGF21 production, and analyze the potential of FGF21 in the treatment of AD. The findings provide some insights into the potential role of FGF21 and autophagy in the pathogenesis of AD.
Collapse
Affiliation(s)
- Lan Yang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jianfei Nao
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
5
|
Activation of macrophages mediates dietary restriction-induced splenic involution. Life Sci 2022; 310:121068. [DOI: 10.1016/j.lfs.2022.121068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 09/29/2022] [Accepted: 10/07/2022] [Indexed: 11/09/2022]
|
6
|
Li Y, Chen X. Progress on methods of T lymphocyte development in vitro. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51:491-499. [PMID: 37202105 PMCID: PMC10265001 DOI: 10.3724/zdxbyxb-2021-0369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/20/2022] [Indexed: 05/20/2023]
Abstract
T lymphocytes (T cells) play an important role in adoptive cellular immunotherapy (ACT). T cells can be stably derived and easily obtained by various methods of T cell development in vitro, which have more advantages than traditional methods of T cells isolated from autologous or allogeneic tissues. At present, there are mainly three methods for T cell development in vitro: fetal thymus organ culture, recombinant thymus organ culture and two-dimensional culture driven by Notch signal. Fetal thymus organ culture is easy to operate, the isolated thymus can support T cell differentiation and development to maturity in vitro, but the intact thymus has problems of limited maintenance time and difficulty in cell harvesting. In recombinant thymic organ culture, various thymic stromal cells are dispersed and recombined to construct a three-dimensional culture environment, which can support T cell maturation in vitro and in vivo; however, biomaterials and three-dimensional environment may lead to limited culture maintenance time and cell yield. Two-dimensional culture method uses artificial presentation of Notch signaling pathway ligands to drive T cell differentiation and development; the culture architecture is simple and stable, but it can only support T cell development to the early immature stage. This article reviews the research progress of various culture methods of T cell development in vitro, and discusses the existing problems and the future development to facilitate the application of ACT.
Collapse
|
7
|
Wakitani S, Kawabata R, Yasuda M. Insufficiency of CD205-positive cortical thymic epithelial cells in immature Japanese Black cattle with severe thymic abnormalities and poor prognosis. Vet Immunol Immunopathol 2022; 245:110379. [PMID: 35038635 DOI: 10.1016/j.vetimm.2021.110379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/21/2021] [Accepted: 12/31/2021] [Indexed: 11/19/2022]
Abstract
To investigate the involvement of thymic function in the development of diseases with poor prognosis in calves, this study conducted a survey for the assessment of thymus cell composition in immature Japanese Black cattle with poor prognosis. Histopathological evaluation of 47 cattle showed signs of acute thymic involution in most cases. Less than half of the cases had a cortex predominant over the medulla in the thymic parenchyma, and a quarter of the cases indicated severe histological condition with an unclear boundary between the cortex and medulla. Correlation analysis revealed a close relationship between the corresponding stages of acute involution, cortical occupancy, and the expression of CD4, CD8B, and CD205. When cases were grouped by cortical occupancy, the expression of CD4 and CD8B expression was lower in the severe group with less than 25 % cortical occupancy, and the expression of CD205 was lower in the group with an unclear cortical-medullary boundary. Meanwhile, there was no difference in the expressions of IL7, CD80, FEZF2, and FOXN1 according to cortical occupancy. Immunohistochemistry has shown that cytokeratin-positive thymic epithelial cells are more densely populated in the severe thymus. UEA-I-binding medullary thymic epithelial cells were also present, but CD205-positive cortical thymic epithelial cells were rare in severe thymus. Moreover, there were significantly fewer Ki-67-positive cells in cattle with severe thymus. Therefore, these results indicate that thymic histological abnormalities frequently occur in immature cattle with a poor prognosis, and the presence of CD205-positive cortical thymic epithelial cells is associated with the severity of the abnormalities.
Collapse
Affiliation(s)
- Shoichi Wakitani
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan.
