1
|
Yang Y, Yan F, Gao Z, Li H, Wen S, Li Q, Li J, Huang N, Zhao W. The NEDD4/FLRT2 axis regulates NSCLC cell stemness. Front Pharmacol 2024; 15:1459978. [PMID: 39444619 PMCID: PMC11496253 DOI: 10.3389/fphar.2024.1459978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction Lung cancer is the leading cause of cancer-related death worldwide. The treatment for lung cancer, particularly for non-small cell lung cancer (NSCLC), remains a clinical challenge. Cancer stem cells are vital for lung cancer development. This study aimed to determine the influence of the neuronally expressed developmentally downregulated 4-fibronectin leucine-rich transmembrane 2 (NEDD4-FLRT2) axis on cancer cell stemness in NSCLC. Methods FLRT2 expression in NSCLC tissues and stem cells was investigated using western blot and RT-qPCR. The sphere formation assay and the abundance of stemness markers were employed to confirm the stemness of NSCLC stem cells. The CCK-8, colony formation, and Trans-well assays, as well as flow cytometry, were used to determine NSCLC stem cell growth, metastasis, and apoptosis, respectively. The Co-IP assay was used to confirm the binding between NEDD4 and FLRT2. Xenograft tumor mouse models were used to investigate tumorigenesis in vivo. Results Here, we reported that FLRT2 expression was reduced in NSCLC tissues, cells, and NSCLC stem cells. FLRT2 upregulation inhibited NSCLC stem cell proliferation, sphere formation, and drug resistance and promoted drug-resistant cell apoptosis. Furthermore, FLRT2 overexpression demonstrated antitumor effects in a xenograft tumor mouse model. Mechanically, FLRT2 was ubiquitinated and degraded by E3 ligase NEDD4. NEDD4 overexpression significantly abolished the inhibitory effects of FLRT2 on NSCLC stemness, as evidenced by in vitro and in vivo experiments. Discussion This study revealed that FLRT2 acted as a tumor suppressor by inhibiting cancer cell stemness in NSCLC. NEDD4 promoted ubiquitination degradation of FLRT2 protein. NEDD4 counteracted the inhibitory effects of FLRT2 on NSCLC stem cell tumorigenesis.
Collapse
Affiliation(s)
- Yuping Yang
- Department of Respiratory and Critical Care Medicine, School of Clinical Medicine and The First Affiliated Hospital of Chengdu Medical College, School of Clinical Medicine, of Chengdu Medical College, Chengdu, China
- Key Laboratory of Geriatic Respiratory Diseases of Sichuan Higher Education Institutes, School of Clinical Medicine and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Fei Yan
- Department of Medical Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Ziwei Gao
- Department of Respiratory and Critical Care Medicine, School of Clinical Medicine and The First Affiliated Hospital of Chengdu Medical College, School of Clinical Medicine, of Chengdu Medical College, Chengdu, China
- Key Laboratory of Geriatic Respiratory Diseases of Sichuan Higher Education Institutes, School of Clinical Medicine and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Houke Li
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, China
| | - Shengke Wen
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, China
| | - Qi Li
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, China
| | - Jiayuan Li
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Na Huang
- Department of Respiratory and Critical Care Medicine, School of Clinical Medicine and The First Affiliated Hospital of Chengdu Medical College, School of Clinical Medicine, of Chengdu Medical College, Chengdu, China
- Key Laboratory of Geriatic Respiratory Diseases of Sichuan Higher Education Institutes, School of Clinical Medicine and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Wei Zhao
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, China
- Department of Clinical Laboratory, School of Clinical Medicine and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
2
|
Jiang P, Ning J, Yu W, Rao T, Ruan Y, Cheng F. FLRT2 suppresses bladder cancer progression through inducing ferroptosis. J Cell Mol Med 2024; 28:e17855. [PMID: 37480224 PMCID: PMC10902570 DOI: 10.1111/jcmm.17855] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/23/2023] Open
Abstract
Bladder cancer is a common tumour worldwide and exhibits a poor prognosis. Fibronectin leucine rich transmembrane protein 2 (FLRT2) is associated with the regulation of multiple tumours; however, its function in human bladder cancer remain unclear. Herein, we found that FLRT2 level was reduced in human bladder cancer and that higher FLRT2 level predicted lower survival rate. FLRT2 overexpression inhibited, while FLRT2 silence facilitated tumour cell growth, migration and invasion. Mechanistic studies revealed that FLRT2 elevated acyl-CoA synthetase long-chain family member 4 (ACSL4) expression, increased lipid peroxidation and subsequently facilitated ferroptosis of human bladder cancer cells. In summary, we demonstrate that FLRT2 elevates ACSL4 expression to facilitate lipid peroxidation and subsequently triggers ferroptosis, thereby inhibiting the malignant phenotype of human bladder cancer cells. Overall, we identify FLRT2 as a tumour suppressor gene.
