1
|
Hayes WB. Exact p-values for global network alignments via combinatorial analysis of shared GO terms : REFANGO: Rigorous Evaluation of Functional Alignments of Networks using Gene Ontology. J Math Biol 2024; 88:50. [PMID: 38551701 PMCID: PMC10980677 DOI: 10.1007/s00285-024-02058-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 01/21/2024] [Accepted: 02/05/2024] [Indexed: 04/01/2024]
Abstract
Network alignment aims to uncover topologically similar regions in the protein-protein interaction (PPI) networks of two or more species under the assumption that topologically similar regions tend to perform similar functions. Although there exist a plethora of both network alignment algorithms and measures of topological similarity, currently no "gold standard" exists for evaluating how well either is able to uncover functionally similar regions. Here we propose a formal, mathematically and statistically rigorous method for evaluating the statistical significance of shared GO terms in a global, 1-to-1 alignment between two PPI networks. Given an alignment in which k aligned protein pairs share a particular GO term g, we use a combinatorial argument to precisely quantify the p-value of that alignment with respect to g compared to a random alignment. The p-value of the alignment with respect to all GO terms, including their inter-relationships, is approximated using the Empirical Brown's Method. We note that, just as with BLAST's p-values, this method is not designed to guide an alignment algorithm towards a solution; instead, just as with BLAST, an alignment is guided by a scoring matrix or function; the p-values herein are computed after the fact, providing independent feedback to the user on the biological quality of the alignment that was generated by optimizing the scoring function. Importantly, we demonstrate that among all GO-based measures of network alignments, ours is the only one that correlates with the precision of GO annotation predictions, paving the way for network alignment-based protein function prediction.
Collapse
Affiliation(s)
- Wayne B Hayes
- Department of Computer Science, UC Irvine, Irvine, USA.
| |
Collapse
|
2
|
Menor-Flores M, Vega-Rodríguez MA. Boosting-based ensemble of global network aligners for PPI network alignment. EXPERT SYSTEMS WITH APPLICATIONS 2023; 230:120671. [DOI: 10.1016/j.eswa.2023.120671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Robin V, Bodein A, Scott-Boyer MP, Leclercq M, Périn O, Droit A. Overview of methods for characterization and visualization of a protein-protein interaction network in a multi-omics integration context. Front Mol Biosci 2022; 9:962799. [PMID: 36158572 PMCID: PMC9494275 DOI: 10.3389/fmolb.2022.962799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/16/2022] [Indexed: 11/26/2022] Open
Abstract
At the heart of the cellular machinery through the regulation of cellular functions, protein-protein interactions (PPIs) have a significant role. PPIs can be analyzed with network approaches. Construction of a PPI network requires prediction of the interactions. All PPIs form a network. Different biases such as lack of data, recurrence of information, and false interactions make the network unstable. Integrated strategies allow solving these different challenges. These approaches have shown encouraging results for the understanding of molecular mechanisms, drug action mechanisms, and identification of target genes. In order to give more importance to an interaction, it is evaluated by different confidence scores. These scores allow the filtration of the network and thus facilitate the representation of the network, essential steps to the identification and understanding of molecular mechanisms. In this review, we will discuss the main computational methods for predicting PPI, including ones confirming an interaction as well as the integration of PPIs into a network, and we will discuss visualization of these complex data.
Collapse
Affiliation(s)
- Vivian Robin
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Antoine Bodein
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Marie-Pier Scott-Boyer
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Mickaël Leclercq
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Olivier Périn
- Digital Sciences Department, L'Oréal Advanced Research, Aulnay-sous-bois, France
| | - Arnaud Droit
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| |
Collapse
|
4
|
Carrasco-Santano I, Vega-Rodríguez MA. MOMEA: Multi-Objective Mutation-based Evolutionary Algorithm for the alignment of protein networks. Appl Soft Comput 2022. [DOI: 10.1016/j.asoc.2022.109366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
5
|
Ayub U, Naveed H. BioAlign: An Accurate Global PPI Network Alignment Algorithm. Evol Bioinform Online 2022; 18:11769343221110658. [PMID: 35898232 PMCID: PMC9309777 DOI: 10.1177/11769343221110658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 06/02/2022] [Indexed: 11/15/2022] Open
Abstract
Motivation The advancement of high-throughput PPI profiling techniques results in generating a large amount of PPI data. The alignment of the PPI networks uncovers the relationship between the species that can help understand the biological systems. The comparative study reveals the conserved biological interactions of the proteins across the species. It can also help study the biological pathways and signal networks of the cells. Although several network alignment algorithms are developed to study and compare the PPI data, the development of the aligner that aligns the PPI networks with high biological similarity and coverage is still challenging. Results This paper presents a novel global network alignment algorithm, BioAlign, that incorporates a significant amount of biological information. Existing studies use global sequence and/or 3D-structure similarity to align the PPI networks. In contrast, BioAlign uses the local sequence similarity, predicted secondary structure motifs, and remote homology in addition to global sequence and 3D-structure similarity. The extra sources of biological information help BioAlign to align the proteins with high biological similarity. BioAlign produces significantly better results in terms of AFS and Coverage (6-32 and 7-34 with respect to MF and BP, respectively) than the existing algorithms. BioAlign aligns a much larger number of proteins that have high biological similarities as compared to the existing aligners. BioAlign helps in studying the functionally similar protein pairs across the species.