| | - Risako Kawabata
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| | - Masahiro Yasuda
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| |
Collapse
|
8
|
Effects of interleukin-1 antagonism and corticosteroids on fibroblast growth factor-21 in patients with metabolic syndrome. Sci Rep 2021; 11:7911. [PMID: 33846498 PMCID: PMC8041761 DOI: 10.1038/s41598-021-87207-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/25/2021] [Indexed: 02/01/2023] Open
Abstract
Fibroblast growth factor-21 (FGF21) is elevated in patients with the metabolic syndrome. Although the exact underlying mechanisms remain ill-defined, chronic low-grade inflammation with increased Interleukin-(IL)-1β expression may be responsible. The aim of this study was to investigate effects of two different anti-inflammatory treatments (IL-1 antagonism or high-dose corticosteroids) on FGF21 in patients with the metabolic syndrome. This is a secondary analysis of two interventional studies in patients with obesity and features of the metabolic syndrome. Trial A was an interventional trial (n = 73) investigating short-term effects of the IL-1 antagonist anakinra and of dexamethasone. Trial B was a randomized, placebo-controlled, double-blinded trial (n = 67) investigating longer-term effects of IL-1 antagonism. In total, 140 patients were included in both trials. Median age was 55 years (IQR 44-66), 26% were female and median BMI was 37 kg/m2 (IQR 34-39). Almost half of the patients were diabetic (45%) and had increased c-reactive protein levels of 3.4 mg/L. FGF21 levels correlated with fasting glucose levels, HOMA-index, C-peptide levels, HbA1c and BMI. Short-term treatment with anakinra led to a reduction of FGF21 levels by - 200 pg/mL (95%CI - 334 to - 66; p = 0.004). No effect was detectable after longer-term treatment (between-group difference: - 8.8 pg/mL (95%CI - 130.9 to 113.3; p = 0.89). Acute treatment with dexamethasone was associated with reductions of FGF21 by -175 pg/mL (95%CI - 236 to - 113; p < 0.001). Anti-inflammatory treatment with both, IL-1 antagonism and corticosteroids reduced FGF21 levels at short-term in individuals with the metabolic syndrome.Trial registration: ClinicalTrials.gov Identifiers NCT02672592 and NCT00757276.
Collapse
|
9
|
Torres-Castro P, Grases-Pintó B, Abril-Gil M, Castell M, Rodríguez-Lagunas MJ, Pérez-Cano FJ, Franch À. Modulation of the Systemic Immune Response in Suckling Rats by Breast Milk TGF-β2, EGF and FGF21 Supplementation. Nutrients 2020; 12:nu12061888. [PMID: 32599899 PMCID: PMC7353385 DOI: 10.3390/nu12061888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/17/2020] [Accepted: 06/21/2020] [Indexed: 12/17/2022] Open
Abstract
Breast milk is a rich fluid containing bioactive compounds such as specific growth factors (GF) that contribute to maturation of the immune system in early life. The aim of this study was to determine whether transforming growth factor-β2 (TGF-β2), epidermal growth factor (EGF) and fibroblast growth factor 21 (FGF21), compounds present in breast milk, could promote systemic immune maturation. For this purpose, newborn Wistar rats were daily supplemented with these GF by oral gavage during the suckling period (21 days of life). At day 14 and 21 of life, plasma for immunoglobulin (Ig) quantification was obtained and spleen lymphocytes were isolated, immunophenotyped and cultured to evaluate their ability to proliferate and release cytokines. The main result was obtained at day 14, when supplementation with EGF increased B cell proportion to reach levels observed at day 21. At the end of the suckling period, all GF increased the plasma levels of IgG1 and IgG2a isotypes, FGF21 balanced the Th1/Th2 cytokine response and both EGF and FGF21 modified splenic lymphocyte composition. These results suggested that the studied milk bioactive factors, mainly EGF and FGF21, may have modulatory roles in the systemic immune responses in early life, although their physiological roles remain to be established.
Collapse
Affiliation(s)
- Paulina Torres-Castro
- Section of Physiology, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; (P.T.-C.); (B.G.-P.); (M.A.-G.); (M.C.); (M.J.R.-L.); (A.F.)
- Nutrition and Food Safety Research Institute (INSA·UB), 08921 Santa Coloma de Gramenet, Spain
| | - Blanca Grases-Pintó
- Section of Physiology, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; (P.T.-C.); (B.G.-P.); (M.A.-G.); (M.C.); (M.J.R.-L.); (A.F.)
- Nutrition and Food Safety Research Institute (INSA·UB), 08921 Santa Coloma de Gramenet, Spain
| | - Mar Abril-Gil
- Section of Physiology, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; (P.T.-C.); (B.G.-P.); (M.A.-G.); (M.C.); (M.J.R.-L.); (A.F.)
- Nutrition and Food Safety Research Institute (INSA·UB), 08921 Santa Coloma de Gramenet, Spain
| | - Margarida Castell
- Section of Physiology, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; (P.T.-C.); (B.G.-P.); (M.A.-G.); (M.C.); (M.J.R.-L.); (A.F.)
- Nutrition and Food Safety Research Institute (INSA·UB), 08921 Santa Coloma de Gramenet, Spain
| | - María J. Rodríguez-Lagunas
- Section of Physiology, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; (P.T.-C.); (B.G.-P.); (M.A.-G.); (M.C.); (M.J.R.-L.); (A.F.)
- Nutrition and Food Safety Research Institute (INSA·UB), 08921 Santa Coloma de Gramenet, Spain
| | - Francisco J. Pérez-Cano
- Section of Physiology, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; (P.T.-C.); (B.G.-P.); (M.A.-G.); (M.C.); (M.J.R.-L.); (A.F.)
