1
|
Salgado-Hernández E, Ortiz-Ceballos ÁI, Alvarado-Lassman A, Martínez-Hernández S, Dorantes-Acosta AE, Rosas-Mendoza ES. Adaptation of a microbial consortium to pelagic Sargassum modifies its taxonomic and functional profile that improves biomethane potential. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55169-55186. [PMID: 39222230 DOI: 10.1007/s11356-024-34853-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
In recent years, pelagic Sargassum has invaded the Caribbean coasts, and anaerobic digestion has been proposed as a sustainable management option. However, the complex composition of these macroalgae acts as a barrier to microbial degradation, thereby limiting methane production. Microbial adaptation is a promising strategy to improve substrate utilization and stress tolerance. This study aimed to investigate the adaptation of a microbial consortium to enhance methane production from the pelagic Sargassum. Microbial adaptation was performed in a fed-batch mode for 100 days by progressive feeding of Sargassum. The evolution of the microbial community was analyzed by high-throughput sequencing of 16S rRNA amplicons. Additionally, 16S rRNA data were used to predict functional profiles using the iVikodak platform. The results showed that, after adaptation, the consortium was dominated by the bacterial phyla Bacteroidota, Firmicutes, and Atribacterota, as well as methanogens of the families Methanotrichaceae and Methanoregulaceae. The abundance of predicted genes related to different metabolic functions was affected during the adaptation stage when Sargassum concentration was increased. At the end of the adaptation stage, the abundance of the predicted genes increased again. The adapted microbial consortium demonstrated a 60% increase in both biomethane potential and biodegradability index. This work offers valuable insights into the development of treatment technologies and the effective management of pelagic Sargassum in coastal regions, emphasizing the importance of microbial adaptation in this context.
Collapse
Affiliation(s)
- Enrique Salgado-Hernández
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Xalapa, 91090, México.
| | | | - Alejandro Alvarado-Lassman
- División de Estudios de Posgrado E Investigación, Tecnológico Nacional de México/Instituto Tecnológico de Orizaba, C.P. 94320, Orizaba, Mexico
| | - Sergio Martínez-Hernández
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Xalapa, 91090, México
| | - Ana Elena Dorantes-Acosta
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Xalapa, 91090, México
| | - Erik Samuel Rosas-Mendoza
- Programa de Investigadoras E Investigadores Por México del CONACYT, Av. Insurgentes Sur 1582, 03940, Ciudad de México, Mexico
| |
Collapse
|
2
|
Pires CS, Costa L, Barbosa SG, Sequeira JC, Cachetas D, Freitas JP, Martins G, Machado AV, Cavaleiro AJ, Salvador AF. Microplastics Biodegradation by Estuarine and Landfill Microbiomes. MICROBIAL ECOLOGY 2024; 87:88. [PMID: 38943017 PMCID: PMC11213754 DOI: 10.1007/s00248-024-02399-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/10/2024] [Indexed: 06/30/2024]
Abstract
Plastic pollution poses a worldwide environmental challenge, affecting wildlife and human health. Assessing the biodegradation capabilities of natural microbiomes in environments contaminated with microplastics is crucial for mitigating the effects of plastic pollution. In this work, we evaluated the potential of landfill leachate (LL) and estuarine sediments (ES) to biodegrade polyethylene (PE), polyethylene terephthalate (PET), and polycaprolactone (PCL), under aerobic, anaerobic, thermophilic, and mesophilic conditions. PCL underwent extensive aerobic biodegradation with LL (99 ± 7%) and ES (78 ± 3%) within 50-60 days. Under anaerobic conditions, LL degraded 87 ± 19% of PCL in 60 days, whereas ES showed minimal biodegradation (3 ± 0.3%). PE and PET showed no notable degradation. Metataxonomics results (16S rRNA sequencing) revealed the presence of highly abundant thermophilic microorganisms assigned to Coprothermobacter sp. (6.8% and 28% relative abundance in anaerobic and aerobic incubations, respectively). Coprothermobacter spp. contain genes encoding two enzymes, an esterase and a thermostable monoacylglycerol lipase, that can potentially catalyze PCL hydrolysis. These results suggest that Coprothermobacter sp. may be pivotal in landfill leachate microbiomes for thermophilic PCL biodegradation across varying conditions. The anaerobic microbial community was dominated by hydrogenotrophic methanogens assigned to Methanothermobacter sp. (21%), pointing at possible syntrophic interactions with Coprothermobacter sp. (a H2-producer) during PCL biodegradation. In the aerobic experiments, fungi dominated the eukaryotic microbial community (e.g., Exophiala (41%), Penicillium (17%), and Mucor (18%)), suggesting that aerobic PCL biodegradation by LL involves collaboration between fungi and bacteria. Our findings bring insights on the microbial communities and microbial interactions mediating plastic biodegradation, offering valuable perspectives for plastic pollution mitigation.
Collapse
Affiliation(s)
- Cristina S Pires
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Luís Costa
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Sónia G Barbosa
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | | | - Diogo Cachetas
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - José P Freitas
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Gilberto Martins
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana Vera Machado
- IPC - Institute for Polymers and Composites, University of Minho, Guimarães, Portugal
| | - Ana J Cavaleiro
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal.
