1
|
Liu K, Xu J, Yang R, Wang F, Su Y. Ion channel Piezo1 induces ferroptosis of trabecular meshwork cells: a novel observation in the pathogenesis in primary open angle glaucoma. Am J Physiol Cell Physiol 2024; 327:C1591-C1603. [PMID: 39466179 DOI: 10.1152/ajpcell.00173.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
This study aims to elucidate the role of Piezo1, a mechanosensitive molecule, in trabecular meshwork cells (TMCs) in the context of primary open angle glaucoma (POAG), a leading cause of irreversible visual impairment. Dysfunction of the trabecular meshwork (TM) is a key factor in the elevated intraocular pressure (IOP) observed in POAG, yet the specific mechanisms leading to TM dysfunction are not fully understood. We performed cell stretching on human trabecular meshwork cells (HTMCs) and pharmacologically activated HTMCs with Yoda1 to study the role of Piezo1 in HTMCs. We focused on assessing cell viability, mitochondrial changes, lipid peroxidation, and the expression of ferroptosis-related targets such as acyl-CoA synthetase long-chain family member 4 (ACSL4) and glutathione peroxidase 4 (GPX4). Cell stretching induces ferroptosis in HTMCs, and this phenomenon is reversed by Piezo1 knockdown. In addition, pharmacological activation of Piezo1 also leads to ferroptosis in HTMCs. Furthermore, inhibiting the JNK/p38 signaling pathway was found to mitigate the ferroptotic response induced by Yoda1, thereby confirming that Piezo1 induces ferroptosis in TMCs through this pathway. Notably, our experiments suggest that Yoda1 may trigger ferroptosis in the TM of mouse eyes. Our findings demonstrate that the Piezo1 pathway is a crucial mediator of ferroptosis in TMCs, providing new insights into the pathogenic mechanisms of glaucoma, particularly POAG. This study highlights the potential of targeting the Piezo1 pathway as a therapeutic approach for mitigating TM dysfunction and managing POAG.NEW & NOTEWORTHY This study is the first to show that cell stretching induces ferroptosis in trabecular meshwork cells (TMCs), dependent on Piezo1 activation. Targeting the Piezo1 pathway offers new therapeutic potential for mitigating trabecular meshwork dysfunction and managing primary open angle glaucoma (POAG). The study also reveals Piezo1 induces ferroptosis via the JNK/p38 signaling pathway.
Collapse
Affiliation(s)
- Kexin Liu
- Department of Ophthalmology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, the First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Jing Xu
- Department of Ophthalmology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, the First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Rufei Yang
- Eye Hospital, the First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, the First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Feng Wang
- Department of Ophthalmology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Ying Su
- Eye Hospital, the First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| |
Collapse
|
2
|
Garcia-Sanchez J, Lin D, Liu WW. Mechanosensitive ion channels in glaucoma pathophysiology. Vision Res 2024; 223:108473. [PMID: 39180975 PMCID: PMC11398070 DOI: 10.1016/j.visres.2024.108473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/27/2024]
Abstract
Force sensing is a fundamental ability that allows cells and organisms to interact with their physical environment. The eye is constantly subjected to mechanical forces such as blinking and eye movements. Furthermore, elevated intraocular pressure (IOP) can cause mechanical strain at the optic nerve head, resulting in retinal ganglion cell death (RGC) in glaucoma. How mechanical stimuli are sensed and affect cellular physiology in the eye is unclear. Recent studies have shown that mechanosensitive ion channels are expressed in many ocular tissues relevant to glaucoma and may influence IOP regulation and RGC survival. Furthermore, variants in mechanosensitive ion channel genes may be associated with risk for primary open angle glaucoma. These findings suggest that mechanosensitive channels may be important mechanosensors mediating cellular responses to pressure signals in the eye. In this review, we focus on mechanosensitive ion channels from three major channel families-PIEZO, two-pore potassium and transient receptor potential channels. We review the key properties of these channels, their effects on cell function and physiology, and discuss their possible roles in glaucoma pathophysiology.
Collapse
Affiliation(s)
- Julian Garcia-Sanchez
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Danting Lin
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Wendy W Liu
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA.
| |
Collapse
|
3
|
Yeo XY, Kwon S, Rinai KR, Lee S, Jung S, Park R. A Consolidated Understanding of the Contribution of Redox Dysregulation in the Development of Hearing Impairment. Antioxidants (Basel) 2024; 13:598. [PMID: 38790703 PMCID: PMC11118506 DOI: 10.3390/antiox13050598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/26/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
The etiology of hearing impairment is multifactorial, with contributions from both genetic and environmental factors. Although genetic studies have yielded valuable insights into the development and function of the auditory system, the contribution of gene products and their interaction with alternate environmental factors for the maintenance and development of auditory function requires further elaboration. In this review, we provide an overview of the current knowledge on the role of redox dysregulation as the converging factor between genetic and environmental factor-dependent development of hearing loss, with a focus on understanding the interaction of oxidative stress with the physical components of the peripheral auditory system in auditory disfunction. The potential involvement of molecular factors linked to auditory function in driving redox imbalance is an important promoter of the development of hearing loss over time.