- Nutrition and Food Safety Research Institute (INSA·UB), 08921 Santa Coloma de Gramenet, Spain
- Correspondence: ; Tel.: +34-93-402-45-05
| | - Àngels Franch
- Section of Physiology, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; (P.T.-C.); (B.G.-P.); (M.A.-G.); (M.C.); (M.J.R.-L.); (A.F.)
- Nutrition and Food Safety Research Institute (INSA·UB), 08921 Santa Coloma de Gramenet, Spain
| |
Collapse
|
10
|
Abstract
FGF21 (fibroblast growth factor 21) is a regulator of metabolism and performs an important role in glucose and lipid metabolism and the maintenance of energy balance. FGF21 is principally expressed in the liver, but it can also be found in the pancreas, skeletal muscle, and adipose tissue. It is known that levels of serum FGF21 are significantly elevated in obese, insulin-resistant patients, and those with metabolic syndrome. Elevated levels of FGF21 in serum during the early stages of various metabolic diseases are considered a compensatory response by the organism. Therefore, FGF21 is considered a hormone in response to stress and an early diagnostic marker of disease. Diabetic cardiomyopathy is a special type of cardiac complication, characterized as a chronic myocardial disorder caused by diabetes. The pathological process includes increased oxidative stress, energy metabolism in myocardial cells, an inflammatory response, and myocardial cell apoptosis. A growing body of evidence suggests that FGF21 has the potential to be an effective drug for the treatment of diabetic cardiomyopathy. Here, we review recent progress on the characteristics of FGF21 in its protective role, especially in pathological processes such as suppressing apoptosis in the myocardium, reducing inflammation in cardiomyocytes, reducing oxidative stress, and promoting fatty acid oxidation. In addition, we explore the possibility that diabetic cardiomyopathy can be delayed through the application of FGF21, providing possible therapeutic targets of the disease.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Geriatrics, Renming Hospital of Wuhan University, Hubei, People's Republic of China
- Central Laboratory, Renming Hospital of Wuhan University, Hubei, People's Republic of China
| | - Luo Yang
- Department of Geriatrics, Renming Hospital of Wuhan University, Hubei, People's Republic of China
- Central Laboratory, Renming Hospital of Wuhan University, Hubei, People's Republic of China
| | - Xiongfeng Xu
- Department of Geriatrics, Renming Hospital of Wuhan University, Hubei, People's Republic of China
- Central Laboratory, Renming Hospital of Wuhan University, Hubei, People's Republic of China
| | - Fengjuan Tang
- Department of Geriatrics, Renming Hospital of Wuhan University, Hubei, People's Republic of China
- Central Laboratory, Renming Hospital of Wuhan University, Hubei, People's Republic of China
| | - Peng Yi
- Department of Geriatrics, Renming Hospital of Wuhan University, Hubei, People's Republic of China
- Central Laboratory, Renming Hospital of Wuhan University, Hubei, People's Republic of China
| | - Bo Qiu
- Department of Geriatrics, Renming Hospital of Wuhan University, Hubei, People's Republic of China
- Central Laboratory, Renming Hospital of Wuhan University, Hubei, People's Republic of China
| | - Yarong Hao
- Department of Geriatrics, Renming Hospital of Wuhan University, Hubei, People's Republic of China.
- Central Laboratory, Renming Hospital of Wuhan University, Hubei, People's Republic of China.
- Division of Metabolic Syndrome, Department of Geriatrics, Renming Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, 430060, Hubei, China.
| |
Collapse
|
11
|
Xie T, Leung PS. Fibroblast growth factor 21: a regulator of metabolic disease and health span. Am J Physiol Endocrinol Metab 2017; 313:E292-E302. [PMID: 28559437 PMCID: PMC5625087 DOI: 10.1152/ajpendo.00101.2017] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/30/2017] [Accepted: 05/30/2017] [Indexed: 01/08/2023]
Abstract
Fibroblast growth factor 21 (FGF21) is a potent endocrine regulator with physiological effects on glucose and lipid metabolism and thus garners much attention for its translational potential for the management of obesity and related metabolic syndromes. FGF21 is mainly expressed in several metabolically active tissue organs, such as the liver, adipose tissue, skeletal muscle, and pancreas, with profound effects and therapeutic relevance. Emerging experimental and clinical data point to the demonstrated metabolic benefits of FGF21, which include, but are not limited to, weight loss, glucose and lipid metabolism, and insulin sensitivity. In addition, FGF21 also acts directly through its coreceptor β-klotho in the brain to alter light-dark cycle activity. In this review, we critically appraise current advances in understanding the physiological actions of FGF21 and its role as a biomarker of various metabolic diseases, especially type 2 diabetes mellitus. We also discuss the potentially exciting role of FGF21 in improving our health and prolonging our life span. This information will provide a fuller understanding for further research into FGF21, as well as providing a scientific basis for potentially establishing health care guidelines for this promising molecule.
Collapse
Affiliation(s)
- Ting Xie
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Po Sing Leung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|