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| | - Andreia F Salvador
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
3
|
Tang L, Huang J, Zhuang C, Yang X, Sun L, Lu H. Biogenic sulfur recovery from sulfate-laden antibiotic production wastewater using a single-chamber up-flow bioelectrochemical reactor. WATER RESEARCH 2024; 256:121590. [PMID: 38631241 DOI: 10.1016/j.watres.2024.121590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/31/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
The high-concentration sulfate (SO42-) in the antibiotic production wastewater hinders the anerobic methanogenic process and also proposes possible environmental risk. In this study, a novel single-chamber up-flow anaerobic bioelectrochemical reactor (UBER) was designed to realize simultaneous SO42- removal and elemental sulfur (S0) recovery. With the carbon felt, the cathode was installed underneath and the anode above to meet the different biological niches for sulfate reducing bacteria (SRB) and sulfur oxidizing bacteria (SOB). The bio-anode UBER (B-UBER) demonstrated a much higher average SO42- removal rate (SRR) of 113.2 ± 5.7 mg SO42--S L-1 d-1 coupled with a S0 production rate (SPR) of 54.4 ± 5.8 mg S0-S L-1 d-1 at the optimal voltage of 0.8 V than that in the abio-anode UBER (control reactor) (SRR = 86.6 ± 13.4 mg SO42--S L-1 d-1; SPR = 25.5 ± 9.7 mg S0-S L-1 d-1) under long-term operation. A large amount of biogenic S0 (about 72.2 mg g-1 VSS) was recovered in the B-UBER. The bio-anode, dominated by Thiovirga (SOB genus) and Acinetobacter (electrochemically active bacteria genus), exhibited a higher current density, lower overpotential, and lower internal resistance. C-type cytochromes mainly served as the crucial electron transfer mediator for both direct and indirect electron transfer, so that significantly increasing electron transfer capacity and biogenic S0 recovery. The reaction pathways of the sulfur transformation in the B-UBER were hypothesized that SRB utilized acetate as the main electron donor for SO42- reduction in the cathode zone and SOB transferred electrons to the anode or oxygen to produce biogenic S0 in the anode zone. This study proved a new pathway for biogenic S0 recovery and sulfate removal from sulfate-laden antibiotic production wastewater using a well-designed single-chamber bioelectrochemical reactor.
Collapse
Affiliation(s)
- Lan Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, China
| | - Jiamei Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, China
| | - Chuanyan Zhuang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, China
| | - Xiaojing Yang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, China
| | - Lianpeng Sun
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, China
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, China.
| |
Collapse
|
4
|
Zhou P, Li D, Zhang C, Ping Q, Wang L, Li Y. Comparison of different sewage sludge pretreatment technologies for improving sludge solubilization and anaerobic digestion efficiency: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171175. [PMID: 38402967 DOI: 10.1016/j.scitotenv.2024.171175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
Anaerobic digestion (AD) of sewage sludge reduces organic solids and produces methane, but the complex nature of sludge, especially the difficulty in solubilization, limits AD efficiency. Pretreatments, by destroying sludge structure and promoting disintegration and hydrolysis, are valuable strategies to enhance AD performance. There is a plethora of reviews on sludge pretreatments, however, quantitative comparisons from multiple perspectives across different pretreatments remain scarce. This review categorized various pretreatments into three groups: Physical (ultrasonic, microwave, thermal hydrolysis, electric decomposition, and high pressure homogenization), chemical (acid, alkali, Fenton, calcium peroxide, and ozone), and biological (microaeration, exogenous bacteria, and exogenous hydrolase) pretreatments. The optimal conditions of various pretreatments and their impacts on enhancing AD efficiency were summarized; the effects of different pretreatments on microbial community in the AD system were comprehensively compared. The quantitative comparison based on dissolution degree of COD (DDCOD) indicted that the sludge solubilization performance is in the order of physical, chemical, and biological pretreatments, although with each below 40 % DDCOD. Biological pretreatment, particularly microaeration and exogenous bacteria, excel in AD enhancement. Pretreatments alter microbial ecology, favoring Firmicutes and Methanosaeta (acetotrophic methanogens) over Proteobacteria and Methanobacterium (hydrogenotrophic methanogens). Most pretreatments have unfavorable energy and economic outcomes, with electric decomposition and microaeration being exceptions. On the basis of the overview of the above pretreatments, a full energy and economy assessment for sewage sludge treatment was suggested. Finally, challenges associated with sludge pretreatments and AD were analyzed, and future research directions were proposed. This review may broaden comprehension of sludge pretreatments and AD, and provide an objective basis for the selection of sludge pretreatment technologies.