Collapse
Affiliation(s)
- Xin Yi Yeo
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
- Department of Medical Science, College of Medicine, CHA University, Seongnam 13488, Republic of Korea;
| | - Soohyun Kwon
- Department of Medical Science, College of Medicine, CHA University, Seongnam 13488, Republic of Korea;
- Department of BioNanotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - Kimberley R. Rinai
- Department of Life Science, College of Medicine, CHA University, Seongnam 13488, Republic of Korea;
| | - Sungsu Lee
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Hospital and Medical School, Gwangju 61469, Republic of Korea;
| | - Sangyong Jung
- Department of Medical Science, College of Medicine, CHA University, Seongnam 13488, Republic of Korea;
| | - Raekil Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science & Technology (GIST), Gwangju 61005, Republic of Korea
| |
Collapse
|
4
|
Pitha I, Du L, Nguyen TD, Quigley H. IOP and glaucoma damage: The essential role of optic nerve head and retinal mechanosensors. Prog Retin Eye Res 2024; 99:101232. [PMID: 38110030 PMCID: PMC10960268 DOI: 10.1016/j.preteyeres.2023.101232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023]
Abstract
There are many unanswered questions on the relation of intraocular pressure to glaucoma development and progression. IOP itself cannot be distilled to a single, unifying value, because IOP level varies over time, differs depending on ocular location, and can be affected by method of measurement. Ultimately, IOP level creates mechanical strain that affects axonal function at the optic nerve head which causes local extracellular matrix remodeling and retinal ganglion cell death - hallmarks of glaucoma and the cause of glaucomatous vision loss. Extracellular tissue strain at the ONH and lamina cribrosa is regionally variable and differs in magnitude and location between healthy and glaucomatous eyes. The ultimate targets of IOP-induced tissue strain in glaucoma are retinal ganglion cell axons at the optic nerve head and the cells that support axonal function (astrocytes, the neurovascular unit, microglia, and fibroblasts). These cells sense tissue strain through a series of signals that originate at the cell membrane and alter cytoskeletal organization, migration, differentiation, gene transcription, and proliferation. The proteins that translate mechanical stimuli into molecular signals act as band-pass filters - sensing some stimuli while ignoring others - and cellular responses to stimuli can differ based on cell type and differentiation state. Therefore, to fully understand the IOP signals that are relevant to glaucoma, it is necessary to understand the ultimate cellular targets of IOP-induced mechanical stimuli and their ability to sense, ignore, and translate these signals into cellular actions.
Collapse
Affiliation(s)
- Ian Pitha
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Center for Nanomedicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Glaucoma Center of Excellence, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Liya Du
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thao D Nguyen
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Harry Quigley
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Glaucoma Center of Excellence, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Liu WW, Kinzy TG, Cooke Bailey JN, Xu Z, Hysi P, Wiggs JL. Mechanosensitive ion channel gene survey suggests potential roles in primary open angle glaucoma. Sci Rep 2023; 13:15871. [PMID: 37741866 PMCID: PMC10517927 DOI: 10.1038/s41598-023-43072-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023] Open
Abstract
Although glaucoma is a disease modulated by eye pressure, the mechanisms of pressure sensing in the eye are not well understood. Here, we investigated associations between mechanosensitive ion channel gene variants and primary open-angle glaucoma (POAG). Common (minor allele frequency > 5%) single nucleotide polymorphisms located within the genomic regions of 20 mechanosensitive ion channel genes in the K2P, TMEM63, PIEZO and TRP channel families were assessed using genotype data from the NEIGHBORHOOD consortium of 3853 cases and 33,480 controls. Rare (minor allele frequency < 1%) coding variants were assessed using exome array genotyping data for 2606 cases and 2606 controls. Association with POAG was analyzed using logistic regression adjusting for age and sex. Two rare PIEZO1 coding variants with protective effects were identified in the NEIGHBOR dataset: R1527H, (OR 0.17, P = 0.0018) and a variant that alters a canonical splice donor site, g.16-88737727-C-G Hg38 (OR 0.38, P = 0.02). Both variants showed similar effects in the UK Biobank and the R1527H also in the FinnGen database. Several common variants also reached study-specific thresholds for association in the NEIGHBORHOOD dataset. These results identify novel variants in several mechanosensitive channel genes that show associations with POAG, suggesting that these channels may be potential therapeutic targets.
Collapse
Affiliation(s)
- Wendy W Liu
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, 2370 Watson Court, Palo Alto, CA, 94303, USA.
| | - Tyler G Kinzy
- Department of Population and Quantitative Health Sciences, Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Jessica N Cooke Bailey
- Department of Population and Quantitative Health Sciences, Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Zihe Xu
- Department of Ophthalmology, King's College London, St. Thomas' Hospital, London, UK
| | - Pirro Hysi
- Department of Ophthalmology, King's College London, St. Thomas' Hospital, London, UK
- Department of Twin Research and Genetic Epidemiology, King's College London, St. Thomas' Hospital, London, UK
| | - Janey L Wiggs
- Massachusetts Eye and Ear, Harvard Medical School Boston, Boston, MA, USA
| |
Collapse
|
6
|
Geng C, Liu S, Wang J, Wang S, Zhang W, Rong H, Cao Y, Wang S, Li Z, Zhang Y. Targeting the cochlin/SFRP1/CaMKII axis in the ocular posterior pole prevents the progression of nonpathologic myopia. Commun Biol 2023; 6:884. [PMID: 37644183 PMCID: PMC10465513 DOI: 10.1038/s42003-023-05267-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 08/21/2023] [Indexed: 08/31/2023] Open
Abstract
Myopia is a major public health issue. However, interventional modalities for nonpathologic myopia are limited due to its complicated pathogenesis and the lack of precise targets. Here, we show that in guinea pig form-deprived myopia (FDM) and lens-induced myopia (LIM) models, the early initiation, phenotypic correlation, and stable maintenance of cochlin protein upregulation at the interface between retinal photoreceptors and retinal pigment epithelium (RPE) is identified by a proteomic analysis of ocular posterior pole tissues. Then, a microarray analysis reveals that cochlin upregulates the expression of the secreted frizzled-related protein 1 (SFRP1) gene in human RPE cells. Moreover, SFRP-1 elevates the intracellular Ca2+ concentration and activates Ca2+/calmodulin-dependent protein kinase II (CaMKII) signaling in a simian choroidal vascular endothelial cell line, and elicits vascular endothelial cell dysfunction. Furthermore, genetic knockdown of the cochlin gene and pharmacological blockade of SFRP1 abrogates the reduced choroidal blood perfusion and prevents myopia progression in the FDM model. Collectively, this study identifies a novel signaling axis that may involve cochlin in the retina, SFRP1 in the RPE, and CaMKII in choroidal vascular endothelial cells and contribute to the pathogenesis of nonpathologic myopia, implicating the potential of cochlin and SFRP1 as myopia interventional targets.