Collapse
Affiliation(s)
- Pengcheng Jiang
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Jinzhuo Ning
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Weimin Yu
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Ting Rao
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Yuan Ruan
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Fan Cheng
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
3
|
Tanaka A, Ogawa M, Zhou Y, Namba K, Hendrickson RC, Miele MM, Li Z, Klimstra DS, Buckley PG, Gulcher J, Wang JY, Roehrl MHA. Proteogenomic characterization of primary colorectal cancer and metastatic progression identifies proteome-based subtypes and signatures. Cell Rep 2024; 43:113810. [PMID: 38377004 DOI: 10.1016/j.celrep.2024.113810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 10/26/2023] [Accepted: 02/01/2024] [Indexed: 02/22/2024] Open
Abstract
Metastatic progression of colorectal adenocarcinoma (CRC) remains poorly understood and poses significant challenges for treatment. To overcome these challenges, we performed multiomics analyses of primary CRC and liver metastases. Genomic alterations, such as structural variants or copy number alterations, were enriched in oncogenes and tumor suppressor genes and increased in metastases. Unsupervised mass spectrometry-based proteomics of 135 primary and 123 metastatic CRCs uncovered distinct proteomic subtypes, three each for primary and metastatic CRCs, respectively. Integrated analyses revealed that hypoxia, stemness, and immune signatures characterize these 6 subtypes. Hypoxic CRC harbors high epithelial-to-mesenchymal transition features and metabolic adaptation. CRC with a stemness signature shows high oncogenic pathway activation and alternative telomere lengthening (ALT) phenotype, especially in metastatic lesions. Tumor microenvironment analysis shows immune evasion via modulation of major histocompatibility complex (MHC) class I/II and antigen processing pathways. This study characterizes both primary and metastatic CRCs and provides a large proteogenomics dataset of metastatic progression.
Collapse
Affiliation(s)
- Atsushi Tanaka
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Makiko Ogawa
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yihua Zhou
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; ICU Department, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Kei Namba
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Ronald C Hendrickson
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matthew M Miele
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zhuoning Li
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David S Klimstra
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Paige.AI, New York, NY, USA
| | | | | | | | - Michael H A Roehrl
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
4
|
Falker-Gieske C. Transcriptome driven discovery of novel candidate genes for human neurological disorders in the telomer-to-telomer genome assembly era. Hum Genomics 2023; 17:94. [PMID: 37872607 PMCID: PMC10594789 DOI: 10.1186/s40246-023-00543-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND With the first complete draft of a human genome, the Telomere-to-Telomere Consortium unlocked previously concealed genomic regions for genetic analyses. These regions harbour nearly 2000 potential novel genes with unknown function. In order to uncover candidate genes associated with human neurological pathologies, a comparative transcriptome study using the T2T-CHM13 and the GRCh38 genome assemblies was conducted on previously published datasets for eight distinct human neurological disorders. RESULTS The analysis of differential expression in RNA sequencing data led to the identification of 336 novel candidate genes linked to human neurological disorders. Additionally, it was revealed that, on average, 3.6% of the differentially expressed genes detected with the GRCh38 assembly may represent potential false positives. Among the noteworthy findings, two novel genes were discovered, one encoding a pore-structured protein and the other a highly ordered β-strand-rich protein. These genes exhibited upregulation in multiple epilepsy datasets and hold promise as candidate genes potentially modulating the progression of the disease. Furthermore, an analysis of RNA derived from white matter lesions in multiple sclerosis patients indicated significant upregulation of 26 rRNA encoding genes. Additionally, putative pathology related genes were identified for Alzheimer's disease, amyotrophic lateral sclerosis, glioblastoma, glioma, and conditions resulting from the m.3242 A > G mtDNA mutation. CONCLUSION The results presented here underline the potential of the T2T-CHM13 assembly in facilitating the discovery of candidate genes from transcriptome data in the context of human disorders. Moreover, the results demonstrate the value of remapping sequencing data to a superior genome assembly. Numerous potential pathology related genes, either as causative factors or related elements, have been unveiled, warranting further experimental validation.
Collapse
Affiliation(s)
- Clemens Falker-Gieske
- Division of Functional Breeding, Department of Animal Sciences, Georg-August-Universität Göttingen, Burckhardtweg 2, 37077, Göttingen, Germany.
| |
Collapse
|
5
|
Shan Z, Tang W, Shi Z, Shan T. Ferroptosis: An Emerging Target for Bladder Cancer Therapy. Curr Issues Mol Biol 2023; 45:8201-8214. [PMID: 37886960 PMCID: PMC10605744 DOI: 10.3390/cimb45100517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/28/2023] Open
Abstract
Bladder cancer (BC), as one of the main urological cancers in the world, possesses the abilities of multiple-drug resistance and metastasis. However, there remains a significant gap in the understanding and advancement of prognosis and therapeutic strategies for BC. Ferroptosis, a novel type of iron-dependent regulated cell death, depends on lipid peroxidation, which has been proven to have a strong correlation with the development and treatment of BC. Its mechanism mainly includes three pathways, namely, lipid peroxidation, the antioxidant system, and the iron overload pathway. In this review, we reviewed the mechanism of ferroptosis, along with the related therapeutic targets and drugs for BC, as it might become a new anticancer treatment in the future.
Collapse
Affiliation(s)
- Zhengda Shan
- School of Medicine, Sun Yat-sen University, Shenzhen 518107, China;
| | - Wenbin Tang
- School of Medicine, Xiamen University, Xiamen 361102, China;
| | - Zhiyuan Shi
- School of Medicine, Xiamen University, Xiamen 361102, China;
| | - Tao Shan
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| |
Collapse
|
6
|
Zhang M, Zhang X, Ma T, Wang C, Zhao J, Gu Y, Zhang Y. Precise subtyping reveals immune heterogeneity for hormone receptor-positive breast cancer. Comput Biol Med 2023; 163:107222. [PMID: 37413851 DOI: 10.1016/j.compbiomed.2023.107222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/18/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
A significant proportion of breast cancer cases are characterized by hormone receptor positivity (HR+). Clinically, the heterogeneity of HR+ breast cancer leads to different therapeutic effects on endocrine. Therefore, definition of subgroups in HR+ breast cancer is important for effective treatment. Here, we have developed a CMBR method utilizing computational functional networks based on DNA methylation to identify conserved subgroups in HR+ breast cancer. Calculated by CMBR, HR+ breast cancer was divided into five subgroups, of which HR+/negative epidermal growth factor receptor-2 (Her2-) was divided into two subgroups, and HR+/positive epidermal growth factor receptor-2 (Her2+) was divided into three subgroups. These subgroups had heterogeneity in the immune microenvironment, tumor infiltrating lymphocyte patterns, somatic mutation patterns and drug sensitivity. Specifically, CMBR identified two subgroups with the "Hot" tumor phenotype. In addition, these conserved subgroups were broadly validated on external validation datasets. CMBR identified the molecular signature of HR+ breast cancer subgroups, providing valuable insights into personalized treatment strategies and management options.