Collapse
Affiliation(s)
- Pan Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Dunjie Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Cong Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Qian Ping
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Lin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Yongmei Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
5
|
Bucci L, Ghiotto G, Zampieri G, Raga R, Favaro L, Treu L, Campanaro S. Adaptation of Anaerobic Digestion Microbial Communities to High Ammonium Levels: Insights from Strain-Resolved Metagenomics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:580-590. [PMID: 38114447 PMCID: PMC10785762 DOI: 10.1021/acs.est.3c07737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023]
Abstract
Ammonia release from proteinaceous feedstocks represents the main inhibitor of the anaerobic digestion (AD) process, which can result in a decreased biomethane yield or even complete failure of the process. The present study focused on the adaptation of mesophilic AD communities to a stepwise increase in the concentration of ammonium chloride in synthetic medium with casein used as the carbon source. An adaptation process occurring over more than 20 months allowed batch reactors to reach up to 20 g of NH4+ N/L without collapsing in acidification nor ceasing methane production. To decipher the microbial dynamics occurring during the adaptation and determine the genes mostly exposed to selective pressure, a combination of biochemical and metagenomics analyses was performed, reconstructing the strains of key species and tracking them over time. Subsequently, the adaptive metabolic mechanisms were delineated by following the single nucleotide variants (SNVs) characterizing the strains and prioritizing the associated genes according to their function. An in-depth exploration of the archaeon Methanoculleus bourgensis vb3066 and the putative syntrophic acetate-oxidizing bacteria Acetomicrobium sp. ma133 identified positively selected SNVs on genes involved in stress adaptation. The intraspecies diversity with multiple coexisting strains in a temporal succession pattern allows us to detect the presence of an additional level of diversity within the microbial community beyond the species level.
Collapse
Affiliation(s)
- Luca Bucci
- Department
of Biology (DIBIO), University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Gabriele Ghiotto
- Department
of Biology (DIBIO), University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Guido Zampieri
- Department
of Biology (DIBIO), University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Roberto Raga
- Department
of Civil, Environmental and Architectural Engineering (ICEA), University of Padova, Via Marzolo 9, 35131 Padova, Italy
| | - Lorenzo Favaro
- Department
of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova,
Campus Agripolis, Viale dell’Università
16, 35020 Legnaro, Italy
| | - Laura Treu
- Department
of Biology (DIBIO), University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Stefano Campanaro
- Department
of Biology (DIBIO), University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| |
Collapse
|
6
|
Zhang S, Liang C, Xiao M, Chui C, Wang N, Ji Y, Wang Z, Shi J, Liu L. Metagenomic characterization of the enhanced performance of multicomponent synergistic thermophilic anaerobic co-digestion of food waste utilizing kitchen waste or garden waste as co-substrate. WATER RESEARCH 2023; 244:120457. [PMID: 37574624 DOI: 10.1016/j.watres.2023.120457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/01/2023] [Accepted: 08/06/2023] [Indexed: 08/15/2023]
Abstract
Food waste (FW) single-substrate anaerobic digestion usually suffers from rapid acidification and inhibition of oil and salt. To overcome these problems and improve the process efficiency, supplementing other substrates has been used in FW anaerobic digestion. This study investigated the biogas production potential through co-digestion of FW with kitchen waste (KW) or garden waste (GW) in different ratios under thermophilic conditions. The results showed that the optimal ratios were FW:KW=60:40 and FW:GW=80:20 which biogas production improved 73.33% and 68.45% compared with single FW digestion, respectively. The organic matter removal rate of co-digestion was 84.46% for FW+KW group (RFK) and 65.64% for FW+GW group (RFG). Co-digestion increased the abundance of the dominant hydrolytic bacteria Defluviitoga and Hydrogenispora and hydrogenotrophic methanogen Methanoculleus. Furthermore, glycoside hydrolases (GHs), vital carbohydrate-active enzymes (CAZymes), were improved by co-digestion. Co-digestion could also effectively promote the function of cellulase and hemicellulose. This strategy for utilizing different organic wastes together as co-substrate provides a new avenue for bioenergy production.
Collapse
Affiliation(s)
- Siying Zhang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengyu Liang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Mengyao Xiao
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunmeng Chui
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Na Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuji Ji
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Zhi Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Jiping Shi
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China.
| | - Li Liu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, China.
| |
Collapse
|
7
|
Luiz FN, Passarini MRZ, Magrini FE, Gaio J, Somer JG, Meyer RF, Paesi S. Metataxonomic characterization of the microbial community involved in the production of biogas with microcrystalline cellulose in pilot and laboratory scale. World J Microbiol Biotechnol 2023; 39:184. [PMID: 37147463 DOI: 10.1007/s11274-023-03573-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/08/2023] [Indexed: 05/07/2023]
Abstract
Biogas, produced in anaerobic digestion, is a sustainable alternative for generating energy from agro-industrial and municipal waste. Information from the microbiota active in the process expands the possibilities for technological innovation. In this study, taxonomic annotations, and functional prediction of the microbial community of the inoculum of two processes were carried out: an industrial unit (pilot-scale urban solid waste plant-IU) and a laboratory-scale reactor fed with swine and cattle waste (LS). The biochemical potential of biogas was obtained using tested inoculum with microcrystalline cellulose, obtaining 682 LN/kgVS (LSC-laboratory scale inoculum and microcrystalline cellulose), and 583 LN/kgVS (IUC-industrial unit inoculum and microcrystalline cellulose), which is equivalent to a recovery of 91.5% of total biogas to LSC. The phyla Synergistota and Firmicutes were more abundant in LS/LSC. In the IU/IUC (treatment of restaurant waste and customs seizures), there was a greater microbiological variety and a predominance of the Bacteroidota, Cloacimonadota, Firmicutes and Caldatribacteriota. The genus Methanosaeta predominated in the process, and it was possible to infer the genes (K01895, K00193 and K00625) related to acetoclastic pathway, as well as endoglucanases that are involved in the metabolism of cellulose (LSC). Terpenoids, polyketides, cofactors, and vitamin metabolism were higher in reactors that received different substrates (IU; IUC). The taxonomic and functional differences revealed the importance of determining the microbiota in the analysis of the potential of an inoculum, combined with the use of microcrystalline cellulose, which can provide optimization information in the production of clean energy.