Collapse
Affiliation(s)
- Chao Geng
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 300384, Tianjin, China
| | - Siyi Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 300384, Tianjin, China
| | - Jindan Wang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 300384, Tianjin, China
| | - Sennan Wang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 300384, Tianjin, China
| | - Weiran Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 300384, Tianjin, China
| | - Hua Rong
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 300384, Tianjin, China
| | - Yunshan Cao
- Department of Cardiology, Gansu Provincial Hospital, Lanzhou University, 730000, Lanzhou, Gansu Province, China
| | - Shuqing Wang
- School of Pharmacy, Tianjin Medical University, 300070, Tianjin, China
| | - Zhiqing Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 300384, Tianjin, China
| | - Yan Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 300384, Tianjin, China.
| |
Collapse
|
7
|
Feng P, Wang W, Xu W, Cao Q, Zhu W. Application of a Magnetic Platform in α6 Integrin-Positive iPSC-TM Purification. Bioengineering (Basel) 2023; 10:bioengineering10040410. [PMID: 37106597 PMCID: PMC10135729 DOI: 10.3390/bioengineering10040410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
The emergence of induced pluripotent stem cell (iPSC) technology has provided a new approach to regenerating decellularized trabecular meshwork (TM) in glaucoma. We have previously generated iPSC-derived TM (iPSC-TM) using a medium conditioned by TM cells and verified its function in tissue regeneration. Because of the heterogeneity of iPSCs and the isolated TM cells, iPSC-TM cells appear to be heterogeneous, which impedes our understanding of how the decellularized TM may be regenerated. Herein, we developed a protocol based on a magnetic-activated cell sorting (MACS) system or an immunopanning (IP) method for sorting integrin subunit alpha 6 (ITGA6)-positive iPSC-TM, an example of the iPSC-TM subpopulation. We first analyzed the purification efficiency of these two approaches by flow cytometry. In addition, we also determined cell viability by analyzing the morphologies of the purified cells. To conclude, the MACS-based purification could yield a higher ratio of ITGA6-positive iPSC-TM and maintain a relatively higher cell viability than the IP-based method, allowing for the preparation of any iPSC-TM subpopulation of interest and facilitating a better understanding of the regenerative mechanism of iPSC-based therapy.
Collapse
Affiliation(s)
- Pengchao Feng
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Wenyan Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Wenhua Xu
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao 266021, China
| | - Qilong Cao
- Qingdao Haier Biotech Co., Ltd., Qingdao 266109, China
- Correspondence: (Q.C.); (W.Z.)
| | - Wei Zhu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao 266021, China
- Advanced Innovation Center for Big Data-Based Precision Medicine, Beijing University of Aeronautics and Astronautics-Capital Medical University, Beijing 100083, China
- Correspondence: (Q.C.); (W.Z.)
| |
Collapse
|
8
|
Tang L, Chen L, Ye C, Zheng J, Zhou Y, Tao Y, Huang Q, Wang X, Shang X, Pan X, Congdon N, Liang Y. Population-based associations between progression of normal-tension glaucoma and Yang-deficient constitution among Chinese persons. Br J Ophthalmol 2023; 107:37-42. [PMID: 34362777 PMCID: PMC9763230 DOI: 10.1136/bjophthalmol-2021-319210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/23/2021] [Indexed: 11/04/2022]
Abstract
PURPOSE To explore the association between constitution types as defined by traditional Chinese medicine (TCM) and risk for normal-tension glaucoma (NTG). DESIGN Population-based cohort study. METHODS Persons were identified in a population cohort aged ≥30 years with NTG, defined as having an untreated mean intraocular pressure measurement ≤21 mm Hg over six separate occasions, with no single reading >24 mm Hg (as in the Collaborative Normal Tension Glaucoma Study). The Body Constitution in Traditional Chinese Medicine Questionnaire was used to assess each participant's TCM constitution types. The association between various constitutions and visual field progression according to Early Manifest Glaucoma Trial criteria was assessed using Cox regression HR models. RESULTS Among 142 participants (245 eyes), 23 persons (17.6%) and 25 eyes (10.2%) progressed, over a mean (SD) follow-up duration of 3.49 (0.99) years. Progression rates were highest in participants with Yang-deficient constitution (n=19, 13.4%), among whom 7 (36.8%) exhibited worsening fields. After adjusting for sex, age, central corneal thickness, retinal nerve fibre layer thickness and mean deviation on visual field testing, Yang-deficient constitution (HR 4.63, 95% CI 1.77 to 12.1, p=0.002) and higher mean intraocular pressure during follow-up (HR 1.25, 95% CI 1.01 to 1.56, p=0.044) were associated with field progression. CONCLUSIONS Yang-deficient constitution and higher intraocular pressure are risk factors for visual field progression in NTG patients. Yang deficiency is characterised by abnormal vasoregulation, and these results may be consistent with prior studies linking NTG progression to Raynaud's phenomenon and migraine.