Collapse
Affiliation(s)
- Umair Ayub
- FAST School of Computing, National
University of Computer and Emerging Sciences, Lahore, Pakistan
- Computational Biology Research Lab,
Department of Computing, National University of Computer and Emerging Sciences,
Islamabad, Pakistan
| | - Hammad Naveed
- FAST School of Computing, National
University of Computer and Emerging Sciences, Lahore, Pakistan
- Computational Biology Research Lab,
Department of Computing, National University of Computer and Emerging Sciences,
Islamabad, Pakistan
- Hammad Naveed, Computational Biology
Research Lab, Department of Computing, National University of Computer and
Emerging Sciences, 852 Milaad Street, Block B, Faisal Town, Lahore, Pakistan.
| |
Collapse
|
6
|
Wang S, Atkinson GRS, Hayes WB. SANA: cross-species prediction of Gene Ontology GO annotations via topological network alignment. NPJ Syst Biol Appl 2022; 8:25. [PMID: 35859153 PMCID: PMC9300714 DOI: 10.1038/s41540-022-00232-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 05/20/2022] [Indexed: 12/31/2022] Open
Abstract
Topological network alignment aims to align two networks node-wise in order to maximize the observed common connection (edge) topology between them. The topological alignment of two protein-protein interaction (PPI) networks should thus expose protein pairs with similar interaction partners allowing, for example, the prediction of common Gene Ontology (GO) terms. Unfortunately, no network alignment algorithm based on topology alone has been able to achieve this aim, though those that include sequence similarity have seen some success. We argue that this failure of topology alone is due to the sparsity and incompleteness of the PPI network data of almost all species, which provides the network topology with a small signal-to-noise ratio that is effectively swamped when sequence information is added to the mix. Here we show that the weak signal can be detected using multiple stochastic samples of "good" topological network alignments, which allows us to observe regions of the two networks that are robustly aligned across multiple samples. The resulting network alignment frequency (NAF) strongly correlates with GO-based Resnik semantic similarity and enables the first successful cross-species predictions of GO terms based on topology-only network alignments. Our best predictions have an AUPR of about 0.4, which is competitive with state-of-the-art algorithms, even when there is no observable sequence similarity and no known homology relationship. While our results provide only a "proof of concept" on existing network data, we hypothesize that predicting GO terms from topology-only network alignments will become increasingly practical as the volume and quality of PPI network data increase.
Collapse
Affiliation(s)
- Siyue Wang
- Department of Computer Science, University of California, Irvine, CA, 92697-3435, USA
| | - Giles R S Atkinson
- Department of Computer Science, University of California, Irvine, CA, 92697-3435, USA
| | - Wayne B Hayes
- Department of Computer Science, University of California, Irvine, CA, 92697-3435, USA.
| |
Collapse
|
7
|
Milano M, Agapito G, Cannataro M. Challenges and Limitations of Biological Network Analysis. BIOTECH 2022; 11:24. [PMID: 35892929 PMCID: PMC9326688 DOI: 10.3390/biotech11030024] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022] Open
Abstract
High-Throughput technologies are producing an increasing volume of data that needs large amounts of data storage, effective data models and efficient, possibly parallel analysis algorithms. Pathway and interactomics data are represented as graphs and add a new dimension of analysis, allowing, among other features, graph-based comparison of organisms' properties. For instance, in biological pathway representation, the nodes can represent proteins, RNA and fat molecules, while the edges represent the interaction between molecules. Otherwise, biological networks such as Protein-Protein Interaction (PPI) Networks, represent the biochemical interactions among proteins by using nodes that model the proteins from a given organism, and edges that model the protein-protein interactions, whereas pathway networks enable the representation of biochemical-reaction cascades that happen within the cells or tissues. In this paper, we discuss the main models for standard representation of pathways and PPI networks, the data models for the representation and exchange of pathway and protein interaction data, the main databases in which they are stored and the alignment algorithms for the comparison of pathways and PPI networks of different organisms. Finally, we discuss the challenges and the limitations of pathways and PPI network representation and analysis. We have identified that network alignment presents a lot of open problems worthy of further investigation, especially concerning pathway alignment.
Collapse
Affiliation(s)
- Marianna Milano
- Department of Medical and Clinical Surgery, University Magna Græcia, 88100 Catanzaro, Italy; (M.M.); (M.C.)
- Data Analytics Research Center, University Magna Græcia, 88100 Catanzaro, Italy
| | - Giuseppe Agapito
- Data Analytics Research Center, University Magna Græcia, 88100 Catanzaro, Italy
- Department of Law, Economics and Social Sciences, University Magna Græcia, 88100 Catanzaro, Italy
| | - Mario Cannataro
- Department of Medical and Clinical Surgery, University Magna Græcia, 88100 Catanzaro, Italy; (M.M.); (M.C.)