Collapse
Affiliation(s)
- Mengyan Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Xingda Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
| | - Te Ma
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Cong Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Jiyun Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Yue Gu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Yan Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China; College of Pathology, Qiqihar Medical University, Qiqihar, 161042, China.
| |
Collapse
|
7
|
Schuster SL, Arora S, Wladyka CL, Itagi P, Corey L, Young D, Stackhouse BL, Kollath L, Wu QV, Corey E, True LD, Ha G, Paddison PJ, Hsieh AC. Multi-level functional genomics reveals molecular and cellular oncogenicity of patient-based 3' untranslated region mutations. Cell Rep 2023; 42:112840. [PMID: 37516102 PMCID: PMC10540565 DOI: 10.1016/j.celrep.2023.112840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 06/05/2023] [Accepted: 07/05/2023] [Indexed: 07/31/2023] Open
Abstract
3' untranslated region (3' UTR) somatic mutations represent a largely unexplored avenue of alternative oncogenic gene dysregulation. To determine the significance of 3' UTR mutations in disease, we identify 3' UTR somatic variants across 185 advanced prostate tumors, discovering 14,497 single-nucleotide mutations enriched in oncogenic pathways and 3' UTR regulatory elements. By developing two complementary massively parallel reporter assays, we measure how thousands of patient-based mutations affect mRNA translation and stability and identify hundreds of functional variants that allow us to define determinants of mutation significance. We demonstrate the clinical relevance of these mutations, observing that CRISPR-Cas9 endogenous editing of distinct variants increases cellular stress resistance and that patients harboring oncogenic 3' UTR mutations have a particularly poor prognosis. This work represents an expansive view of the extent to which disease-relevant 3' UTR mutations affect mRNA stability, translation, and cancer progression, uncovering principles of regulatory functionality and potential therapeutic targets in previously unexplored regulatory regions.
Collapse
Affiliation(s)
- Samantha L Schuster
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195, USA; Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Sonali Arora
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Cynthia L Wladyka
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Pushpa Itagi
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Lukas Corey
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Dave Young
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | | | - Lori Kollath
- Department of Urology, University of Washington, Seattle, WA 98195, USA
| | - Qian V Wu
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA 98195, USA
| | - Lawrence D True
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Gavin Ha
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Patrick J Paddison
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195, USA; Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Andrew C Hsieh
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195, USA; Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Department of Medicine, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
8
|
Fang Y, Ma K, Huang YM, Dang Y, Liu Z, Xu Y, Zheng XL, Yang X, Huo Y, Dai X. Fibronectin leucine-rich transmembrane protein 2 drives monocyte differentiation into macrophages via the UNC5B-Akt/mTOR axis. Front Immunol 2023; 14:1162004. [PMID: 37090697 PMCID: PMC10117657 DOI: 10.3389/fimmu.2023.1162004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/27/2023] [Indexed: 04/09/2023] Open
Abstract
Upon migrating into the tissues, hematopoietic stem cell (HSC)-derived monocytes differentiate into macrophages, playing a crucial role in determining innate immune responses towards external pathogens and internal stimuli. However, the regulatory mechanisms underlying monocyte-to-macrophage differentiation remain largely unexplored. Here we divulge a previously uncharacterized but essential role for an axon guidance molecule, fibronectin leucine-rich transmembrane protein 2 (FLRT2), in monocyte-to-macrophage maturation. FLRT2 is almost undetectable in human monocytic cell lines, human peripheral blood mononuclear cells (PBMCs), and mouse primary monocytes but significantly increases in fully differentiated macrophages. Myeloid-specific deletion of FLRT2 (Flrt2ΔMyel) contributes to decreased peritoneal monocyte-to-macrophage generation in mice in vivo, accompanied by impaired macrophage functions. Gain- and loss-of-function studies support the promoting effect of FLRT2 on THP-1 cell and human PBMC differentiation into macrophages. Mechanistically, FLRT2 directly interacts with Unc-5 netrin receptor B (UNC5B) via its extracellular domain (ECD) and activates Akt/mTOR signaling. In vivo administration of mTOR agonist MYH1485 reverses the impaired phenotypes observed in Flrt2ΔMyel mice. Together, these results identify FLRT2 as a novel pivotal endogenous regulator of monocyte differentiation into macrophages. Targeting the FLRT2/UNC5B-Akt/mTOR axis may provide potential therapeutic strategies directly relevant to human diseases associated with aberrant monocyte/macrophage differentiation.