Collapse
Affiliation(s)
- Franciele Natividade Luiz
- International Center of Renewable Energy (CIBIOGAS-ER)-Itaipu, Foz do Iguaçu, PR, Brazil
- Federal University of Latin American Integration (UNILA)-Environmental Biotechnology Laboratory, Foz do Iguaçu, PR, Brazil
| | | | - Flaviane Eva Magrini
- Molecular Diagnostic Laboratory, Biotechnology Institute, University of Caxias Do Sul (UCS), Caxias do Sul, RS, 95070-560, Brazil
| | - Juliano Gaio
- Molecular Diagnostic Laboratory, Biotechnology Institute, University of Caxias Do Sul (UCS), Caxias do Sul, RS, 95070-560, Brazil
| | - Juliana Gaio Somer
- International Center of Renewable Energy (CIBIOGAS-ER)-Itaipu, Foz do Iguaçu, PR, Brazil
- Federal University of Latin American Integration (UNILA)-Environmental Biotechnology Laboratory, Foz do Iguaçu, PR, Brazil
| | - Rafaela Faust Meyer
- International Center of Renewable Energy (CIBIOGAS-ER)-Itaipu, Foz do Iguaçu, PR, Brazil
- Federal University of Latin American Integration (UNILA)-Environmental Biotechnology Laboratory, Foz do Iguaçu, PR, Brazil
| | - Suelen Paesi
- Molecular Diagnostic Laboratory, Biotechnology Institute, University of Caxias Do Sul (UCS), Caxias do Sul, RS, 95070-560, Brazil.
| |
Collapse
|
8
|
Xu Q, Long S, Liu X, Duan A, Du M, Lu Q, Leng L, Leu SY, Wang D. Insights into the Occurrence, Fate, Impacts, and Control of Food Additives in Food Waste Anaerobic Digestion: A Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6761-6775. [PMID: 37070716 DOI: 10.1021/acs.est.2c06345] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The recovery of biomass energy from food waste through anaerobic digestion as an alternative to fossil energy is of great significance for the development of environmental sustainability and the circular economy. However, a substantial number of food additives (e.g., salt, allicin, capsaicin, allyl isothiocyanate, monosodium glutamate, and nonnutritive sweeteners) are present in food waste, and their interactions with anaerobic digestion might affect energy recovery, which is typically overlooked. This work describes the current understanding of the occurrence and fate of food additives in anaerobic digestion of food waste. The biotransformation pathways of food additives during anaerobic digestion are well discussed. In addition, important discoveries in the effects and underlying mechanisms of food additives on anaerobic digestion are reviewed. The results showed that most of the food additives had negative effects on anaerobic digestion by deactivating functional enzymes, thus inhibiting methane production. By reviewing the response of microbial communities to food additives, we can further improve our understanding of the impact of food additives on anaerobic digestion. Intriguingly, the possibility that food additives may promote the spread of antibiotic resistance genes, and thus threaten ecology and public health, is highlighted. Furthermore, strategies for mitigating the effects of food additives on anaerobic digestion are outlined in terms of optimal operation conditions, effectiveness, and reaction mechanisms, among which chemical methods have been widely used and are effective in promoting the degradation of food additives and increasing methane production. This review aims to advance our understanding of the fate and impact of food additives in anaerobic digestion and to spark novel research ideas for optimizing anaerobic digestion of organic solid waste.
Collapse
Affiliation(s)
- Qing Xu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P. R. China
| | - Sha Long
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P. R. China
| | - Xuran Liu
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong SAR, P. R. China
| | - Abing Duan
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P. R. China
| | - Mingting Du
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P. R. China
| | - Qi Lu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P. R. China
| | - Ling Leng
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong SAR, P. R. China
| | - Shao-Yuan Leu
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong SAR, P. R. China
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
9
|
Abid N, Karray F, Kallel I, Slim M, Barakat A, Mhiri N, Chamkha M, Sayadi S. Role of biochar in anaerobic microbiome enrichment and methane production enhancement during olive mill wastewater biomethanization. Front Bioeng Biotechnol 2023; 10:1100533. [PMID: 36686251 PMCID: PMC9846136 DOI: 10.3389/fbioe.2022.1100533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/08/2022] [Indexed: 01/05/2023] Open
Abstract
The current research work attempted to investigate, for the first time, the impact of biochar addition, on anaerobic digestion of olive mill wastewater with different initial chemical oxygen demand loads in batch cultures (10 g/L, 15 g/L, and 20 g/L). Methane yields were compared by applying one-way analysis of variance (ANOVA) followed by post-hoc Tukey's analysis. The results demonstrated that adding at 5 g/L biochar to olive mill wastewater with an initial chemical oxygen demand load of 20 g/L increased methane yield by 97.8% and mitigated volatile fatty acid accumulation compared to the control batch. According to the results of microbial community succession revealed by the Illumina amplicon sequencing, biochar supplementation significantly increased diversity of the microbial community and improved the abundance of potential genera involved in direct interspecies electron transfer, including Methanothrix and Methanosarcina. Consequently, biochar can be a promising alternative in terms of the recovery of metabolic activity during anaerobic digestion of olive mill wastewater at a large scale.