- Data Analytics Research Center, University Magna Græcia, 88100 Catanzaro, Italy
| |
Collapse
|
8
|
Wang S, Chen X, Frederisy BJ, Mbakogu BA, Kanne AD, Khosravi P, Hayes WB. On the current failure-but bright future-of topology-driven biological network alignment. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 131:1-44. [PMID: 35871888 DOI: 10.1016/bs.apcsb.2022.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Since the function of a protein is defined by its interaction partners, and since we expect similar interaction patterns across species, the alignment of protein-protein interaction (PPI) networks between species, based on network topology alone, should uncover functionally related proteins across species. Surprisingly, despite the publication of more than fifty algorithms aimed at performing PPI network alignment, few have demonstrated a statistically significant link between network topology and functional similarity, and none have demonstrated that orthologs can be recovered using network topology alone. We find that the major contributing factors to this surprising failure are: (i) edge densities in most currently available experimental PPI networks are demonstrably too low to expect topological network alignment to succeed; (ii) in the few cases where the edge densities are high enough, some measures of topological similarity easily uncover functionally similar proteins while others do not; and (iii) most network alignment algorithms to date perform poorly at optimizing even their own topological objective functions, hampering their ability to use topology effectively. We demonstrate that SANA-the Simulated Annealing Network Aligner-significantly outperforms existing aligners at optimizing their own objective functions, even achieving near-optimal solutions when the optimal solution is known. We offer the first demonstration of global network alignments based on topology alone that align functionally similar proteins with p-values in some cases below 10-300. We predict that topological network alignment has a bright future as edge densities increase toward the value where good alignments become possible. We demonstrate that when enough common topology is present at high enough edge densities-for example in the recent, partly synthetic networks of the Integrated Interaction Database-topological network alignment easily recovers most orthologs, paving the way toward high-throughput functional prediction based on topology-driven network alignment.
Collapse
Affiliation(s)
- Siyue Wang
- Department of Computer Science, University of California, Irvine, CA, United States
| | - Xiaoyin Chen
- Department of Computer Science, University of California, Irvine, CA, United States
| | - Brent J Frederisy
- Department of Computer Science, University of California, Irvine, CA, United States
| | - Benedict A Mbakogu
- Department of Computer Science, University of California, Irvine, CA, United States
| | - Amy D Kanne
- Department of Computer Science, University of California, Irvine, CA, United States
| | - Pasha Khosravi
- Department of Computer Science, University of California, Irvine, CA, United States
| | - Wayne B Hayes
- Department of Computer Science, University of California, Irvine, CA, United States.
| |
Collapse
|
9
|
Milano M, Zucco C, Settino M, Cannataro M. An Extensive Assessment of Network Embedding in PPI Network Alignment. ENTROPY (BASEL, SWITZERLAND) 2022; 24:730. [PMID: 35626613 PMCID: PMC9141406 DOI: 10.3390/e24050730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/07/2022]
Abstract
Network alignment is a fundamental task in network analysis. In the biological field, where the protein-protein interaction (PPI) is represented as a graph, network alignment allowed the discovery of underlying biological knowledge such as conserved evolutionary pathways and functionally conserved proteins throughout different species. A recent trend in network science concerns network embedding, i.e., the modelling of nodes in a network as a low-dimensional feature vector. In this survey, we present an overview of current PPI network embedding alignment methods, a comparison among them, and a comparison to classical PPI network alignment algorithms. The results of this comparison highlight that: (i) only five network embeddings for network alignment algorithms have been applied in the biological context, whereas the literature presents several classical network alignment algorithms; (ii) there is a need for developing an evaluation framework that may enable a unified comparison between different algorithms; (iii) the majority of the proposed algorithms perform network embedding through matrix factorization-based techniques; (iv) three out of five algorithms leverage external biological resources, while the remaining two are designed for domain agnostic network alignment and tested on PPI networks; (v) two algorithms out of three are stated to perform multi-network alignment, while the remaining perform pairwise network alignment.
Collapse
|
10
|
Menor-Flores M, Vega-Rodríguez MA. Decomposition-based multi-objective optimization approach for PPI network alignment. Knowl Based Syst 2022. [DOI: 10.1016/j.knosys.2022.108527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Ovens K, Eames BF, McQuillan I. Comparative Analyses of Gene Co-expression Networks: Implementations and Applications in the Study of Evolution. Front Genet 2021; 12:695399. [PMID: 34484293 PMCID: PMC8414652 DOI: 10.3389/fgene.2021.695399] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
Similarities and differences in the associations of biological entities among species can provide us with a better understanding of evolutionary relationships. Often the evolution of new phenotypes results from changes to interactions in pre-existing biological networks and comparing networks across species can identify evidence of conservation or adaptation. Gene co-expression networks (GCNs), constructed from high-throughput gene expression data, can be used to understand evolution and the rise of new phenotypes. The increasing abundance of gene expression data makes GCNs a valuable tool for the study of evolution in non-model organisms. In this paper, we cover motivations for why comparing these networks across species can be valuable for the study of evolution. We also review techniques for comparing GCNs in the context of evolution, including local and global methods of graph alignment. While some protein-protein interaction (PPI) bioinformatic methods can be used to compare co-expression networks, they often disregard highly relevant properties, including the existence of continuous and negative values for edge weights. Also, the lack of comparative datasets in non-model organisms has hindered the study of evolution using PPI networks. We also discuss limitations and challenges associated with cross-species comparison using GCNs, and provide suggestions for utilizing co-expression network alignments as an indispensable tool for evolutionary studies going forward.