Collapse
Affiliation(s)
- Yaxiong Fang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Kongyang Ma
- Centre for Infection and Immunity Studies (CIIS), School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yi-Min Huang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yuanye Dang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhaoyu Liu
- Medical Research Center, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yiming Xu
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xi-Long Zheng
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Xiangdong Yang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yongliang Huo
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Experimental Animal Center, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
- *Correspondence: Xiaoyan Dai, ; Yongliang Huo,
| | - Xiaoyan Dai
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
- *Correspondence: Xiaoyan Dai, ; Yongliang Huo,
| |
Collapse
|
9
|
Metabolomics by NMR Combined with Machine Learning to Predict Neoadjuvant Chemotherapy Response for Breast Cancer. Cancers (Basel) 2022; 14:cancers14205055. [PMID: 36291837 PMCID: PMC9600495 DOI: 10.3390/cancers14205055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Neoadjuvant chemotherapy (NACT) is offered to breast cancer (BC) patients to downstage the disease. However, some patients may not respond to NACT, being resistant. We used the serum metabolic profile by Nuclear Magnetic Resonance (NMR) combined with disease characteristics to differentiate between sensitive and resistant BC patients. We obtained accuracy above 80% for the response prediction and showcased how NMR can substantially enhance the prediction of response to NACT. Abstract Neoadjuvant chemotherapy (NACT) is offered to patients with operable or inoperable breast cancer (BC) to downstage the disease. Clinical responses to NACT may vary depending on a few known clinical and biological features, but the diversity of responses to NACT is not fully understood. In this study, 80 women had their metabolite profiles of pre-treatment sera analyzed for potential NACT response biomarker candidates in combination with immunohistochemical parameters using Nuclear Magnetic Resonance (NMR). Sixty-four percent of the patients were resistant to chemotherapy. NMR, hormonal receptors (HR), human epidermal growth factor receptor 2 (HER2), and the nuclear protein Ki67 were combined through machine learning (ML) to predict the response to NACT. Metabolites such as leucine, formate, valine, and proline, along with hormone receptor status, were discriminants of response to NACT. The glyoxylate and dicarboxylate metabolism was found to be involved in the resistance to NACT. We obtained an accuracy in excess of 80% for the prediction of response to NACT combining metabolomic and tumor profile data. Our results suggest that NMR data can substantially enhance the prediction of response to NACT when used in combination with already known response prediction factors.
Collapse
|
10
|
Hegde M, Daimary UD, Kumar A, Chinnathambi A, Alharbi SA, Shakibaei M, Kunnumakkara AB. STAT3/HIF1A and EMT specific transcription factors regulated genes: Novel predictors of breast cancer metastasis. Gene X 2022; 818:146245. [PMID: 35074419 DOI: 10.1016/j.gene.2022.146245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/18/2022] [Indexed: 12/26/2022] Open
Abstract
Metastasis, the fatal hallmark of breast cancer (BC), is a serious hurdle for therapy. Current prognostic approaches are not sufficient to predict the metastasis risk for BC patients. Therefore, in the present study, we analyzed gene expression data from GSE139038 and TCGA database to develop predictive markers for BC metastasis. Initially, the data from GSE139038 which contained 65 samples consisting of 41 breast tumor tissues, 18 paired morphologically normal tissues and 6 from non-malignant breast tissues were analyzed for differentially expressed genes (DEGs). DEGs were obtained from three different comparisons: paired morphologically normal (MN) versus tumor samples (C), apparently normal (AN) versus tumor samples (C), and paired morphologically normal (MN) versus apparently normal samples (AN). Multiple bioinformatic methods were employed to evaluate metastasis, EMT and triple negative breast cancer (TNBC) specific genes. Further, regulation of gene expression, clinicopathological factors and DNA methylation patterns of DEGs in BC were validated with TCGA datasets. Our bioinformatic analysis showed that 40 genes were upregulated and 294 were found to be downregulated between AN vs C; 124 were upregulated and 760 genes were downregulated between MN vs C; 4 were upregulated and 13 were downregulated between MN vs AN. Analysis using TCGA dataset revealed 18 genes were significantly altered in nodal positive BC patients compared to nodal negative BC patients. Our study showed novel candidate genes as predictive markers for BC metastasis which can also be used for therapeutic targets for BC treatment.
Collapse
Affiliation(s)
- Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India; DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India
| | - Uzini Devi Daimary
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India; DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India
| | - Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India; DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India; DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781 039, Assam, India.
| |
Collapse
|
11
|
Ando T, Tai-Nagara I, Sugiura Y, Kusumoto D, Okabayashi K, Kido Y, Sato K, Saya H, Navankasattusas S, Li DY, Suematsu M, Kitagawa Y, Seiradake E, Yamagishi S, Kubota Y. Tumor-specific inter-endothelial adhesion mediated by FLRT2 facilitates cancer aggressiveness. J Clin Invest 2022; 132:153626. [PMID: 35104247 PMCID: PMC8920344 DOI: 10.1172/jci153626] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/28/2022] [Indexed: 11/17/2022] Open
Abstract
Blood vessel abnormalization alters cancer cell metabolism and promotes cancer dissemination and metastasis. However, the biological features of the abnormalized blood vessels that facilitate cancer progression and whether they can be targeted therapeutically have not been fully investigated. Here, we found that an axon guidance molecule, fibronectin leucine-rich transmembrane protein 2 (FLRT2), is expressed preferentially in abnormalized vessels of advanced colorectal cancers in humans, and that its expression correlates negatively with long-term survival. Endothelial-specific deletion of Flrt2 in mice selectively pruned abnormalized vessels, resulting in a unique metabolic state termed "oxygen-glucose uncoupling", which suppresses tumor metastasis. Moreover, Flrt2 deletion caused an increase in the number of mature vessels, resulting in a significant increase in the anti-tumor effects of immune checkpoint blockers. Mechanistically, we found that FLRT2 forms non-canonical inter-endothelial adhesions that safeguard against oxidative stress through homophilic binding. Together, our results demonstrate the existence of tumor-specific inter-endothelial adhesions that enable abnormalized vessels to facilitate cancer aggressiveness. Targeting this type of adhesion complex could be a safe and effective therapeutic option to suppress cancer progression.