Collapse
Affiliation(s)
- Nozha Abid
- Laboratory of Environmental Bioprocesses, Center of Biotechnology of Sfax, Sfax, Tunisia,*Correspondence: Nozha Abid, ; Sami Sayadi,
| | - Fatma Karray
- Laboratory of Environmental Bioprocesses, Center of Biotechnology of Sfax, Sfax, Tunisia
| | - Imen Kallel
- Research Laboratory of Environmental Toxicology-Microbiology and Health (LR17ES06), Faculty of Sciences, University of Sfax, Sfax, Tunisia
| | - Mariam Slim
- Laboratory of Environmental Bioprocesses, Center of Biotechnology of Sfax, Sfax, Tunisia
| | - Abdellatif Barakat
- IATE, Montpellier University, INRAE, Agro Institut, Montpellier, France,Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Najla Mhiri
- Laboratory of Environmental Bioprocesses, Center of Biotechnology of Sfax, Sfax, Tunisia
| | - Mohamed Chamkha
- Laboratory of Environmental Bioprocesses, Center of Biotechnology of Sfax, Sfax, Tunisia
| | - Sami Sayadi
- Biotechnology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, Qatar,*Correspondence: Nozha Abid, ; Sami Sayadi,
| |
Collapse
|
10
|
Chen Y, Chen T, Yin J. Impact of N-butyryl-l-homoserine lactone-mediated quorum sensing on acidogenic fermentation under saline conditions: Insights into volatile fatty acids production and microbial community. BIORESOURCE TECHNOLOGY 2023; 368:128354. [PMID: 36410593 DOI: 10.1016/j.biortech.2022.128354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Anaerobic fermentation is often inhibited under high salinity conditions. This study discovered a strong, positive association between N-butyryl-l-homoserine lactone (C4-HSL)-mediated quorum sensing (QS) and the production of volatile fatty acids (VFAs) under saline conditions. N-acyl-homoserine lactones were identified during acidogenic fermentation for VFA production. Only C4-HSL was detected at all salt concentrations, and a maximum C4-HSL concentration of 0.49 μg/L was observed at a salt concentration of 15 g/L. C4-HSL secretion was closely related to salinity, and a strong correlation was observed between C4-HSL and VFAs (p < 0.01), especially butyrate. Further experiments with C4-HSL addition indicated that exogenous C4-HSL promoted substrate hydrolysis and increased butyrate production by 1.5 times at 15 g/L NaCl. Microbial community analysis indicated that unclassified_f__Enterobacteriaceae and Clostridium_sensu_stricto_1, associated with QS genes and butyrate production, were positively associated with C4-HSL. This study demonstrates the positive effect of C4-HSL-mediated QS on acidogenic fermentation.
Collapse
Affiliation(s)
- Yaqin Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China
| | - Ting Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China
| | - Jun Yin
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China.
| |
Collapse
|
11
|
Luo L, Pradhan N. Salinity impact on the metabolic and taxonomic profiles of acid and alkali treated inoculum for hydrogen production from food waste. BIORESOURCE TECHNOLOGY 2022; 362:127815. [PMID: 36031126 DOI: 10.1016/j.biortech.2022.127815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
This study evaluated the combined impact of salinity (2.5, 13, and 19.3 g NaCl/L) and inoculum pretreatment (acid/alkali) on the genomic and metabolic profiles of mesophilic fermentative bacteria for hydrogen (H2) production from food waste. Experimental results revealed that acid-treated inoculum showed the highest H2 yield (201.12 ± 13.84 mL H2/g of volatile solids added) under medium salinity levels compared to other experimental conditions. A 7-56% increase in H2 yield was observed for pretreated inoculum than untreated inoculum. Genomic analysis and metabolic pattern revealed that the H2 production was mainly through Clostridial-type fermentation under medium to high salinity levels, whereas Enterococcus-type fermentation under low salinity levels. Further, the genomic analysis uncovered that phyla Firmicutes (69.71-96.81%) and genus Clostridium sensu stricto 1 (33.28-94.04%) dominated during the exponential gas production phase. Overall, this study showed the significance of inoculum pretreatment for the bioconversion of food waste at different salinity levels.