Collapse
Affiliation(s)
- Katie Ovens
- Augmented Intelligence & Precision Health Laboratory (AIPHL), Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - B. Frank Eames
- Department of Anatomy, Physiology, & Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ian McQuillan
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
12
|
Woo HM, Yoon BJ. MONACO: accurate biological network alignment through optimal neighborhood matching between focal nodes. Bioinformatics 2021; 37:1401-1410. [PMID: 33165517 DOI: 10.1093/bioinformatics/btaa962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 10/19/2020] [Accepted: 11/02/2020] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION Alignment of protein-protein interaction networks can be used for the unsupervised prediction of functional modules, such as protein complexes and signaling pathways, that are conserved across different species. To date, various algorithms have been proposed for biological network alignment, many of which attempt to incorporate topological similarity between the networks into the alignment process with the goal of constructing accurate and biologically meaningful alignments. Especially, random walk models have been shown to be effective for quantifying the global topological relatedness between nodes that belong to different networks by diffusing node-level similarity along the interaction edges. However, these schemes are not ideal for capturing the local topological similarity between nodes. RESULTS In this article, we propose MONACO, a novel and versatile network alignment algorithm that finds highly accurate pairwise and multiple network alignments through the iterative optimal matching of 'local' neighborhoods around focal nodes. Extensive performance assessment based on real networks as well as synthetic networks, for which the ground truth is known, demonstrates that MONACO clearly and consistently outperforms all other state-of-the-art network alignment algorithms that we have tested, in terms of accuracy, coherence and topological quality of the aligned network regions. Furthermore, despite the sharply enhanced alignment accuracy, MONACO remains computationally efficient and it scales well with increasing size and number of networks. AVAILABILITY AND IMPLEMENTATION Matlab implementation is freely available at https://github.com/bjyoontamu/MONACO. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Hyun-Myung Woo
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Byung-Jun Yoon
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA.,TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, TX 77845, USA.,Computational Science Initiative, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
13
|
Ovens K, Maleki F, Eames BF, McQuillan I. Juxtapose: a gene-embedding approach for comparing co-expression networks. BMC Bioinformatics 2021; 22:125. [PMID: 33726666 PMCID: PMC7968242 DOI: 10.1186/s12859-021-04055-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Gene co-expression networks (GCNs) are not easily comparable due to their complex structure. In this paper, we propose a tool, Juxtapose, together with similarity measures that can be utilized for comparative transcriptomics between a set of organisms. While we focus on its application to comparing co-expression networks across species in evolutionary studies, Juxtapose is also generalizable to co-expression network comparisons across tissues or conditions within the same species. METHODS A word embedding strategy commonly used in natural language processing was utilized in order to generate gene embeddings based on walks made throughout the GCNs. Juxtapose was evaluated based on its ability to embed the nodes of synthetic structures in the networks consistently while also generating biologically informative results. Evaluation of the techniques proposed in this research utilized RNA-seq datasets from GTEx, a multi-species experiment of prefrontal cortex samples from the Gene Expression Omnibus, as well as synthesized datasets. Biological evaluation was performed using gene set enrichment analysis and known gene relationships in literature. RESULTS We show that Juxtapose is capable of globally aligning synthesized networks as well as identifying areas that are conserved in real gene co-expression networks without reliance on external biological information. Furthermore, output from a matching algorithm that uses cosine distance between GCN embeddings is shown to be an informative measure of similarity that reflects the amount of topological similarity between networks. CONCLUSIONS Juxtapose can be used to align GCNs without relying on known biological similarities and enables post-hoc analyses using biological parameters, such as orthology of genes, or conserved or variable pathways. AVAILABILITY A development version of the software used in this paper is available at https://github.com/klovens/juxtapose.
Collapse
Affiliation(s)
- Katie Ovens
- Department of Computer Science, University of Saskatchewan, Saskatoon, S7N 5C9 Canada
| | - Farhad Maleki
- Augmented Intelligence & Precision Health Laboratory (AIPHL), Research Institute of the McGill University Health Centre, Montreal, H4A 3S5 Canada
| | - B. Frank Eames
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, S7N 5E5 Canada
| | - Ian McQuillan
- Department of Computer Science, University of Saskatchewan, Saskatoon, S7N 5C9 Canada
| |
Collapse
|
14
|
Alcalá A, Alberich R, Llabrés M, Rosselló F, Valiente G. AligNet: alignment of protein-protein interaction networks. BMC Bioinformatics 2020; 21:265. [PMID: 33203353 PMCID: PMC7672851 DOI: 10.1186/s12859-020-3502-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 04/16/2020] [Indexed: 11/23/2022] Open
Abstract
Background All molecular functions and biological processes are carried out by groups of proteins that interact with each other. Metaproteomic data continuously generates new proteins whose molecular functions and relations must be discovered. A widely accepted structure to model functional relations between proteins are protein-protein interaction networks (PPIN), and their analysis and alignment has become a key ingredient in the study and prediction of protein-protein interactions, protein function, and evolutionary conserved assembly pathways of protein complexes. Several PPIN aligners have been proposed, but attaining the right balance between network topology and biological information is one of the most difficult and key points in the design of any PPIN alignment algorithm. Results Motivated by the challenge of well-balanced and efficient algorithms, we have designed and implemented AligNet, a parameter-free pairwise PPIN alignment algorithm aimed at bridging the gap between topologically efficient and biologically meaningful matchings. A comparison of the results obtained with AligNet and with the best aligners shows that AligNet achieves indeed a good balance between topological and biological matching. Conclusion In this paper we present AligNet, a new pairwise global PPIN aligner that produces biologically meaningful alignments, by achieving a good balance between structural matching and protein function conservation, and more efficient computations than state-of-the-art tools.