Collapse
Affiliation(s)
- Tomofumi Ando
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Ikue Tai-Nagara
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Dai Kusumoto
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Koji Okabayashi
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yasuaki Kido
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Kohji Sato
- Department of Organ & Tissue Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Keio University School of Medicine, Tokyo, Japan
| | - Sutip Navankasattusas
- Department of Medicine, University of Utah, Salt Lake City, United States of America
| | - Dean Y Li
- Department of Medicine, University of Utah, Salt Lake City, United States of America
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Elena Seiradake
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Satoru Yamagishi
- Department of Organ & Tissue Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
12
|
Clinical significance of novel DNA methylation biomarkers for renal clear cell carcinoma. J Cancer Res Clin Oncol 2021; 148:361-375. [PMID: 34689221 DOI: 10.1007/s00432-021-03837-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/14/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Clear cell renal cell carcinoma (ccRCC) is the most common type of kidney tumor characterized by the highest mortality rate of the genitourinary cancers, and, therefore, new diagnostic and/or prognostic biomarkers are urgently needed. METHODS Based on genome-wide DNA methylation profiling in 11 pairs of ccRCC and non-cancerous renal tissues (NRT), the methylation at regulatory regions of ZNF677, FBN2, PCDH8, TFAP2B, TAC1, and FLRT2 was analyzed in 168 renal tissues and 307 urine samples using qualitative and quantitative methylation-specific PCR (MSP). RESULTS Significantly higher methylation frequencies for all genes were found in ccRCC tissues compared to NRT (33-60% vs. 0-11%). The best diagnostic performance demonstrated a panel of ZNF677, FBN2, PCDH8, TFAP2B & TAC1 with 82% sensitivity and 96% specificity. Hypermethylation of ZNF677 and PCDH8 in the tissue samples was significantly related to numerous adverse clinicopathologic parameters. For the urine-based ccRCC detection, the highest diagnostic power (AUC = 0.78) was observed for a panel of ZNF677 & PCDH8 (with or without FBN2 or FLRT2) with 69-78% sensitivity and 69-80% specificity, albeit with lower values in the validation cohort. Besides, methylation of PCDH8 was significantly related to higher tumor stage and fat invasion in the study and validation cohorts. Moreover, PCDH8 was strongly predictive for OS (HR, 5.7; 95% CI 1.16-28.12), and its prognostic power considerably increased in combination with ZNF677 (HR, 12.5; 95% CI 1.47-105.58). CONCLUSION In summary, our study revealed novel, potentially promising DNA methylation biomarkers of ccRCC with the possibility to be applied for non-invasive urine-based ccRCC detection and follow-up.
Collapse
|
13
|
Dong B, Liang J, Li D, Song W, Zhao S, Ma Y, Song J, Zhu M, Yang T. Tumor Expression Profile Analysis Developed and Validated a Prognostic Model Based on Immune-Related Genes in Bladder Cancer. Front Genet 2021; 12:696912. [PMID: 34512722 PMCID: PMC8429908 DOI: 10.3389/fgene.2021.696912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 07/28/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Bladder cancer (BLCA) ranks 10th in incidence among malignant tumors and 6th in incidence among malignant tumors in males. With the application of immune therapy, the overall survival (OS) rate of BLCA patients has greatly improved, but the 5-year survival rate of BLCA patients is still low. Furthermore, not every BLCA patient benefits from immunotherapy, and there are a limited number of biomarkers for predicting the immunotherapy response. Therefore, novel biomarkers for predicting the immunotherapy response and prognosis of BLCA are urgently needed. Methods: The RNA sequencing (RNA-seq) data, clinical data and gene annotation files for The Cancer Genome Atlas (TCGA) BLCA cohort were extracted from the University of California, Santa Cruz (UCSC) Xena Browser. The BLCA datasets GSE31684 and GSE32894 from the Gene Expression Omnibus (GEO) database were extracted for external validation. Immune-related genes were extracted from InnateDB. Significant differentially expressed genes (DEGs) were identified using the R package “limma,” and Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis for the DEGs were performed using R package “clusterProfiler.” Least absolute shrinkage and selection operator (LASSO) regression analysis were used to construct the signature model. The infiltration level of each immune cell type was estimated using the single-sample gene set enrichment analysis (ssGSEA) algorithm. The performance of the model was evaluated with receiver operating characteristic (ROC) curves and calibration curves. Results: In total, 1,040 immune-related DEGs were identified, and eight signature genes were selected to construct a model using LASSO regression analysis. The risk score of BLCA patients based on the signature model was negatively correlated with OS and the immunotherapy response. The ROC curve for OS revealed that the model had good accuracy. The calibration curve showed good agreement between the predictions and actual observations. Conclusions: Herein, we constructed an immune-related eight-gene signature that could be a potential biomarker to predict the immunotherapy response and prognosis of BLCA patients.