Collapse
Affiliation(s)
- Lewei Tang
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China,National Clinical Research Center for Ocular Diseases, Wenzhou, China
| | - Liang Chen
- Wenzhou Medical University Second Affiliated Hospital, Wenzhou, China
| | - Cong Ye
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China,National Clinical Research Center for Ocular Diseases, Wenzhou, China
| | - Jingwei Zheng
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China,National Clinical Research Center for Ocular Diseases, Wenzhou, China
| | - Yi Zhou
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Yan Tao
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China,National Clinical Research Center for Ocular Diseases, Wenzhou, China
| | - Qiangjie Huang
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China,National Clinical Research Center for Ocular Diseases, Wenzhou, China
| | - Xiaoyan Wang
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China,National Clinical Research Center for Ocular Diseases, Wenzhou, China
| | - Xiao Shang
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China,National Clinical Research Center for Ocular Diseases, Wenzhou, China
| | - Xiafei Pan
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China,National Clinical Research Center for Ocular Diseases, Wenzhou, China
| | - Nathan Congdon
- Centre for Public Health, Queen’s University Belfast, Belfast, UK,ORBIS International, New York, New York, USA
| | - Yuanbo Liang
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China .,National Clinical Research Center for Ocular Diseases, Wenzhou, China
| |
Collapse
|
9
|
Li HL, Shan SW, Stamer WD, Li KK, Chan HHL, Civan MM, To CH, Lam TC, Do CW. Mechanistic Effects of Baicalein on Aqueous Humor Drainage and Intraocular Pressure. Int J Mol Sci 2022; 23:ijms23137372. [PMID: 35806375 PMCID: PMC9266486 DOI: 10.3390/ijms23137372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 02/06/2023] Open
Abstract
Elevated intraocular pressure (IOP) is a major risk factor for glaucoma that results from impeded fluid drainage. The increase in outflow resistance is caused by trabecular meshwork (TM) cell dysfunction and excessive extracellular matrix (ECM) deposition. Baicalein (Ba) is a natural flavonoid and has been shown to regulate cell contraction, fluid secretion, and ECM remodeling in various cell types, suggesting the potential significance of regulating outflow resistance and IOP. We demonstrated that Ba significantly lowered the IOP by about 5 mmHg in living mice. Consistent with that, Ba increased the outflow facility by up to 90% in enucleated mouse eyes. The effects of Ba on cell volume regulation and contractility were examined in primary human TM (hTM) cells. We found that Ba (1–100 µM) had no effect on cell volume under iso-osmotic conditions but inhibited the regulatory volume decrease (RVD) by up to 70% under hypotonic challenge. In addition, Ba relaxed hTM cells via reduced myosin light chain (MLC) phosphorylation. Using iTRAQ-based quantitative proteomics, 47 proteins were significantly regulated in hTM cells after a 3-h Ba treatment. Ba significantly increased the expression of cathepsin B by 1.51-fold and downregulated the expression of D-dopachrome decarboxylase and pre-B-cell leukemia transcription factor-interacting protein 1 with a fold-change of 0.58 and 0.40, respectively. We suggest that a Ba-mediated increase in outflow facility is triggered by cell relaxation via MLC phosphorylation along with inhibiting RVD in hTM cells. The Ba-mediated changes in protein expression support the notion of altered ECM homeostasis, potentially contributing to a reduction of outflow resistance and thereby IOP.
Collapse
Affiliation(s)
- Hoi-lam Li
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong; (H.-l.L.); (S.W.S.); (K.-k.L.); (H.H.-l.C.); (C.-h.T.); (T.C.L.)
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
| | - Sze Wan Shan
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong; (H.-l.L.); (S.W.S.); (K.-k.L.); (H.H.-l.C.); (C.-h.T.); (T.C.L.)
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong
- Research Centre for Chinese Medicine Innovation (RCMI), The Hong Kong Polytechnic University, Hong Kong
| | - W. Daniel Stamer
- Department of Ophthalmology, Duke University, Durham, NC 27708, USA;
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - King-kit Li
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong; (H.-l.L.); (S.W.S.); (K.-k.L.); (H.H.-l.C.); (C.-h.T.); (T.C.L.)
| | - Henry Ho-lung Chan
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong; (H.-l.L.); (S.W.S.); (K.-k.L.); (H.H.-l.C.); (C.-h.T.); (T.C.L.)
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong
- Research Centre for Chinese Medicine Innovation (RCMI), The Hong Kong Polytechnic University, Hong Kong
| | - Mortimer M. Civan
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Chi-ho To
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong; (H.-l.L.); (S.W.S.); (K.-k.L.); (H.H.-l.C.); (C.-h.T.); (T.C.L.)
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong
- Research Centre for Chinese Medicine Innovation (RCMI), The Hong Kong Polytechnic University, Hong Kong
| | - Thomas Chuen Lam
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong; (H.-l.L.); (S.W.S.); (K.-k.L.); (H.H.-l.C.); (C.-h.T.); (T.C.L.)
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong
- Research Centre for Chinese Medicine Innovation (RCMI), The Hong Kong Polytechnic University, Hong Kong
| | - Chi-wai Do
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong; (H.-l.L.); (S.W.S.); (K.-k.L.); (H.H.-l.C.); (C.-h.T.); (T.C.L.)
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
- Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong
- Research Centre for Chinese Medicine Innovation (RCMI), The Hong Kong Polytechnic University, Hong Kong
- Research Institute of Smart Ageing (RISA), The Hong Kong Polytechnic University, Hong Kong
- Correspondence:
| |
Collapse
|
10
|
Lakk M, Hoffmann GF, Gorusupudi A, Enyong E, Lin A, Bernstein PS, Toft-Bertelsen T, MacAulay N, Elliott MH, Križaj D. Membrane cholesterol regulates TRPV4 function, cytoskeletal expression, and the cellular response to tension. J Lipid Res 2021; 62:100145. [PMID: 34710431 PMCID: PMC8633027 DOI: 10.1016/j.jlr.2021.100145] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 10/08/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023] Open
Abstract
Despite the association of cholesterol with debilitating pressure-related diseases such as glaucoma, heart disease, and diabetes, its role in mechanotransduction is not well understood. We investigated the relationship between mechanical strain, free membrane cholesterol, actin cytoskeleton, and the stretch-activated transient receptor potential vanilloid isoform 4 (TRPV4) channel in human trabecular meshwork (TM) cells. Physiological levels of cyclic stretch resulted in time-dependent decreases in membrane cholesterol/phosphatidylcholine ratio and upregulation of stress fibers. Depleting free membrane cholesterol with m-β-cyclodextrin (MβCD) augmented TRPV4 activation by the agonist GSK1016790A, swelling and strain, with the effects reversed by cholesterol supplementation. MβCD increased membrane expression of TRPV4, caveolin-1, and flotillin. TRPV4 did not colocalize or interact with caveolae or lipid rafts, apart from a truncated ∼75 kDa variant partially precipitated by a caveolin-1 antibody. MβCD induced currents in TRPV4-expressing Xenopus laevis oocytes. Thus, membrane cholesterol regulates trabecular transduction of mechanical information, with TRPV4 channels mainly located outside the cholesterol-enriched membrane domains. Moreover, the biomechanical milieu itself shapes the lipid content of TM membranes. Diet, cholesterol metabolism, and mechanical stress might modulate the conventional outflow pathway and intraocular pressure in glaucoma and diabetes in part by modulating TM mechanosensing.