Collapse
Affiliation(s)
- Adrià Alcalá
- Department of Mathematics and Computer Science, University of the Balearic Islands, Palma de Mallorca, E-07122, Spain.,Balearic Islands Health Research Institute (IdISBa), Palma de Mallorca, E-07010, Spain
| | - Ricardo Alberich
- Department of Mathematics and Computer Science, University of the Balearic Islands, Palma de Mallorca, E-07122, Spain.,Balearic Islands Health Research Institute (IdISBa), Palma de Mallorca, E-07010, Spain
| | - Mercè Llabrés
- Department of Mathematics and Computer Science, University of the Balearic Islands, Palma de Mallorca, E-07122, Spain. .,Balearic Islands Health Research Institute (IdISBa), Palma de Mallorca, E-07010, Spain.
| | - Francesc Rosselló
- Department of Mathematics and Computer Science, University of the Balearic Islands, Palma de Mallorca, E-07122, Spain.,Balearic Islands Health Research Institute (IdISBa), Palma de Mallorca, E-07010, Spain
| | - Gabriel Valiente
- Algorithms, Bioinformatics, Complexity and Formal Methods Research Group, Technical University of Catalonia, Barcelona, E-08034, Spain
| |
Collapse
|
15
|
Llabrés M, Riera G, Rosselló F, Valiente G. Alignment of biological networks by integer linear programming: virus-host protein-protein interaction networks. BMC Bioinformatics 2020; 21:434. [PMID: 33203352 PMCID: PMC7671827 DOI: 10.1186/s12859-020-03733-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/03/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The alignment of protein-protein interaction networks was recently formulated as an integer quadratic programming problem, along with a linearization that can be solved by integer linear programming software tools. However, the resulting integer linear program has a huge number of variables and constraints, rendering it of no practical use. RESULTS We present a compact integer linear programming reformulation of the protein-protein interaction network alignment problem, which can be solved using state-of-the-art mathematical modeling and integer linear programming software tools, along with empirical results showing that small biological networks, such as virus-host protein-protein interaction networks, can be aligned in a reasonable amount of time on a personal computer and the resulting alignments are structurally coherent and biologically meaningful. CONCLUSIONS The implementation of the integer linear programming reformulation using current mathematical modeling and integer linear programming software tools provided biologically meaningful alignments of virus-host protein-protein interaction networks.
Collapse
Affiliation(s)
- Mercè Llabrés
- Department of Mathematics and Computer Science, University of the Balearic Islands, Palma de Mallorca, E-07122 Spain
- Balearic Islands Health Research Institute, Palma de Mallorca, E-07010 Spain
| | - Gabriel Riera
- Department of Mathematics and Computer Science, University of the Balearic Islands, Palma de Mallorca, E-07122 Spain
- Balearic Islands Health Research Institute, Palma de Mallorca, E-07010 Spain
| | - Francesc Rosselló
- Department of Mathematics and Computer Science, University of the Balearic Islands, Palma de Mallorca, E-07122 Spain
- Balearic Islands Health Research Institute, Palma de Mallorca, E-07010 Spain
| | - Gabriel Valiente
- Algorithms, Bioinformatics, Complexity and Formal Methods Research Group, Technical University of Catalonia, Barcelona, E-08034 Spain
| |
Collapse
|
16
|
Ayub U, Haider I, Naveed H. SAlign-a structure aware method for global PPI network alignment. BMC Bioinformatics 2020; 21:500. [PMID: 33148180 PMCID: PMC7640460 DOI: 10.1186/s12859-020-03827-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 10/20/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND High throughput experiments have generated a significantly large amount of protein interaction data, which is being used to study protein networks. Studying complete protein networks can reveal more insight about healthy/disease states than studying proteins in isolation. Similarly, a comparative study of protein-protein interaction (PPI) networks of different species reveals important insights which may help in disease analysis and drug design. The study of PPI network alignment can also helps in understanding the different biological systems of different species. It can also be used in transfer of knowledge across different species. Different aligners have been introduced in the last decade but developing an accurate and scalable global alignment algorithm that can ensures the biological significance alignment is still challenging. RESULTS This paper presents a novel global pairwise network alignment algorithm, SAlign, which uses topological and biological information in the alignment process. The proposed algorithm incorporates sequence and structural information for computing biological scores, whereas previous algorithms only use sequence information. The alignment based on the proposed technique shows that the combined effect of structure and sequence results in significantly better pairwise alignments. We have compared SAlign with state-of-art algorithms on the basis of semantic similarity of alignment and the number of aligned nodes on multiple PPI network pairs. The results of SAlign on the network pairs which have high percentage of proteins with available structure are 3-63% semantically better than all existing techniques. Furthermore, it also aligns 5-14% more nodes of these network pairs as compared to existing aligners. The results of SAlign on other PPI network pairs are comparable or better than all existing techniques. We also introduce [Formula: see text], a Monte Carlo based alignment algorithm, that produces multiple network alignments with similar semantic similarity. This helps the user to pick biologically meaningful alignments. CONCLUSION The proposed algorithm has the ability to find the alignments that are more biologically significant/relevant as compared to the alignments of existing aligners. Furthermore, the proposed method is able to generate alternate alignments that help in studying different genes/proteins of the specie.
