1
|
Sahu S, Sharma S, Kaur A, Singh G, Khatri M, Arya SK. Algal carbohydrate polymers: Catalytic innovations for sustainable development. Carbohydr Polym 2024; 327:121691. [PMID: 38171696 DOI: 10.1016/j.carbpol.2023.121691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024]
Abstract
Algal polysaccharides, harnessed for their catalytic potential, embody a compelling narrative in sustainable chemistry. This review explores the complex domains of algal carbohydrate-based catalysis, revealing its diverse trajectory. Starting with algal polysaccharide synthesis and characterization methods as catalysts, the investigation includes sophisticated techniques like NMR spectroscopy that provide deep insights into the structural variety of these materials. Algal polysaccharides undergo various preparation and modification techniques to enhance their catalytic activity such as immobilization. Homogeneous catalysis, revealing its significance in practical applications like crafting organic compounds and facilitating chemical transformations. Recent studies showcase how algal-derived catalysts prove to be remarkably versatile, showcasing their ability to customise reactions for specific substances. Heterogeneous catalysis, it highlights the significance of immobilization techniques, playing a central role in ensuring stability and the ability to reuse catalysts. The practical applications of heterogeneous algal catalysts in converting biomass and breaking down contaminants, supported by real-life case studies, emphasize their effectiveness. In sustainable chemistry, algal polysaccharides emerge as compelling catalysts, offering a unique intersection of eco-friendliness, structural diversity, and versatile catalytic properties. Tackling challenges such as dealing with complex structural variations, ensuring the stability of the catalyst, and addressing economic considerations calls for out-of-the-box and inventive solutions. Embracing the circular economy mindset not only assures sustainable catalyst design but also promotes efficient recycling practices. The use of algal carbohydrates in catalysis stands out as a source of optimism, paving the way for a future where chemistry aligns seamlessly with nature, guiding us toward a sustainable, eco-friendly, and thriving tomorrow. This review encapsulates-structural insights, catalytic applications, challenges, and future perspectives-invoking a call for collective commitment to catalyze a sustainable scientific revolution.
Collapse
Affiliation(s)
- Sudarshan Sahu
- Department of Biotechnology Engineering, University Institute of Engineering & Technology, Panjab University, Chandigarh, India
| | - Shalini Sharma
- Department of Biotechnology Engineering, University Institute of Engineering & Technology, Panjab University, Chandigarh, India
| | - Anupreet Kaur
- Department of Biotechnology Engineering, University Institute of Engineering & Technology, Panjab University, Chandigarh, India
| | - Gursharan Singh
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Madhu Khatri
- Department of Biotechnology Engineering, University Institute of Engineering & Technology, Panjab University, Chandigarh, India
| | - Shailendra Kumar Arya
- Department of Biotechnology Engineering, University Institute of Engineering & Technology, Panjab University, Chandigarh, India.
| |
Collapse
|
2
|
Zhou Y, Liu L, Li M, Hu C. Algal biomass valorisation to high-value chemicals and bioproducts: Recent advances, opportunities and challenges. BIORESOURCE TECHNOLOGY 2022; 344:126371. [PMID: 34838628 DOI: 10.1016/j.biortech.2021.126371] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Algae are considered promising biomass resources for biofuel production. However, some arguments doubt the economical and energetical feasibility of algal cultivation, harvesting, and conversion processes. Beyond biofuel, value-added bioproducts can be generated via algae conversion, which would enhance the economic feasibility of algal biorefineries. This review primarily focuses on valuable chemical and bioproduct production from algae. The methods for effective recovery of valuable algae components, and their applications are summarized. The potential routes for the conversion of lipids, carbohydrates, and proteins to valuable chemicals and bioproducts are assessed from recent studies. In addition, this review proposes the following challenges for future algal biorefineries: (1) utilization of naturally grown algae instead of cultivated algae; (2) fractionation of algae to individual components towards high-selectivity products; (3) avoidance of humin formation from algal carbohydrate conversion; (4) development of strategies for algal protein utilisation; and (5) development of efficient processes for commercialization and industrialization.