Collapse
Affiliation(s)
- Lijun Luo
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region
| | - Nirakar Pradhan
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region.
| |
Collapse
|
12
|
Biological Aspects, Advancements and Techno-Economical Evaluation of Biological Methanation for the Recycling and Valorization of CO2. ENERGIES 2022. [DOI: 10.3390/en15114064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nowadays, sustainable and renewable energy production is a global priority. Over the past decade, several Power-to-X (PtX) technologies have been proposed to store and convert the surplus of renewable energies into chemical bonds of chemicals produced by different processes. CO2 is a major contributor to climate change, yet it is also an undervalued source of carbon that could be recycled and represents an opportunity to generate renewable energy. In this context, PtX technologies would allow for CO2 valorization into renewable fuels while reducing greenhouse gas (GHG) emissions. With this work we want to provide an up-to-date overview of biomethanation as a PtX technology by considering the biological aspects and the main parameters affecting its application and scalability at an industrial level. Particular attention will be paid to the concept of CO2-streams valorization and to the integration of the process with renewable energies. Aspects related to new promising technologies such as in situ, ex situ, hybrid biomethanation and the concept of underground methanation will be discussed, also in connection with recent application cases. Furthermore, the technical and economic feasibility will be critically analyzed to highlight current options and limitations for implementing a sustainable process.
Collapse
|
13
|
Liu S, Chen Q, Li J, Li Y, Zhong S, Hu J, Cai H, Sun W, Ni J. Different spatiotemporal dynamics, ecological drivers and assembly processes of bacterial, archaeal and fungal communities in brackish-saline groundwater. WATER RESEARCH 2022; 214:118193. [PMID: 35217492 DOI: 10.1016/j.watres.2022.118193] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
The presence of brackish-saline groundwater (BSG) poses great harms for human health, agricultural and industrial activity. Understanding how the major environmental features in BSG determine microbiota coalescence is crucial for groundwater monitoring optimization. Based on metabarcoding analysis of 242 PCR-amplified samples, we provided the first blueprints about distinct spatiotemporal distributions, ecological drivers and assembly processes of bacterial, archaeal and fungal communities in BSG obtained from new-constructed wells at Xiong'an New Area, China. Our study demonstrated that bacterial and archaeal communities exhibited significant spatial turnovers, while fungal community displayed the most obvious seasonal variation. Environmental filtering drove bacterial compositions more than those of archaea and fungi. Total dissolved solids (TDS), one of the most critical hydrochemical factors for salinization, had a stronger effect on bacterial spatiotemporal turnover than on those of the other two taxonomic groups, while chemical oxygen demand (CODMn) was more significantly associated with prokaryotic community variations. Bacterial and archaeal taxa dominated the metacommunity network and connected closely, and TDS was mostly related to archaeal subnetwork topological features, suggesting a significant influence of TDS on species association patterns within archaea. Specific functional guilds like bacterial nitrite oxidation, anammox, and archaeal methanogenesis were enriched in lower-TDS habitats, while higher TDS favored bacterial communities involved in dark oxidation of sulfur compounds, fumarate respiration, and cellulolysis. Finally, we confirmed that bacterial and archaeal assembly processes were governed by determinism in each season, and that of fungi was more regulated by stochasticity. Higher TDS was speculated to lead bacterial assembly more deterministic and that of fungi more random. Together, these findings provided an integrate theoretical framework about the unique responses of the three life domains to brackish-saline stress, and had important implications for microbial ecological prediction in groundwater.
Collapse
Affiliation(s)
- Shufeng Liu
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, China
| | - Qian Chen
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, China.
| | - Jiarui Li
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, China
| | - Yanglei Li
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, China
| | - Sining Zhong
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, China; Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jinyun Hu
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, China
| | - Hetong Cai
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, China
| | - Weiling Sun
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, China
| | - Jinren Ni
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, China
| |
Collapse
|
14
|
Biogas Production and Microbial Communities of Mesophilic and Thermophilic Anaerobic Co-Digestion of Animal Manures and Food Wastes in Costa Rica. ENERGIES 2022. [DOI: 10.3390/en15093252] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Biomass generated from agricultural operations in Costa Rica represents an untapped renewable resource for bioenergy generation. This study investigated the effects of two temperatures and three mixture ratios of manures and food wastes on biogas production and microbial community structure. Increasing the amount of fruit and restaurant wastes in the feed mixture significantly enhanced the productivity of the systems (16% increase in the mesophilic systems and 41% in the thermophilic). The methane content of biogas was also favored at higher temperatures. Beta diversity analysis, based on high-throughput sequencing of 16S rRNA gene, showed that microbial communities of the thermophilic digestions were more similar to each other than the mesophilic digestions. Species richness of the thermophilic digestions was significantly greater than the corresponding mesophilic digestions (F = 40.08, p = 0.003). The mesophilic digesters were dominated by Firmicutes and Bacteroidetes while in thermophilic digesters, the phyla Firmicutes and Chloroflexi accounted for up to 90% of all sequences. Methanosarcina represented the key methanogen and was more abundant in thermophilic digestions. These results demonstrate that increasing digestion temperature and adding food wastes can alleviate the negative impact of low C:N ratios on anaerobic digestion.