Collapse
Affiliation(s)
- Bingqi Dong
- Department of Urology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Jiaming Liang
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Ding Li
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Wenping Song
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Shiming Zhao
- Department of Urology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yongkang Ma
- Department of Urology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Jinbo Song
- Department of Urology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Mingkai Zhu
- Department of Urology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Tiejun Yang
- Department of Urology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
14
|
Lopes I, Altab G, Raina P, de Magalhães JP. Gene Size Matters: An Analysis of Gene Length in the Human Genome. Front Genet 2021; 12:559998. [PMID: 33643374 PMCID: PMC7905317 DOI: 10.3389/fgene.2021.559998] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 01/06/2021] [Indexed: 12/23/2022] Open
Abstract
While it is expected for gene length to be associated with factors such as intron number and evolutionary conservation, we are yet to understand the connections between gene length and function in the human genome. In this study, we show that, as expected, there is a strong positive correlation between gene length, transcript length, and protein size as well as a correlation with the number of genetic variants and introns. Among tissue-specific genes, we find that the longest transcripts tend to be expressed in the blood vessels, nerves, thyroid, cervix uteri, and the brain, while the smallest transcripts tend to be expressed in the pancreas, skin, stomach, vagina, and testis. We report, as shown previously, that natural selection suppresses changes for genes with longer transcripts and promotes changes for genes with smaller transcripts. We also observe that genes with longer transcripts tend to have a higher number of co-expressed genes and protein-protein interactions, as well as more associated publications. In the functional analysis, we show that bigger transcripts are often associated with neuronal development, while smaller transcripts tend to play roles in skin development and in the immune system. Furthermore, pathways related to cancer, neurons, and heart diseases tend to have genes with longer transcripts, with smaller transcripts being present in pathways related to immune responses and neurodegenerative diseases. Based on our results, we hypothesize that longer genes tend to be associated with functions that are important in the early development stages, while smaller genes tend to play a role in functions that are important throughout the whole life, like the immune system, which requires fast responses.
Collapse
Affiliation(s)
| | | | | | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
15
|
Guo X, Song C, Fang L, Li M, Yue L, Sun Q. FLRT2 functions as Tumor Suppressor gene inactivated by promoter methylation in Colorectal Cancer. J Cancer 2020; 11:7329-7338. [PMID: 33193897 PMCID: PMC7646184 DOI: 10.7150/jca.47558] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 10/11/2020] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer death worldwide. Epigenetic alterations, especially DNA methylation, contribute to the initiation and progression of CRC. To identify novel methylated tumor suppressors in CRC, MethylRAD-Seq screening was performed. As the result, FLRT2 was found to be preferentially methylated. In the present study, we aimed to elucidate the epigenetic regulations and biological functions of FLRT2 in CRC. Significant FLRT2 hypermethylation was initially confirmed in CRC samples and cell lines. Meanwhile, downregulated expression of FLRT2 was observed in CRC, which is probably attributed to promoter methylation of FLRT2. Consistently, the expression of FLRT2 was restored after treatment with DNA demethylating agent 5-AZA. FLRT2 overexpression resulted in impaired cell viability and colony formation. Additionally, FLRT2 overexpression led to a reduction in cell migration and cell invasion. Furthermore, we also observed that FLRT2 induced cell cycle arrest. Mechanistically, these effects were associated with the downregulation of phosphor-AKT, phosphor-ERK, CDK2, Cyclin A, and MMP2, and upregulation of P21. Taken together, these results define a tumor-suppressor role of FLRT2 with epigenetic silencing in the pathogenesis of CRC. Moreover, FLRT2 promoter methylation may be a useful epigenetic biomarker for the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Xiaohong Guo
- Department of Pathology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Chao Song
- Department of Pathology, Zibo Central Hospital, Zibo, Shandong, China
| | - Lei Fang
- Department of Pathology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Min Li
- Department of Pathology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Longtao Yue
- Department of Pathology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Qing Sun
- Department of Pathology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| |
Collapse
|
16
|
Verschueren E, Husain B, Yuen K, Sun Y, Paduchuri S, Senbabaoglu Y, Lehoux I, Arena TA, Wilson B, Lianoglou S, Bakalarski C, Franke Y, Chan P, Wong AW, Gonzalez LC, Mariathasan S, Turley SJ, Lill JR, Martinez-Martin N. The Immunoglobulin Superfamily Receptome Defines Cancer-Relevant Networks Associated with Clinical Outcome. Cell 2020; 182:329-344.e19. [PMID: 32589946 DOI: 10.1016/j.cell.2020.06.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 04/06/2020] [Accepted: 06/02/2020] [Indexed: 01/31/2023]
Abstract
Cell surface receptors and their interactions play a central role in physiological and pathological signaling. Despite its clinical relevance, the immunoglobulin superfamily (IgSF) remains uncharacterized and underrepresented in databases. Here, we present a systematic extracellular protein map, the IgSF interactome. Using a high-throughput technology to interrogate most single transmembrane receptors for binding to 445 IgSF proteins, we identify over 500 interactions, 82% previously undocumented, and confirm more than 60 receptor-ligand pairs using orthogonal assays. Our study reveals a map of cell-type-specific interactions and the landscape of dysregulated receptor-ligand crosstalk in cancer, including selective loss of function for tumor-associated mutations. Furthermore, investigation of the IgSF interactome in a large cohort of cancer patients identifies interacting protein signatures associated with clinical outcome. The IgSF interactome represents an important resource to fuel biological discoveries and a framework for understanding the functional organization of the surfaceome during homeostasis and disease, ultimately informing therapeutic development.