Collapse
Affiliation(s)
- Yingdong Zhou
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Li Liu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Mingyu Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Changwei Hu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, PR China.
| |
Collapse
|
3
|
Veerabadhran M, Natesan S, MubarakAli D, Xu S, Yang F. Using different cultivation strategies and methods for the production of microalgal biomass as a raw material for the generation of bioproducts. CHEMOSPHERE 2021; 285:131436. [PMID: 34256200 DOI: 10.1016/j.chemosphere.2021.131436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/25/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Microalgal biomass and its fine chemical production from microalgae have pioneered algal bioprocess technology with few limitations such as lab-to-industry. However, laboratory-scale transitions and industrial applications are hindered by a plethora of limitations comprising expensive in culturing methods. Therefore, to emphasize the profitable benefits, the algal culturing techniques appropriately employed for large-scale microalgal biomass yield necessitates intricate assessment to emphasize the profitable benefits. The present review holistically compiles the culturing strategies for improving microalgal biomass production based on appropriate factors like designing better bioreactor designs. On the other hand, synthetic biology approaches for abridging the effective industrial transition success explored recently. Prospects in synthetic biology for enhanced microalgal biomass production based on cultivation strategies and various mechanistic modes approach to enrich cost-effective and viable output are discussed. The State-of-the-art culturing techniques encompassing enhancement of photosynthetic activity, designing bioreactor design, and potential augmenting protocols for biomass yield employing indoor cultivation in both (Open and or/closed) methods are enumerated. Further, limitations hindering the microalgal bioproducts development are critically evaluated for improving culturing techniques for microalgal cell factories, subsequently escalating the cost-benefit ratio in bioproducts synthesis from microalgae. The comprehensive analysis could provide a rational and deeper detailed insight for microalgal entrepreneurs through alternative culturing technology viz., synthetic biology and genome engineering in an Industrial perspective arena.
Collapse
Affiliation(s)
- Maruthanayagam Veerabadhran
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, China.
| | - Sivakumar Natesan
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India.
| | - Davoodbasha MubarakAli
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamil Nadu, India.
| | - Shuaishuai Xu
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, China.
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical College, University of South China, Hengyang, China.
| |
Collapse
|
4
|
Aketo T, Waga K, Yabu Y, Maeda Y, Yoshino T, Hanada A, Sano K, Kamiya T, Takano H, Tanaka T. Algal biomass production by phosphorus recovery and recycling from wastewater using amorphous calcium silicate hydrates. BIORESOURCE TECHNOLOGY 2021; 340:125678. [PMID: 34339995 DOI: 10.1016/j.biortech.2021.125678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
The phosphorous supply crisis is a major challenge for a sustainable society, and the algal industry is not unrelated to this crisis. Recycling phosphorus from sewage wastewater is a potential way to address this issue. We previously developed amorphous calcium silicate hydrates (aCSH) as excellent phosphorus recovery materials. In this study, we designed a phosphorus recovery process using aCSH in a pilot-scale facility connected to a sewage wastewater treatment plant, and demonstrated the production of microalgal biomass using phosphorous-containing aCSH (P_aCSH). As a result, high phosphorous recovery rates (>80%) were obtained throughout the year. The carbohydrate-rich microalga Pseudoneochloris sp. NKY372003 was cultivable with P_aCSH. The biomass and carbohydrate productivity of this microalga with P_aCSH was comparable to that with conventional media. Approximately 94% of the phosphorus in P_aCSH was recycled into the biomass. This study successfully demonstrated the recycling the phosphorus recovered from wastewater for microalgal cultivation by aCSH.