Collapse
|
15
|
High Salinity Wastewater Treatment Study Using an Automated Pilot Combining Anaerobic and Aerobic Biofilm Processes. Processes (Basel) 2022. [DOI: 10.3390/pr10040766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A 20-ft containerized biological pilot system consisting of both an anaerobic expended granular sludge bed (EGSB) and an aerobic biofilm continuous flow intermittent clean (CFIC®) system has been designed, constructed, and delivered onsite at a pharmaceutical wastewater producer for a wastewater treatment study. The pilot was operated for a total of 317 days, including 147 days of adaptive phase and 170 days of testing phase. A pilot adaptive phase feeding wastewater COD concentration from 2 to 50 g/L with salinity up to 16 g/L was carried out, achieving EGSB where COD removal reached over 80 to 95% at OLR up to 22 kg COD/m3·d. In the testing phase, with repressive practical wastewater, the EGSB can remove over 97% of feed COD (with up to 82% acetic acid) at an average 16.3 kg COD/m3·d. The high wastewater salinity at 20 g/L did not inhibit COD removal efficiency by the system. The complete system with EGSB and aerobic stage was very stable and removed over 90–97% of the total COD dependent on the wastewater composition. The pilot was demonstrated as a valuable tool because of its user-friendly nature with high automation level, as well as its high efficiency in treating specific wastewater under varying operational conditions. This study provides critical information for full-scale system design and offers training for the customer in handling a previously unfamiliar process in a confident manner.
Collapse
|
16
|
De Crescenzo C, Marzocchella A, Karatza D, Molino A, Ceron-Chafla P, Lindeboom REF, van Lier JB, Chianese S, Musmarra D. Modelling of autogenerative high-pressure anaerobic digestion in a batch reactor for the production of pressurised biogas. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:20. [PMID: 35418101 PMCID: PMC8857836 DOI: 10.1186/s13068-022-02117-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/02/2022] [Indexed: 11/15/2022]
Abstract
Background Pressurised anaerobic digestion allows the production of biogas with a high content of methane and, at the same time, avoid the energy costs for the biogas upgrading and injection into the distribution grid. The technology carries potential, but the research faces practical constraints by a.o. the capital investment needed in high-pressure reactors and sensors and associated sampling limitations. In this work, the kinetic model of an autogenerative high-pressure anaerobic digestion of acetate, as the representative compound of the aceticlastic methanogenesis route, in batch configuration, is proposed to predict the dynamic performance of pressurised digesters and support future experimental work. The modelling of autogenerative high-pressure anaerobic digestion in batch configuration, which is not extensively studied and simulated in the present literature, was developed, calibrated, and validated by using experimental results available from the literature. Results Under high-pressure conditions, the assessment of the Monod maximum specific uptake rate, the half-saturation constant and the first-order decay rate was carried out, and the values of 5.9 kg COD kg COD−1 d−1, 0.05 kg COD m−3 and 0.02 d−1 were determined, respectively. By using the predicted values, excellent fittings of the final pressure, the CH4 molar fraction and the specific methanogenic yield calculation were obtained. Likewise, the variation in the gas–liquid mass transfer coefficient by several orders of magnitude showed negligible effects on the model predictive values in terms of methane molar fraction of the produced biogas, while the final pressure seemed to be slightly influenced. Conclusions The proposed model allowed to estimate the Monod maximum specific uptake rate for acetate, the half-saturation rate for acetate and the first-order decay rate constant, which were comparable with literature values reported for well-studied methanogens under anaerobic digestion at atmospheric pressure. The methane molar fraction and the final pressure predicted by the model showed different responses towards the variation of the gas–liquid mass transfer coefficient since the former seemed not to be affected by the variation of the gas–liquid mass transfer coefficient; in contrast, the final pressure seemed to be slightly influenced. The proposed approach may also allow to potentially identify the methanogens species able to be predominant at high pressure.
Collapse
Affiliation(s)
- Carmen De Crescenzo
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031, Aversa, Italy
| | - Antonia Marzocchella
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031, Aversa, Italy
| | - Despina Karatza
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031, Aversa, Italy
| | - Antonio Molino
- Department of Sustainability, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, CR Portici Piazzale Enrico Fermi, 1, 80055, Portici, NA, Italy
| | - Pamela Ceron-Chafla
- Sanitary Engineering Section, Faculty of Civil Engineering and Geosciences, Department of Water Management, Delft University of Technology, Stevinweg 1, 2628 CN, Delft, Netherlands
| | - Ralph E F Lindeboom
- Sanitary Engineering Section, Faculty of Civil Engineering and Geosciences, Department of Water Management, Delft University of Technology, Stevinweg 1, 2628 CN, Delft, Netherlands
| | - Jules B van Lier
- Sanitary Engineering Section, Faculty of Civil Engineering and Geosciences, Department of Water Management, Delft University of Technology, Stevinweg 1, 2628 CN, Delft, Netherlands
| | - Simeone Chianese
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031, Aversa, Italy.