Collapse
Affiliation(s)
- Umair Ayub
- Department of Computing, National University of Computer and Emerging Sciences, Islamabad, 40100, Pakistan.,Computational Biology Research Lab, Islamabad, 40100, Pakistan
| | - Imran Haider
- Department of Computing, National University of Computer and Emerging Sciences, Islamabad, 40100, Pakistan.,Computational Biology Research Lab, Islamabad, 40100, Pakistan
| | - Hammad Naveed
- Department of Computing, National University of Computer and Emerging Sciences, Islamabad, 40100, Pakistan. .,Computational Biology Research Lab, Islamabad, 40100, Pakistan.
| |
Collapse
|
17
|
Zhu L, Zhang J, Zhang Y, Lang J, Xiang J, Bai X, Yan N, Tian G, Zhang H, Yang J. NAIGO: An Improved Method to Align PPI Networks Based on Gene Ontology and Graphlets. Front Bioeng Biotechnol 2020; 8:547. [PMID: 32637398 PMCID: PMC7318716 DOI: 10.3389/fbioe.2020.00547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 05/06/2020] [Indexed: 11/24/2022] Open
Abstract
With the development of high throughput technologies, there are more and more protein–protein interaction (PPI) networks available, which provide a need for efficient computational tools for network alignment. Network alignment is widely used to predict functions of certain proteins, identify conserved network modules, and study the evolutionary relationship across species or biological entities. However, network alignment is an NP-complete problem, and previous algorithms are usually slow or less accurate in aligning big networks like human vs. yeast. In this study, we proposed a fast yet accurate algorithm called Network Alignment by Integrating Biological Process (NAIGO). Specifically, we first divided the networks into subnets taking the advantage of known prior knowledge, such as gene ontology. For each subnet pair, we then developed a novel method to align them by considering both protein orthologous information and their local structural information. After that, we expanded the obtained local network alignments in a greedy manner. Taking the aligned pairs as seeds, we formulated the global network alignment problem as an assignment problem based on similarity matrix, which was solved by the Hungarian method. We applied NAIGO to align human and Saccharomyces cerevisiae S288c PPI network and compared the results with other popular methods like IsoRank, GRAAL, SANA, and NABEECO. As a result, our method outperformed the competitors by aligning more orthologous proteins or matched interactions. In addition, we found a few potential functional orthologous proteins such as RRM2B in human and DNA2 in S. cerevisiae S288c, which are related to DNA repair. We also identified a conserved subnet with six orthologous proteins EXO1, MSH3, MSH2, MLH1, MLH3, and MSH6, and six aligned interactions. All these proteins are associated with mismatch repair. Finally, we predicted a few proteins of S. cerevisiae S288c potentially involving in certain biological processes like autophagosome assembly.
Collapse
Affiliation(s)
- Lijuan Zhu
- College of Mathematics and Computer Science, Zhejiang Normal University, Jinhua, China
| | - Ju Zhang
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, and Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Yi Zhang
- Department of Mathematics, Hebei University of Science & Technology, Shijiazhuang, China
| | | | - Ju Xiang
- Neuroscience Research Center & Department of Basic Medical Sciences, Changsha Medical University, Changsha, China.,School of Computer Science and Engineering, Central South University, Changsha, China
| | - Xiaogang Bai
- Department of Mathematics, Hebei University of Science & Technology, Shijiazhuang, China
| | - Na Yan
- Geneis Beijing Co., Ltd., Beijing, China
| | - Geng Tian
- Geneis Beijing Co., Ltd., Beijing, China
| | - Huajun Zhang
- College of Mathematics and Computer Science, Zhejiang Normal University, Jinhua, China
| | | |
Collapse
|
18
|
Milano M, Milenković T, Cannataro M, Guzzi PH. L-HetNetAligner: A novel algorithm for Local Alignment of Heterogeneous Biological Networks. Sci Rep 2020; 10:3901. [PMID: 32127586 PMCID: PMC7054427 DOI: 10.1038/s41598-020-60737-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/11/2020] [Indexed: 11/10/2022] Open
Abstract
Networks are largely used for modelling and analysing a wide range of biological data. As a consequence, many different research efforts have resulted in the introduction of a large number of algorithms for analysis and comparison of networks. Many of these algorithms can deal with networks with a single class of nodes and edges, also referred to as homogeneous networks. Recently, many different approaches tried to integrate into a single model the interplay of different molecules. A possible formalism to model such a scenario comes from node/edge coloured networks (also known as heterogeneous networks) implemented as node/ edge-coloured graphs. Therefore, the need for the introduction of algorithms able to compare heterogeneous networks arises. We here focus on the local comparison of heterogeneous networks, and we formulate it as a network alignment problem. To the best of our knowledge, the local alignment of heterogeneous networks has not been explored in the past. We here propose L-HetNetAligner a novel algorithm that receives as input two heterogeneous networks (node-coloured graphs) and builds a local alignment of them. We also implemented and tested our algorithm. Our results confirm that our method builds high-quality alignments. The following website *contains Supplementary File 1 material and the code.