Collapse
Affiliation(s)
| | - Bushra Husain
- Deparment of Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, CA, USA
| | - Kobe Yuen
- Oncology Biomarker Development, Genentech, South San Francisco, CA, USA
| | - Yi Sun
- University of Birmingham, Department Biochemistry, Birmingham, UK
| | | | | | - Isabelle Lehoux
- BioMolecular Resources Department, Genentech, South San Francisco, CA, USA
| | - Tia A Arena
- Research Materials group, Genentech, South San Francisco, CA, USA
| | - Blair Wilson
- Biochemistry and Molecular Pharmacology, Genentech, South San Francisco, CA, USA
| | | | - Corey Bakalarski
- Deparment of Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, CA, USA
| | - Yvonne Franke
- BioMolecular Resources Department, Genentech, South San Francisco, CA, USA
| | - Pamela Chan
- Biochemistry and Molecular Pharmacology, Genentech, South San Francisco, CA, USA
| | - Athena W Wong
- Research Materials group, Genentech, South San Francisco, CA, USA
| | | | | | - Shannon J Turley
- Cancer Immunology Department, Genentech, South San Francisco, CA, USA
| | - Jennie R Lill
- Deparment of Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, CA, USA
| | - Nadia Martinez-Martin
- Deparment of Microchemistry, Proteomics and Lipidomics, Genentech, South San Francisco, CA, USA.
| |
Collapse
|
17
|
Abstract
Molecular prognostic biomarkers for gastric cancer (GC) are still limited. We aimed to identify potential messenger RNAs (mRNAs) associated with GC prognosis and further establish an mRNA signature to predict the survival of GC based on the publicly accessible databases.
Collapse
|
18
|
Jeong D, Ham J, Park S, Kim HW, Kim H, Ji HW, Kim SJ. Ginsenoside Rh2 Suppresses Breast Cancer Cell Proliferation by Epigenetically Regulating the Long Noncoding RNA C3orf67-AS1. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:1643-1658. [PMID: 31645124 DOI: 10.1142/s0192415x19500848] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ginsenoside Rh2, a major bioactive ingredient abundant in red ginseng, has an antiproliferative effect on various cancer cells. In this study, we report a novel long noncoding RNA, C3orf67-AS1, which was identified as being hypermethylated at a CpG site of the promoter by Rh2 in MCF-7 cancer cells. Rh2-induced hypermethylation was responsible for the lower gene expression; the expression was recovered following treatment with a methyltransferase inhibitor, 5-aza-2'-deoxycytidine. When C3orf67-AS1 was downregulated by a siRNA, the cell growth rate was decreased, demonstrating the RNA's oncogenic activity. Accordingly, breast cancer patients showed a lower methylation and higher expression level of C3orf67-AS1. Within 800 kb flanking C3orf67-AS1 on the chromosome, eight genes were found, and four genes including C3orf67 (the sense strand gene of C3orf67-AS1) were downregulated by Rh2. In particular, C3orf67 was downregulated when C3orf67-AS1 was suppressed by a siRNA; however, the expression of C3orf67-AS1 was not affected by C3orf67. Taken together, this study identifies a novel noncoding RNA, C3orf67-AS1, of which the expression could be suppressed by Rh2 via promoter methylation, thereby mediating the anti-proliferative effect of the ginsenoside.
Collapse
Affiliation(s)
- Dawoon Jeong
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Juyeon Ham
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Sungbin Park
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Hyeon Woo Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Heejoo Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Hwee Won Ji
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Sun Jung Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| |
Collapse
|
19
|
Moinova HR, LaFramboise T, Lutterbaugh JD, Chandar AK, Dumot J, Faulx A, Brock W, De la Cruz Cabrera O, Guda K, Barnholtz-Sloan JS, Iyer PG, Canto MI, Wang JS, Shaheen NJ, Thota PN, Willis JE, Chak A, Markowitz SD. Identifying DNA methylation biomarkers for non-endoscopic detection of Barrett's esophagus. Sci Transl Med 2019; 10:10/424/eaao5848. [PMID: 29343623 DOI: 10.1126/scitranslmed.aao5848] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/08/2017] [Indexed: 12/17/2022]
Abstract
We report a biomarker-based non-endoscopic method for detecting Barrett's esophagus (BE) based on detecting methylated DNAs retrieved via a swallowable balloon-based esophageal sampling device. BE is the precursor of, and a major recognized risk factor for, developing esophageal adenocarcinoma. Endoscopy, the current standard for BE detection, is not cost-effective for population screening. We performed genome-wide screening to ascertain regions targeted for recurrent aberrant cytosine methylation in BE, identifying high-frequency methylation within the CCNA1 locus. We tested CCNA1 DNA methylation as a BE biomarker in cytology brushings of the distal esophagus from 173 individuals with or without BE. CCNA1 DNA methylation demonstrated an area under the curve of 0.95 for discriminating BE-related metaplasia and neoplasia cases versus normal individuals, performing identically to methylation of VIM DNA, an established BE biomarker. When combined, the resulting two biomarker panel was 95% sensitive and 91% specific. These results were replicated in an independent validation cohort of 149 individuals who were assayed using the same cutoff values for test positivity established in the training population. To progress toward non-endoscopic esophageal screening, we engineered a well-tolerated, swallowable, encapsulated balloon device able to selectively sample the distal esophagus within 5 min. In balloon samples from 86 individuals, tests of CCNA1 plus VIM DNA methylation detected BE metaplasia with 90.3% sensitivity and 91.7% specificity. Combining the balloon sampling device with molecular assays of CCNA1 plus VIM DNA methylation enables an efficient, well-tolerated, sensitive, and specific method of screening at-risk populations for BE.