Collapse
Affiliation(s)
- Tsuyoshi Aketo
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan; Central Research Laboratory, Taiheiyo Cement Corporation, 2-4-2, Osaku, Sakura City, Chiba 285-8655, Japan
| | - Kentaro Waga
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Yusuke Yabu
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Yoshiaki Maeda
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Tomoko Yoshino
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Akiko Hanada
- Central Research Laboratory, Taiheiyo Cement Corporation, 2-4-2, Osaku, Sakura City, Chiba 285-8655, Japan
| | - Koki Sano
- Central Research Laboratory, Taiheiyo Cement Corporation, 2-4-2, Osaku, Sakura City, Chiba 285-8655, Japan
| | - Takashi Kamiya
- Central Research Laboratory, Taiheiyo Cement Corporation, 2-4-2, Osaku, Sakura City, Chiba 285-8655, Japan
| | - Hiroyuki Takano
- Central Research Laboratory, Taiheiyo Cement Corporation, 2-4-2, Osaku, Sakura City, Chiba 285-8655, Japan
| | - Tsuyoshi Tanaka
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|
5
|
Pancha I, Takaya K, Tanaka K, Imamura S. The Unicellular Red Alga Cyanidioschyzon merolae, an Excellent Model Organism for Elucidating Fundamental Molecular Mechanisms and Their Applications in Biofuel Production. PLANTS 2021; 10:plants10061218. [PMID: 34203949 PMCID: PMC8232737 DOI: 10.3390/plants10061218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 11/16/2022]
Abstract
Microalgae are considered one of the best resources for the production of biofuels and industrially important compounds. Various models have been developed to understand the fundamental mechanism underlying the accumulation of triacylglycerols (TAGs)/starch and to enhance its content in cells. Among various algae, the red alga Cyanidioschyzonmerolae has been considered an excellent model system to understand the fundamental mechanisms behind the accumulation of TAG/starch in the microalga, as it has a smaller genome size and various biotechnological methods are available for it. Furthermore, C. merolae can grow and survive under high temperature (40 °C) and low pH (2–3) conditions, where most other organisms would die, thus making it a choice alga for large-scale production. Investigations using this alga has revealed that the target of rapamycin (TOR) kinase is involved in the accumulation of carbon-reserved molecules, TAGs, and starch. Furthermore, detailed molecular mechanisms of the role of TOR in controlling the accumulation of TAGs and starch were uncovered via omics analyses. Based on these findings, genetic engineering of the key gene and proteins resulted in a drastic increment of the amount of TAGs and starch. In addition to these studies, other trials that attempted to achieve the TAG increment in C. merolae have been summarized in this article.
Collapse
Affiliation(s)
- Imran Pancha
- Department of Biological Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522502, India
- Correspondence: (I.P.); (S.I.); Tel.: +81-422-59-6179 (S.I.)
| | - Kazuhiro Takaya
- NTT Space Environment and Energy Laboratories, Nippon Telegraph and Telephone Corporation, 3-9-11 Midori-cho, Musashino-shi, Tokyo 180-8585, Japan;
| | - Kan Tanaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259-R1-29 Nagatsuta, Midori-ku, Yokohama-shi, Kanagawa 226-8503, Japan;
| | - Sousuke Imamura
- NTT Space Environment and Energy Laboratories, Nippon Telegraph and Telephone Corporation, 3-9-11 Midori-cho, Musashino-shi, Tokyo 180-8585, Japan;
- Correspondence: (I.P.); (S.I.); Tel.: +81-422-59-6179 (S.I.)
| |
Collapse
|
6
|
Xia M, Shen Z, Gu M, Chen W, Dong W, Zhang Y. Efficient catalytic conversion of microalgae residue solid waste into lactic acid over a Fe-Sn-Beta catalyst. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:144891. [PMID: 33736128 DOI: 10.1016/j.scitotenv.2020.144891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Microalgae residue was efficiently converted into lactic acid with a high yield (33.9%) under mild reaction conditions (210 °C, 2 h) over a Fe-Sn-Beta catalyst. Under the action of homogeneous H3O+ and distinct Lewis acid sites on the catalyst, the production of lactic acid from microalgae residue underwent three main reaction steps: hydrolysis, isomerization, and retro-aldol condensation. Results demonstrated that the lipid component had a strong inhibitory effect on the production of lactic acid due to the formation of aromatics, esters, and complex nitrogenous heterocyclic compounds, which covered or poisoned the Lewis acid sites of the catalyst. The protein component acted as a chemical buffer that enhanced the production of lactic acid by controlling the release of monosaccharides from the carbohydrate fraction of microalgae and maintaining the catalytic activity of the catalyst. Thus, microalgae residue demonstrated great promise for the production of value-added chemicals.
Collapse
Affiliation(s)
- Meng Xia
- Key Laboratory of Oasis Ecology of Ministry of Education, College of Resource and Environment Sciences, Xinjiang University, Urumchi 830046, China; State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment of Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zheng Shen
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment of Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; National Engineering Research Center of Protected Agriculture, Tongji University, Shanghai 200092, China.