Collapse
Affiliation(s)
- Monika Lakk
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Grace F Hoffmann
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Aruna Gorusupudi
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Eric Enyong
- Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Amy Lin
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Paul S Bernstein
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
| | | | - Nanna MacAulay
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Michael H Elliott
- Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - David Križaj
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA; Department of Bioengineering, University of Utah, Salt Lake City, UT, USA; Department of Neurobiology, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
11
|
Lengyel M, Enyedi P, Czirják G. Negative Influence by the Force: Mechanically Induced Hyperpolarization via K 2P Background Potassium Channels. Int J Mol Sci 2021; 22:ijms22169062. [PMID: 34445768 PMCID: PMC8396510 DOI: 10.3390/ijms22169062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 02/08/2023] Open
Abstract
The two-pore domain K2P subunits form background (leak) potassium channels, which are characterized by constitutive, although not necessarily constant activity, at all membrane potential values. Among the fifteen pore-forming K2P subunits encoded by the KCNK genes, the three members of the TREK subfamily, TREK-1, TREK-2, and TRAAK are mechanosensitive ion channels. Mechanically induced opening of these channels generally results in outward K+ current under physiological conditions, with consequent hyperpolarization and inhibition of membrane potential-dependent cellular functions. In the past decade, great advances have been made in the investigation of the molecular determinants of mechanosensation, and members of the TREK subfamily have emerged among the best-understood examples of mammalian ion channels directly influenced by the tension of the phospholipid bilayer. In parallel, the crucial contribution of mechano-gated TREK channels to the regulation of membrane potential in several cell types has been reported. In this review, we summarize the general principles underlying the mechanical activation of K2P channels, and focus on the physiological roles of mechanically induced hyperpolarization.
Collapse
|
12
|
Fang J, Hou F, Wu S, Liu Y, Wang L, Zhang J, Wang N, Wang K, Zhu W. Piezo2 downregulation via the Cre-lox system affects aqueous humor dynamics in mice. Mol Vis 2021; 27:354-364. [PMID: 34220183 PMCID: PMC8219506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 05/18/2021] [Indexed: 11/18/2022] Open
Abstract
Purpose Proper aqueous humor (AH) dynamics is crucial for maintaining the intraocular pressure (IOP) in the eye. This study aims to investigate the function of Piezo2, a newly discovered mechanosensitive ion channel, in regulating AH dynamics. Methods Immunohistochemistry (IHC) analysis and western blotting were performed to detect Piezo2 expression. The Cre-lox system was applied to create a conditional knockout model of Piezo2. IOP and aqueous humor outflow facility in live animals were recorded with a Tonometer and a syringe-pump system for up to 2 weeks. Results We first detected Piezo2 with robust expression in the human trabecular meshwork (TM), Schlemm's canal (SC), the ciliary body's epithelium, and ciliary muscle. In addition, we found Piezo2 in human retinal ganglion cells (RGCs) and astrocytes in the optic nerve head (ONH). Through the Cre-lox system, Piezo2 can be successfully downregulated in mouse iridocorneal angle tissues. However, Piezo2 downregulation cannot significantly influence the IOP and outflow facility through the conventional pathway. Instead, we observed an effect of downregulated Piezo2 on decreasing the intercept in the flow rate versus pressure plot. According to the Goldmann equation, Piezo2 may function in regulating unconventional outflow, AH production, and episcleral venous pressure. Conclusions These findings, for the first time, demonstrate that Piezo2 acts as an essential mechanosensor in maintaining the proper aqueous humor dynamics in the eye.
Collapse
Affiliation(s)
- Jingwang Fang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Fei Hou
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Shen Wu
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital Eye Center, Beijing, China
| | - Yani Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Linna Wang
- Qingdao Haier Biotech Co. Ltd, Qingdao, China
| | - Jingxue Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital Eye Center, Beijing, China
| | - Ningli Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital Eye Center, Beijing, China
| | - Kewei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China,Institute of Innovative Drugs, Qingdao University, Qingdao, China
| | - Wei Zhu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China,Advanced Innovation Center for Big Data-Based Precision Medicine, Beijing University of Aeronautics and Astronautics-Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Lakk M, Križaj D. TRPV4-Rho signaling drives cytoskeletal and focal adhesion remodeling in trabecular meshwork cells. Am J Physiol Cell Physiol 2021; 320:C1013-C1030. [PMID: 33788628 PMCID: PMC8285634 DOI: 10.1152/ajpcell.00599.2020] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Intraocular pressure (IOP) is dynamically regulated by the trabecular meshwork (TM), a mechanosensitive tissue that protects the eye from injury through dynamic regulation of aqueous humor flow. TM compensates for mechanical stress impelled by chronic IOP elevations through increased actin polymerization, tissue stiffness, and contractility. This process has been associated with open angle glaucoma; however, the mechanisms that link mechanical stress to pathological cytoskeletal remodeling downstream from the mechanotransducers remain poorly understood. We used fluorescence imaging and biochemical analyses to investigate cytoskeletal and focal adhesion remodeling in human TM cells stimulated with physiological strains. Mechanical stretch promoted F-actin polymerization, increased the number and size of focal adhesions, and stimulated the activation of the Rho-associated protein kinase (ROCK). Stretch-induced activation of the small GTPase Ras homolog family member A (RhoA), and tyrosine phosphorylations of focal adhesion proteins paxillin, focal adhesion kinase (FAK), vinculin, and zyxin were time dependently inhibited by ROCK inhibitor trans-4-[(1R)-1-aminoethyl]-N-4-pyridinylcyclohexanecarboxamide dihydrochloride (Y-27632), and by HC-067047, an antagonist of transient receptor potential vanilloid 4 (TRPV4) channels. Both TRPV4 and ROCK activation were required for zyxin translocation and increase in the number/size of focal adhesions in stretched cells. Y-27632 blocked actin polymerization without affecting calcium influx induced by membrane stretch and the TRPV4 agonist GSK1016790A. These results reveal that mechanical tuning of TM cells requires parallel activation of TRPV4, integrins, and ROCK, with chronic stress leading to sustained remodeling of the cytoskeleton and focal complexes.