Collapse
Affiliation(s)
- Helen R Moinova
- Department of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Thomas LaFramboise
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - James D Lutterbaugh
- Department of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Apoorva Krishna Chandar
- Department of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - John Dumot
- Department of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Ashley Faulx
- Department of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Wendy Brock
- Department of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | | | - Kishore Guda
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jill S Barnholtz-Sloan
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Prasad G Iyer
- Barrett's Esophagus Unit, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Marcia I Canto
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | - Jean S Wang
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nicholas J Shaheen
- Center for Esophageal Diseases and Swallowing, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Prashanti N Thota
- Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Joseph E Willis
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA. .,Department of Pathology, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA.,University Hospitals Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Amitabh Chak
- Department of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA. .,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA.,University Hospitals Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Sanford D Markowitz
- Department of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA. .,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA.,University Hospitals Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
20
|
Jeong G, Bae H, Jeong D, Ham J, Park S, Kim HW, Kang HS, Kim SJ. A Kelch domain-containing KLHDC7B and a long non-coding RNA ST8SIA6-AS1 act oppositely on breast cancer cell proliferation via the interferon signaling pathway. Sci Rep 2018; 8:12922. [PMID: 30150751 PMCID: PMC6110865 DOI: 10.1038/s41598-018-31306-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/16/2018] [Indexed: 12/17/2022] Open
Abstract
In our previous study, the Kelch domain-containing 7B (KLHDC7B) was revealed to be hypermethylated at the promoter but upregulated in breast cancer. In this study, we identified a long non-coding RNA, ST8SIA6-AS1 (STAR1), whose expression was significantly associated with KLHDC7B in breast cancer (R2 = 0.3466, P < 0.01). Involvement of the two genes in tumorigenesis was examined via monitoring their effect on cellular as well as molecular events after each gene dysregulation in cultured mammary cell lines. Apoptosis of MCF-7 decreased by 49.5% and increased by 33.1%, while proliferation noted increase and decrease by up- and downregulation of KLHDC7B, respectively, suggesting its oncogenic property. STAR1, however, suppressed cell migration and increased apoptosis. Network analysis identified many target genes that appeared to have similar regulation, especially in relation to the interferon signaling pathway. Concordantly, expression of genes such as IFITs, STATs, and IL-29 in that pathway was affected by KLHDC7B and STAR1. Taken together, KLHDC7B and STAR1 are both overexpressed in breast cancer and significantly associated with gene modulation activity in the interferon signaling pathway during breast tumorigenesis.
Collapse
Affiliation(s)
- Gookjoo Jeong
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
- PanGen Biotech Inc, Suwon, 16675, Republic of Korea
| | - Hansol Bae
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Dawoon Jeong
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Juyeon Ham
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Sungbin Park
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Hyeon Woo Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Han-Sung Kang
- Research Institute and Hospital, National Cancer Center, Goyang, Republic of Korea
| | - Sun Jung Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea.
| |
Collapse
|
21
|
Cicvaric A, Yang J, Bulat T, Zambon A, Dominguez-Rodriguez M, Kühn R, Sadowicz MG, Siwert A, Egea J, Pollak DD, Moeslinger T, Monje FJ. Enhanced synaptic plasticity and spatial memory in female but not male FLRT2-haplodeficient mice. Sci Rep 2018; 8:3703. [PMID: 29487336 PMCID: PMC5829229 DOI: 10.1038/s41598-018-22030-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 02/14/2018] [Indexed: 12/30/2022] Open
Abstract
The Fibronectin Leucine-Rich Transmembrane protein 2 (FLRT2) has been implicated in several hormone -and sex-dependent physiological and pathological processes (including chondrogenesis, menarche and breast cancer); is known to regulate developmental synapses formation, and is expressed in the hippocampus, a brain structure central for learning and memory. However, the role of FLRT2 in the adult hippocampus and its relevance in sex-dependent brain functions remains unknown. We here used adult single-allele FLRT2 knockout (FLRT2+/-) mice and behavioral, electrophysiological, and molecular/biological assays to examine the effects of FLRT2 haplodeficiency on synaptic plasticity and hippocampus-dependent learning and memory. Female and male FLRT2+/- mice presented morphological features (including body masses, brain shapes/weights, and brain macroscopic cytoarchitectonic organization), indistinguishable from their wild type counterparts. However, in vivo examinations unveiled enhanced hippocampus-dependent spatial memory recall in female FLRT2+/- animals, concomitant with augmented hippocampal synaptic plasticity and decreased levels of the glutamate transporter EAAT2 and beta estrogen receptors. In contrast, male FLRT2+/- animals exhibited deficient memory recall and decreased alpha estrogen receptor levels. These observations propose that FLRT2 can regulate memory functions in the adulthood in a sex-specific manner and might thus contribute to further research on the mechanisms linking sexual dimorphism and cognition.
Collapse
Affiliation(s)
- Ana Cicvaric
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| | - Jiaye Yang
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| | - Tanja Bulat
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| | - Alice Zambon
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| | - Manuel Dominguez-Rodriguez
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| | - Rebekka Kühn
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| | - Michael G Sadowicz
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| | - Anjana Siwert
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| | - Joaquim Egea
- Molecular and Developmental Neurobiology Research Group, Universitat de Lleida - IRBLleida, Office 1.13, Lab. 1.06. Avda. Rovira Roure, 80, 25198, Lleida, Spain
| | - Daniela D Pollak
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| | - Thomas Moeslinger
- Institute for Physiology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| | - Francisco J Monje
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria.
| |
Collapse
|