| | - Minyan Gu
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment of Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Wenbo Chen
- National Engineering Research Center of Protected Agriculture, Tongji University, Shanghai 200092, China
| | - Wenjie Dong
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou 310018, China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment of Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
7
|
Gómez‐Alcocer F, Castro AC, Jimenez‐Halla JOC, Saldaña‐Piña N, Basavanag MV, Báez‐García JE, Bonilla‐Cruz J, López JA, González‐García G. Neutral Hexacoordinate Tin(IV) Halide Complexes with 4,4'‐Dimethy‐2,2'‐bipyridine. Z Anorg Allg Chem 2020. [DOI: 10.1002/zaac.202000073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Fátima Gómez‐Alcocer
- Department of Chemistry Division of Exact and Natural Sciences Universidad de Guanajuato Col. Noria Alta, S/N C. P 36050 Guanajuato México
| | - Abril C. Castro
- Department of Chemistry Division of Exact and Natural Sciences Universidad de Guanajuato Col. Noria Alta, S/N C. P 36050 Guanajuato México
- Hylleraas Centre for Quantum Molecular Sciences Department of Chemistry University of Oslo 0315 Oslo Blindern Norway
| | - J. Oscar C. Jimenez‐Halla
- Department of Chemistry Division of Exact and Natural Sciences Universidad de Guanajuato Col. Noria Alta, S/N C. P 36050 Guanajuato México
| | - Noe Saldaña‐Piña
- Department of Chemistry Division of Exact and Natural Sciences Universidad de Guanajuato Col. Noria Alta, S/N C. P 36050 Guanajuato México
| | - Murali V. Basavanag
- Department of Chemistry Division of Exact and Natural Sciences Universidad de Guanajuato Col. Noria Alta, S/N C. P 36050 Guanajuato México
| | - J. Eduardo Báez‐García
- Department of Chemistry Division of Exact and Natural Sciences Universidad de Guanajuato Col. Noria Alta, S/N C. P 36050 Guanajuato México
| | - José Bonilla‐Cruz
- Centro de Investigación en Materiales Avanzados S.C. (CIMAV‐Unidad Monterrey) Av. Alianza Norte 22, Autopista Monterrey‐Aeropuerto Km 10, PIIT 66600 Apodaca‐Nuevo León C.P. México
| | - Jorge A. López
- Department of Chemistry Division of Exact and Natural Sciences Universidad de Guanajuato Col. Noria Alta, S/N C. P 36050 Guanajuato México
| | - Gerardo González‐García
- Department of Chemistry Division of Exact and Natural Sciences Universidad de Guanajuato Col. Noria Alta, S/N C. P 36050 Guanajuato México
| |
Collapse
|
8
|
Characterization of a novel marine unicellular alga, Pseudoneochloris sp. strain NKY372003 as a high carbohydrate producer. J Biosci Bioeng 2020; 129:687-692. [DOI: 10.1016/j.jbiosc.2019.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/19/2019] [Accepted: 12/21/2019] [Indexed: 12/21/2022]
|
9
|
Bernhard Y, Pellegrini S, Bousquet T, Favrelle A, Pelinski L, Cazaux F, Gaucher V, Gerbaux P, Zinck P. Reductive Amination/Cyclization of Methyl Levulinate with Aspartic Acid: Towards Renewable Polyesters with a Pendant Lactam Unit. CHEMSUSCHEM 2019; 12:3370-3376. [PMID: 31013551 DOI: 10.1002/cssc.201900745] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/23/2019] [Indexed: 06/09/2023]
Abstract
Environmental regulation and depletion of fossil resources are boosting the search for new polymeric materials produced from biomass. Here, the synthesis of a new diester bearing a pendant lactam unit from methyl levulinate and aspartic acid is reported. The palladium-catalyzed reductive amination/cyclization sequence was carefully optimized to afford the diacid with high yield (>95 %). In a second step, the compound was esterified to give the corresponding diester. The latter monomer was copolymerized with α-ω linear diols, yielding polyesters with molecular weights up to 20.5 kg mol-1 .