Collapse
Affiliation(s)
- Marianna Milano
- Department of Surgical and Medical Sciences, University of Catanzaro, Catanzaro, 88040, Italy
| | - Tijana Milenković
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, Indiana, USA
| | - Mario Cannataro
- Department of Surgical and Medical Sciences, University of Catanzaro, Catanzaro, 88040, Italy
- Data Analytics Research Center, University of Catanzaro, Catanzaro, Italy
| | - Pietro Hiram Guzzi
- Department of Surgical and Medical Sciences, University of Catanzaro, Catanzaro, 88040, Italy.
- Data Analytics Research Center, University of Catanzaro, Catanzaro, Italy.
| |
Collapse
|
19
|
Kernel Differential Subgraph Analysis to Reveal the Key Period Affecting Glioblastoma. Biomolecules 2020; 10:biom10020318. [PMID: 32079293 PMCID: PMC7072688 DOI: 10.3390/biom10020318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/05/2020] [Accepted: 02/10/2020] [Indexed: 12/26/2022] Open
Abstract
Glioblastoma (GBM) is a fast-growing type of malignant primary brain tumor. To explore the mechanisms in GBM, complex biological networks are used to reveal crucial changes among different biological states, which reflect on the development of living organisms. It is critical to discover the kernel differential subgraph (KDS) that leads to drastic changes. However, identifying the KDS is similar to the Steiner Tree problem that is an NP-hard problem. In this paper, we developed a criterion to explore the KDS (CKDS), which considered the connectivity and scale of KDS, the topological difference of nodes and function relevance between genes in the KDS. The CKDS algorithm was applied to simulated datasets and three single-cell RNA sequencing (scRNA-seq) datasets including GBM, fetal human cortical neurons (FHCN) and neural differentiation. Then we performed the network topology and functional enrichment analyses on the extracted KDSs. Compared with the state-of-art methods, the CKDS algorithm outperformed on simulated datasets to discover the KDSs. In the GBM and FHCN, seventeen genes (one biomarker, nine regulatory genes, one driver genes, six therapeutic targets) and KEGG pathways in KDSs were strongly supported by literature mining that they were highly interrelated with GBM. Moreover, focused on GBM, there were fifteen genes (including ten regulatory genes, three driver genes, one biomarkers, one therapeutic target) and KEGG pathways found in the KDS of neural differentiation process from activated neural stem cells (aNSC) to neural progenitor cells (NPC), while few genes and no pathway were found in the period from NPC to astrocytes (Ast). These experiments indicated that the process from aNSC to NPC is a key differentiation period affecting the development of GBM. Therefore, the CKDS algorithm provides a unique perspective in identifying cell-type-specific genes and KDSs.
Collapse
|
20
|
Sonawane AR, Weiss ST, Glass K, Sharma A. Network Medicine in the Age of Biomedical Big Data. Front Genet 2019; 10:294. [PMID: 31031797 PMCID: PMC6470635 DOI: 10.3389/fgene.2019.00294] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 03/19/2019] [Indexed: 12/13/2022] Open
Abstract
Network medicine is an emerging area of research dealing with molecular and genetic interactions, network biomarkers of disease, and therapeutic target discovery. Large-scale biomedical data generation offers a unique opportunity to assess the effect and impact of cellular heterogeneity and environmental perturbations on the observed phenotype. Marrying the two, network medicine with biomedical data provides a framework to build meaningful models and extract impactful results at a network level. In this review, we survey existing network types and biomedical data sources. More importantly, we delve into ways in which the network medicine approach, aided by phenotype-specific biomedical data, can be gainfully applied. We provide three paradigms, mainly dealing with three major biological network archetypes: protein-protein interaction, expression-based, and gene regulatory networks. For each of these paradigms, we discuss a broad overview of philosophies under which various network methods work. We also provide a few examples in each paradigm as a test case of its successful application. Finally, we delineate several opportunities and challenges in the field of network medicine. We hope this review provides a lexicon for researchers from biological sciences and network theory to come on the same page to work on research areas that require interdisciplinary expertise. Taken together, the understanding gained from combining biomedical data with networks can be useful for characterizing disease etiologies and identifying therapeutic targets, which, in turn, will lead to better preventive medicine with translational impact on personalized healthcare.
Collapse
Affiliation(s)
- Abhijeet R. Sonawane
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Scott T. Weiss
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Kimberly Glass
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Amitabh Sharma
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Brigham and Women’s Hospital, Boston, MA, United States
| |
Collapse
|
21
|
Pražnikar J, Tomić M, Turk D. Validation and quality assessment of macromolecular structures using complex network analysis. Sci Rep 2019; 9:1678. [PMID: 30737447 PMCID: PMC6368557 DOI: 10.1038/s41598-019-38658-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 01/07/2019] [Indexed: 02/06/2023] Open
Abstract
Validation of three-dimensional structures is at the core of structural determination methods. The local validation criteria, such as deviations from ideal bond length and bonding angles, Ramachandran plot outliers and clashing contacts, are a standard part of structure analysis before structure deposition, whereas the global and regional packing may not yet have been addressed. In the last two decades, three-dimensional models of macromolecules such as proteins have been successfully described by a network of nodes and edges. Amino acid residues as nodes and close contact between the residues as edges have been used to explore basic network properties, to study protein folding and stability and to predict catalytic sites. Using complex network analysis, we introduced common network parameters to distinguish between correct and incorrect three-dimensional protein structures. The analysis showed that correct structures have a higher average node degree, higher graph energy, and lower shortest path length than their incorrect counterparts. Thus, correct protein models are more densely intra-connected, and in turn, the transfer of information between nodes/amino acids is more efficient. Moreover, protein graph spectra were used to investigate model bias in protein structure.