Collapse
Affiliation(s)
- Monika Lakk
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah
| | - David Križaj
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah.,Department of Bioengineering, University of Utah, Salt Lake City, Utah.,Department of Neurobiology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
14
|
de Coulon E, Dellenbach C, Rohr S. Advancing mechanobiology by performing whole-cell patch clamp recording on mechanosensitive cells subjected simultaneously to dynamic stretch events. iScience 2021; 24:102041. [PMID: 33532717 PMCID: PMC7822953 DOI: 10.1016/j.isci.2021.102041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/03/2020] [Accepted: 01/04/2021] [Indexed: 11/05/2022] Open
Abstract
A comprehensive understanding of mechano-electrical coupling requires continuous intracellular electrical recordings being performed on cells undergoing simultaneously in vivo like strain events. Here, we introduce a linear strain single-cell electrophysiology (LSSE) system that meets these requirements by delivering highly reproducible unidirectional strain events with magnitudes up to 12% and strain rates exceeding 200%s−1 to adherent cells kept simultaneously in whole-cell patch-clamp recording configuration. Proof-of-concept measurements with NIH3T3 cells demonstrate that stable recording conditions are maintained over tens of strain cycles at maximal amplitudes and strain rates thereby permitting a full electrophysiological characterization of mechanically activated ion currents. Because mechano-electrical responses to predefined strain patterns can be investigated using any adherent wild-type or genetically modified cell type of interest, the LSSE system offers the perspective of providing advanced insights into mechanosensitive ion channel function that can finally be compared quantitatively among different types of channels and cells. The methodology presented enables investigations of adherent mechanosensitive cells Whole-cell patch-clamp recording is performed while cells are dynamically stretched Continuous recording of sequences of physiological mechanical stimuli is practicable Experiments with NIH3T3 cells reveal a robust atypical mechanosensitive current
Collapse
Affiliation(s)
- Etienne de Coulon
- Department of Physiology, University of Bern, Bühlplatz 5, Bern, CH-3012, Switzerland
| | - Christian Dellenbach
- Department of Physiology, University of Bern, Bühlplatz 5, Bern, CH-3012, Switzerland
| | - Stephan Rohr
- Department of Physiology, University of Bern, Bühlplatz 5, Bern, CH-3012, Switzerland
| |
Collapse
|
15
|
Mechanical stretch induces Ca 2+ influx and extracellular release of PGE 2 through Piezo1 activation in trabecular meshwork cells. Sci Rep 2021; 11:4044. [PMID: 33597646 PMCID: PMC7890064 DOI: 10.1038/s41598-021-83713-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/01/2021] [Indexed: 11/22/2022] Open
Abstract
The trabecular meshwork (TM) constitutes the main pathway for aqueous humor drainage and is exposed to complex intraocular pressure fluctuations. The mechanism of homeostasis in which TM senses changes in intraocular pressure and leads to normal levels of outflow resistance is not yet well understood. Previous reports have shown that Piezo1, a mechanically-activated cation channel, is expressed in TM and isolated TM cells. Therefore, we tested hypothesis that Piezo1 may function in response to membrane tension and stretch in TM. In human trabecular meshwork (hTM) cells, PIEZO1 was showed to be abundantly expressed, and Piezo1 agonist Yoda1 and mechanical stretch caused a Piezo1-dependent Ca2+ influx and release of arachidonic acid and PGE2. Treatment with Yoda1 or PGE2 significantly inhibited hTM cell contraction. These results suggest that mechanical stretch stimuli in TM activates Piezo1 and subsequently regulates TM cell contraction by triggering Ca2+ influx and release of arachidonic acid and PGE2. Thus, Piezo1 could acts as a regulator of intraocular pressure (IOP) within the conventional outflow pathway and could be a novel therapeutic strategy to modulate IOP in glaucoma patients.
Collapse
|
16
|
Zhu W, Hou F, Fang J, Bahrani Fard MR, Liu Y, Ren S, Wu S, Qi Y, Sui S, Read AT, Sherwood JM, Zou W, Yu H, Zhang J, Overby DR, Wang N, Ethier CR, Wang K. The role of Piezo1 in conventional aqueous humor outflow dynamics. iScience 2021; 24:102042. [PMID: 33532718 PMCID: PMC7829208 DOI: 10.1016/j.isci.2021.102042] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/16/2020] [Accepted: 01/05/2021] [Indexed: 12/16/2022] Open
Abstract
Controlling intraocular pressure (IOP) remains the mainstay of glaucoma therapy. The trabecular meshwork (TM), the key tissue responsible for aqueous humor (AH) outflow and IOP maintenance, is very sensitive to mechanical forces. However, it is not understood whether Piezo channels, very sensitive mechanosensors, functionally influence AH outflow. Here, we characterize the role of Piezo1 in conventional AH outflow. Immunostaining and western blot analysis showed that Piezo1 is widely expressed by TM. Patch-clamp recordings in TM cells confirmed the activation of Piezo1-derived mechanosensitive currents. Importantly, the antagonist GsMTx4 for mechanosensitive channels significantly decreased steady-state facility, yet activation of Piezo1 by the specific agonist Yoda1 did not lead to a facility change. Furthermore, GsMTx4, but not Yoda1, caused a significant increase in ocular compliance, a measure of the eye's transient response to IOP perturbation. Our findings demonstrate a potential role for Piezo1 in conventional outflow, likely under pathological and rapid transient conditions. Piezo1 is functionally expressed in the TM, the most important tissue controlling IOP Suppression of mechanosensitive channel leads to a significant decrease in facility Our data suggest a role for Piezo in pathological situations and rapid IOP transients
Collapse
Affiliation(s)
- Wei Zhu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao University Medical College, 38 Dengzhou Road, Qingdao 266021, Shandong, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical University, Beijing 100730, China
| | - Fei Hou
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao University Medical College, 38 Dengzhou Road, Qingdao 266021, Shandong, China.,Department of Pharmacy, Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Jingwang Fang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao University Medical College, 38 Dengzhou Road, Qingdao 266021, Shandong, China
| | - Mohammad Reza Bahrani Fard
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta 30332, GA, USA
| | - Yani Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao University Medical College, 38 Dengzhou Road, Qingdao 266021, Shandong, China
| | - Shouyan Ren
- Department of Pharmacy, Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Shen Wu
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital Eye Center, Beijing 100730 China