Collapse
Affiliation(s)
- Yann Bernhard
- Université de Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, 59000, Lille, France
| | - Sylvain Pellegrini
- Université de Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, 59000, Lille, France
| | - Till Bousquet
- Université de Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, 59000, Lille, France
| | - Audrey Favrelle
- Université de Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, 59000, Lille, France
| | - Lydie Pelinski
- Université de Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, 59000, Lille, France
| | - Frédéric Cazaux
- Université de Lille, CNRS, INRA, ENSCL, UMR 8207-UMET-Unité Matériaux et Transformations, 59000, Lille, France
| | - Valérie Gaucher
- Université de Lille, CNRS, INRA, ENSCL, UMR 8207-UMET-Unité Matériaux et Transformations, 59000, Lille, France
| | - Pascal Gerbaux
- University of Mons-UMONS, Organic Synthesis & Mass Spectrometry Laboratory, 23 Place du Parc, 7000, Mons, Belgium
| | - Philippe Zinck
- Université de Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, 59000, Lille, France
| |
Collapse
|
10
|
Pancha I, Tanaka K, Imamura S. Overexpression of a glycogenin, CmGLG2, enhances floridean starch accumulation in the red alga Cyanidioschyzon merolae. PLANT SIGNALING & BEHAVIOR 2019; 14:1596718. [PMID: 30938572 PMCID: PMC6546146 DOI: 10.1080/15592324.2019.1596718] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/10/2019] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
Microalgae accumulate energy-reserved molecules, such as triacylglycerol and carbohydrates, which are suitable feedstocks for renewable energies such as biodiesel and bioethanol. However, the molecular mechanisms behind the microalgae accumulating these molecules require further elucidation. Recently, we have reported that the target of rapamycin (TOR)-signaling is a major pathway to regulate floridean starch synthesis by changing the phosphorylation status of CmGLG1, a glycogenin generally required for the initiation of starch/glycogen synthesis, in the unicellular red alga Cyanidioschyzon merolae. In the present study, we confirmed that another glycogenin, CmGLG2, is also involved in the floridean starch synthesis in this alga, since the CmGLG2 overexpression resulted in a two-fold higher floridean starch content in the cell. The results indicate that both glycogenin isoforms play an important role in floridean starch synthesis in C. merolae, and would be a potential target for improvement of floridean starch production in microalgae.
Collapse
Affiliation(s)
- Imran Pancha
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
| | - Kan Tanaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
| | - Sousuke Imamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
| |
Collapse
|
11
|
Pancha I, Shima H, Higashitani N, Igarashi K, Higashitani A, Tanaka K, Imamura S. Target of rapamycin-signaling modulates starch accumulation via glycogenin phosphorylation status in the unicellular red alga Cyanidioschyzon merolae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:485-499. [PMID: 30351485 DOI: 10.1111/tpj.14136] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 09/23/2018] [Accepted: 10/15/2018] [Indexed: 06/08/2023]
Abstract
The target of rapamycin (TOR) signaling pathway is involved in starch accumulation in various eukaryotic organisms; however, the molecular mechanism behind this phenomenon in eukaryotes has not been elucidated. We report a regulatory mechanism of starch accumulation by TOR in the unicellular red alga, Cyanidioschyzon merolae. The starch content in C. merolae after TOR-inactivation by rapamycin, a TOR-specific inhibitor, was increased by approximately 10-fold in comparison with its drug vehicle, dimethyl sulfoxide. However, our previous transcriptome analysis showed that the expression level of genes related to carbohydrate metabolism was unaffected by rapamycin, indicating that starch accumulation is regulated at post-transcriptional levels. In this study, we performed a phosphoproteome analysis using liquid chromatography-tandem mass spectrometry to investigate potential post-transcriptional modifications, and identified 52 proteins as candidate TOR substrates. Among the possible substrates, we focused on the function of CmGLG1, because its phosphorylation at the Ser613 residue was decreased after rapamycin treatment, and overexpression of CmGLG1 resulted in a 4.7-fold higher starch content. CmGLG1 is similar to the priming protein, glycogenin, which is required for the initiation of starch/glycogen synthesis, and a budding yeast complementation assay demonstrated that CmGLG1 can functionally substitute for glycogenin. We found an approximately 60% reduction in the starch content in a phospho-mimicking CmGLG1 overexpression strain, in which Ser613 was substituted with aspartic acid, in comparison with the wild-type CmGLG1 overexpression cells. Our results indicate that TOR modulates starch accumulation by changing the phosphorylation status of the CmGLG1 Ser613 residue in C. merolae.
Collapse
Affiliation(s)
- Imran Pancha
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259-R1 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Hiroki Shima
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Aoba-ku, Sendai, 980-8575, Japan
| | - Nahoko Higashitani
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Aoba-ku, Sendai, 980-8575, Japan
| | - Atsushi Higashitani
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Kan Tanaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259-R1 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Sousuke Imamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259-R1 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| |
Collapse
|
12
|
|
13
|
|