Collapse
Affiliation(s)
- Jure Pražnikar
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, Koper, Slovenia.
- Department of Biochemistry, Molecular and Structural Biology, Institute Jožef Stefan, Jamova 39, Ljubljana, Slovenia.
| | - Miloš Tomić
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, Koper, Slovenia
| | - Dušan Turk
- Department of Biochemistry, Molecular and Structural Biology, Institute Jožef Stefan, Jamova 39, Ljubljana, Slovenia
- Center of excellence for Integrated Approaches in Chemistry and Biology of Proteins, Jamova 39, Ljubljana, Slovenia
| |
Collapse
|
22
|
Milano M, Guzzi PH, Cannataro M. GLAlign: A Novel Algorithm for Local Network Alignment. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2018; 16:1958-1969. [PMID: 29993696 DOI: 10.1109/tcbb.2018.2830323] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Networks are successfully used as a modelling framework in many application domains. For instance, Protein-Protein Interaction Networks (PPINs) model the set of interactions among proteins in a cell. A critical application of network analysis is the comparison among PPINs of different organisms to reveal similarities among the underlying biological processes. Algorithms for comparing networks (also referred to as network aligners) fall into two main classes: global aligners, which aim to compare two networks on a global scale, and local aligners that evidence single sub-regions of similarity among networks. The possibility to improve the performance of the aligners by mixing the two approaches is a growing research area. In our previous work, we started to explore the possibility to use global alignment to improve the local one. We here examine further this possibility by using topological information extracted from global alignment to guide the steps of the local alignment. Therefore, we present GLAlign (Global Local Aligner), a methodology that improves the performances of local network aligners by exploiting a preliminary global alignment. Furthermore, we provide an implementation of GLAlign. As a proof-of-principle, we evaluated the performance of the GLAlign prototype. Results show that GLAlign methodology outperforms the state-of-the-art local alignment algorithms. GLAlign is publicly available for academic use and can be downloaded here: https://sites.google.com/site/globallocalalignment/.
Collapse
|
23
|
Xie J, Lu D, Li J, Wang J, Zhang Y, Li Y, Nie Q. Kernel differential subgraph reveals dynamic changes in biomolecular networks. J Bioinform Comput Biol 2017; 16:1750027. [PMID: 29281952 DOI: 10.1142/s0219720017500275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Many major diseases, including various types of cancer, are increasingly threatening human health. However, the mechanisms of the dynamic processes underlying these diseases remain ambiguous. From the holistic perspective of systems science, complex biological networks can reveal biological phenomena. Changes among networks in different states influence the direction of living organisms. The identification of the kernel differential subgraph (KDS) that leads to drastic changes is critical. The existing studies contribute to the identification of a KDS in networks with the same nodes; however, networks in different states involve the disappearance of some nodes or the appearance of some new nodes. In this paper, we propose a new topology-based KDS (TKDS) method to explore the core module from gene regulatory networks with different nodes in this process. For the common nodes, the TKDS method considers the differential value (D-value) of the topological change. For the different nodes, TKDS identifies the most similar gene pairs and computes the D-value. Hence, TKDS discovers the essential KDS, which considers the relationships between the same nodes as well as different nodes. After applying this method to non-small cell lung cancer (NSCLC), we identified 30 genes that are most likely related to NSCLC and extracted the KDSs in both the cancer and normal states. Two significance functional modules were revealed, and gene ontology (GO) analyses and literature mining indicated that the KDSs are essential to the processes in NSCLC. In addition, compared with existing methods, TKDS provides a unique perspective in identifying particular genes and KDSs related to NSCLC. Moreover, TKDS has the potential to predict other critical disease-related genes and modules.
Collapse
Affiliation(s)
- Jiang Xie
- * School of Computer Engineering and Science, Shanghai University, 99 Shang Da Road, Shanghai 200444, P. R. China
| | - Dongfang Lu
- * School of Computer Engineering and Science, Shanghai University, 99 Shang Da Road, Shanghai 200444, P. R. China
| | - Jiaxin Li
- * School of Computer Engineering and Science, Shanghai University, 99 Shang Da Road, Shanghai 200444, P. R. China
| | - Jiao Wang
- † Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, 99 Shang Da Road, Shanghai 200444, P. R. China
| | - Yong Zhang
- ‡ Pulmonary Department, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, P. R. China
| | - Yanhui Li
- ‡ Pulmonary Department, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, P. R. China
| | - Qing Nie
- § Department of Mathematics, University of California, Irvine, Irvine, California, USA
| |
Collapse
|