| | - Yunkun Qi
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao University Medical College, 38 Dengzhou Road, Qingdao 266021, Shandong, China
| | - Shangru Sui
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao University Medical College, 38 Dengzhou Road, Qingdao 266021, Shandong, China
| | - A Thomas Read
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta 30332, GA, USA
| | | | - Wei Zou
- School of Mechatronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
| | - Hongxia Yu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao University Medical College, 38 Dengzhou Road, Qingdao 266021, Shandong, China
| | - Jingxue Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital Eye Center, Beijing 100730 China
| | - Darryl R Overby
- Department of Bioengineering, Imperial College London, London, UK
| | - Ningli Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital Eye Center, Beijing 100730 China
| | - C Ross Ethier
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta 30332, GA, USA.,Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, 30332, GA, United States
| | - KeWei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao University Medical College, 38 Dengzhou Road, Qingdao 266021, Shandong, China.,Institute of Innovative Drugs, Qingdao University, 38 Dengzhou Road, Qingdao 266021, Shandong, China
| |
Collapse
|
17
|
Yarishkin O, Phuong TTT, Baumann JM, De Ieso ML, Vazquez-Chona F, Rudzitis CN, Sundberg C, Lakk M, Stamer WD, Križaj D. Piezo1 channels mediate trabecular meshwork mechanotransduction and promote aqueous fluid outflow. J Physiol 2021; 599:571-592. [PMID: 33226641 PMCID: PMC7849624 DOI: 10.1113/jp281011] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/17/2020] [Indexed: 01/13/2023] Open
Abstract
KEY POINTS Trabecular meshwork (TM) is a highly mechanosensitive tissue in the eye that regulates intraocular pressure through the control of aqueous humour drainage. Its dysfunction underlies the progression of glaucoma but neither the mechanisms through which TM cells sense pressure nor their role in aqueous humour outflow are understood at the molecular level. We identified the Piezo1 channel as a key TM transducer of tensile stretch, shear flow and pressure. Its activation resulted in intracellular signals that altered organization of the cytoskeleton and cell-extracellular matrix contacts and modulated the trabecular component of aqueous outflow whereas another channel, TRPV4, mediated a delayed mechanoresponse. This study helps elucidate basic mechanotransduction properties that may contribute to intraocular pressure regulation in the vertebrate eye. ABSTRACT Chronic elevations in intraocular pressure (IOP) can cause blindness by compromising the function of trabecular meshwork (TM) cells in the anterior eye, but how these cells sense and transduce pressure stimuli is poorly understood. Here, we demonstrate functional expression of two mechanically activated channels in human TM cells. Pressure-induced cell stretch evoked a rapid increase in transmembrane current that was inhibited by antagonists of the mechanogated channel Piezo1, Ruthenium Red and GsMTx4, and attenuated in Piezo1-deficient cells. The majority of TM cells exhibited a delayed stretch-activated current that was mediated independently of Piezo1 by TRPV4 (transient receptor potential cation channel, subfamily V, member 4) channels. Piezo1 functions as the principal TM transducer of physiological levels of shear stress, with both shear and the Piezo1 agonist Yoda1 increasing the number of focal cell-matrix contacts. Analysis of TM-dependent fluid drainage from the anterior eye showed significant inhibition by GsMTx4. Collectively, these results suggest that TM mechanosensitivity utilizes kinetically, regulatory and functionally distinct pressure transducers to inform the cells about force-sensing contexts. Piezo1-dependent control of shear flow sensing, calcium homeostasis, cytoskeletal dynamics and pressure-dependent outflow suggests potential for a novel therapeutic target in treating glaucoma.
Collapse
Affiliation(s)
- Oleg Yarishkin
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, USA
| | - Tam T T Phuong
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, USA
| | - Jackson M Baumann
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, USA
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| | - Michael L De Ieso
- Duke Eye Center, Duke University School of Medicine, Durham, NC, USA
| | - Felix Vazquez-Chona
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, USA
| | - Christopher N Rudzitis
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, USA
| | - Chad Sundberg
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, USA
| | - Monika Lakk
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, USA
| | - W Daniel Stamer
- Duke Eye Center, Duke University School of Medicine, Durham, NC, USA
| | - David Križaj
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, USA
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
18
|
Yarishkin O, Phuong TTT, Križaj D. Trabecular Meshwork TREK-1 Channels Function as Polymodal Integrators of Pressure and pH. Invest Ophthalmol Vis Sci 2019; 60:2294-2303. [PMID: 31117121 PMCID: PMC6532698 DOI: 10.1167/iovs.19-26851] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Purpose The concentration of protons in the aqueous humor (AH) of the vertebrate eye is maintained close to blood pH; however, pathologic conditions and surgery may shift it by orders of magnitude. We investigated whether and how changes in extra- and intracellular pH affect the physiology and function of trabecular meshwork (TM) cells that regulate AH outflow. Methods Electrophysiology, in conjunction with pharmacology, gene knockdown, and optical recording, was used to track the pH dependence of transmembrane currents and mechanotransduction in primary and immortalized human TM cells. Results Extracellular acidification depolarized the resting membrane potential by inhibiting an outward K+-mediated current, whereas alkalinization hyperpolarized the cells and augmented the outward conductance. Intracellular acidification with sodium bicarbonate hyperpolarized TM cells, whereas removal of intracellular protons with ammonium chloride depolarized the membrane potential. The effects of extra- and intracellular acid and alkaline loading were abolished by quinine, a pan-selective inhibitor of two-pore domain potassium (K2P) channels, and suppressed by shRNA-mediated downregulation of the mechanosensitive K2P channel TREK-1. Extracellular acidosis suppressed, whereas alkalosis facilitated, the amplitude of the pressure-evoked TREK-1–mediated outward current. Conclusions These results demonstrate that TM mechanotransduction mediated by TREK-1 channels is profoundly sensitive to extra- and intracellular pH shifts. Intracellular acidification might modulate aqueous outflow and IOP by stimulating TREK-1 channels.
Collapse
Affiliation(s)
- Oleg Yarishkin
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, United States
| | - Tam T T Phuong
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, United States
| | - David Križaj
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, Utah, United States.,Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah, United States.,Department of Bioengineering, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
19
|
Yarishkin O, Phuong TTT, Bretz CA, Olsen KW, Baumann JM, Lakk M, Crandall A, Heurteaux C, Hartnett ME, Križaj D. TREK-1 channels regulate pressure sensitivity and calcium signaling in trabecular meshwork cells. J Gen Physiol 2018; 150:1660-1675. [PMID: 30446509 PMCID: PMC6279358 DOI: 10.1085/jgp.201812179] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/26/2018] [Indexed: 12/31/2022] Open
Abstract
The trabecular meshwork (TM) plays a fundamental role in intraocular pressure regulation, but its mechanotransduction pathway is poorly understood. Yarishkin et al. show that the mechanosensing channel TREK-1 regulates TM membrane potential, pressure sensitivity, calcium homeostasis, and impedance. Mechanotransduction by the trabecular meshwork (TM) is an essential component of intraocular pressure regulation in the vertebrate eye. This process is compromised in glaucoma but is poorly understood. In this study, we identify transient receptor potential vanilloid isoform 4 (TRPV4) and TWIK-related potassium channel-1 (TREK-1) as key molecular determinants of TM membrane potential, pressure sensitivity, calcium homeostasis, and transcellular permeability. We show that resting membrane potential in human TM cells is unaffected by “classical” inhibitors of voltage-activated, calcium-activated, and inwardly rectifying potassium channels but is depolarized by blockers of tandem-pore K+ channels. Using gene profiling, we reveal the presence of TREK-1, TASK-1, TWIK-2, and THIK transcripts in TM cells. Pressure stimuli, arachidonic acid, and TREK-1 activators hyperpolarize these cells, effects that are antagonized by quinine, amlodipine, spadin, and short-hairpin RNA–mediated knockdown of TREK-1 but not TASK-1. Activation and inhibition of TREK-1 modulates [Ca2+]TM and lowers the impedance of cell monolayers. Together, these results suggest that tensile homeostasis in the TM may be regulated by balanced, pressure-dependent activation of TRPV4 and TREK-1 mechanotransducers.
Collapse
Affiliation(s)
- Oleg Yarishkin
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT
| | - Tam T T Phuong
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT
| | - Colin A Bretz
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT
| | - Kenneth W Olsen
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT
| | - Jackson M Baumann
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT.,Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, UT.,Bioengineering Graduate Program, University of Utah School of Medicine, Salt Lake City, UT
| | - Monika Lakk
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT
| | - Alan Crandall
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT
| | - Catherine Heurteaux
- Institute de Pharmacologie Moléculaire et Cellulaire, CNRS, Valbonne, France
| | - Mary E Hartnett
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT
| | - David Križaj
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT .,Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, UT.,Bioengineering Graduate Program, University of Utah School of Medicine, Salt Lake City, UT.,Department of Neurobiology & Anatomy, University of Utah School of Medicine, Salt Lake City, UT
| |
Collapse
|
20
|
Swaminathan SS, Monsalve P, Zhou XY, Enriquez-Algeciras M, Bhattacharya SK, Dubovy SR, Junk AK. Histologic Analysis of Trabecular Meshwork Obtained From Kahook Dual Blade Goniotomy. Am J Ophthalmol 2018; 192:198-205. [PMID: 29883587 DOI: 10.1016/j.ajo.2018.05.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/24/2018] [Accepted: 05/29/2018] [Indexed: 12/13/2022]
Abstract
PURPOSE To determine whether there are identifiable, reproducible findings in the trabecular meshwork (TM) of patients with primary open-angle glaucoma (POAG) who underwent Kahook Dual Blade (KDB) goniotomy. DESIGN Noncomparative retrospective case series. METHODS Tertiary academic referral center, Veterans Affairs Medical Center. Thirteen patients (14 eyes) with POAG (100%) were treated with KDB goniotomy from May to December 2017. Isolated TM tissue was collected from 9 patients (10 eyes) and submitted for histologic analysis. Hematoxylin-eosin, periodic acid-Schiff, and elastin Van Gieson stains were completed, in addition to immunohistochemistry for collagen IV. RESULTS Mean age of patients was 74.2 ± 6.7 years. Trabecular beams were identified in all 10 specimens, although distorted in 4 samples, of which 3 had a history of laser trabeculoplasty. Collagen IV staining was present in 10 of 10 samples, coating the trabecular beams. Elastin was present in 8 of 10 samples along the trabecular beams. Intraocular pressure and number of glaucoma medications decreased significantly in all cases postoperatively (P < .0001, P = .035, respectively). CONCLUSIONS This pilot study demonstrates that tissue obtained during KDB goniotomy has a high yield of containing TM compared to reported yield of TM in specimens collected from traditional ab externo trabeculectomy (71% vs 20%, respectively). These goniotomy specimens possess sufficient anatomic preservation to be studied histologically. Trabecular meshwork obtained with this procedure may provide a novel modality to study TM dysfunction in open-angle glaucomas.
Collapse
Affiliation(s)
- Swarup S Swaminathan
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Pedro Monsalve
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Xiao Yi Zhou
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Mabel Enriquez-Algeciras
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Sanjoy K Bhattacharya
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Sander R Dubovy
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA; Florida Lions Ocular Pathology Laboratory, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Anna K Junk
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA; Miami Veterans Affairs Healthcare System, Miami, Florida, USA.
| |
Collapse
|