| | - Dino Musmarra
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031, Aversa, Italy
| |
Collapse
|
17
|
Feng K, Wang Q, Li H, Du X, Zhang Y. Microbial mechanism of enhancing methane production from anaerobic digestion of food waste via phase separation and pH control. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 288:112460. [PMID: 33780819 DOI: 10.1016/j.jenvman.2021.112460] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/10/2021] [Accepted: 03/20/2021] [Indexed: 06/12/2023]
Abstract
Phase separation and pH control are commonly used to improve methane production during anaerobic digestion (AD) of food waste, but their influencing mechanisms have not been fully discovered through microbial analysis. In this study, single-phase AD (SPAD), two-phase AD without pH control (TPAD-pHUC), and TPAD with fermentation pH controlled at 6.0 and 4.5 were conducted. The results showed that phase separation decreased the ratio of total bacteria to total archaea in the methanogenic phase. At the organic loading rate (OLR) of 1.9 g/(L·d), methanogenesis was dominated by acetoclastic Methanosaeta in both SPAD and TPAD-pHUC, while elevated Methanoculleus and active hydrogen production initiated a shift from the acetoclastic to hydrogenotrophic pathway in SPAD as OLR increased, eventually resulting in excessive acidification at OLR 3.2 g/(L·d). TPAD-pHUC was dominated by Methanosaeta with scarce hydrogen production genes, and thus maintained a delicate balance between fewer acidogens and methanogens at OLR 3.2-3.7 g/(L·d). TPAD with pH control exhibited higher methane yield (460-482 ml/g) at OLR 1.9 g/(L·d) due to the enhancement of protein degradation and the conversion from methylated compounds to methane by Methanosarcina. High Na+ concentration facilitated the proliferation of hydrogen production bacteria, but inhibited acetoclastic methanogenesis at OLR 2.4 g/(L·d). In comparison with SPAD and pH control, TPAD without pH control, integrating 4 d acidogenesis and 22 d methanogenesis, exhibited the best and steady performance at OLR 3.7 g/(L·d) with methane production exceeding 370 ml/g.
Collapse
Affiliation(s)
- Kai Feng
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Qiao Wang
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Huan Li
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China; Guangdong Engineering Research Center of Urban Water Cycle and Environment Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China.
| | - Xinrui Du
- Shenzhen Zhonghuanbohong Environmental Technology Co, Ltd, Shenzhen, 518055, China
| | - Yangyang Zhang
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
18
|
Han R, Liu L, Meng Y, Han H, Xiong R, Li Y, Chen L. Archaeal and bacterial community structures of rural household biogas digesters with different raw materials in Qinghai Plateau. Biotechnol Lett 2021; 43:1337-1348. [PMID: 33811593 DOI: 10.1007/s10529-021-03105-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/10/2021] [Indexed: 10/21/2022]
Abstract
The present study aims to investigate microbial community structures household biogas digesters with different raw materials in Qinghai Plateau rural. High-throughput 16S rRNA gene sequencing analysis revealed that Firmicutes, Bacteroidetes, and Proteobacteria are the most abundant bacterial phyla (64.08%). Prevotella group 7 was the most abundant genus in digester YL9 and YL10 (69.72% and 26.96%, respectively) using vegetable waste raw materials. Trichococcus exhibited the highest abundance (14.55%) in YL1 digester using sheep and pig manure. Clostridium sensu stricto 1 (13.89%) and Synergistaceae_uncultured (15.52%) comprised the highest abundances in digester YL5 with mixed raw materials (i.e., dairy manure, sheep manure, and human feces). In addition, Proteiniphilum and Pseudomonas exhibited the highest abundances among bacterial genera in YL4 digester using pig manure. Methanomicrobiales was the most dominant archaeal communities, ranging from 13.35% to 81.34% in abundance. Methanocorpusculum exhibited dominant abundances in all digesters using various raw materials. Methanogenium was the most abundant archaeal genera in YL4 and YL6 digesters, which consume pig manure as primary raw material. In addition, Methanosarcina and Methanosaeta exhibited the highest abundances in digester YL1 (55.03%) and YL9 (51.40%), respectively. Moreover, fermentation temperatures and pH both contributed to the archaeal and bacterial community structures in all the investigated digesters. Specially, fermentation temperature showed positive correlation with the abundances of Synergistaceae_uncultured, Methanogenium, and Methanosaeta, and pH was positively correlated with the abundances of Prevotella group 7 and Methanosarcina abundances.
Collapse
Affiliation(s)
- Rui Han
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Academy of Agriculture and Forestry, Qinghai University, Ningda Road 253, Xining, 810016, Qinghai, China
| | - Li Liu
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Academy of Agriculture and Forestry, Qinghai University, Ningda Road 253, Xining, 810016, Qinghai, China
| | - Yan Meng
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Academy of Agriculture and Forestry, Qinghai University, Ningda Road 253, Xining, 810016, Qinghai, China
| | - Hairong Han
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Academy of Agriculture and Forestry, Qinghai University, Ningda Road 253, Xining, 810016, Qinghai, China
| | - Rongbo Xiong
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Academy of Agriculture and Forestry, Qinghai University, Ningda Road 253, Xining, 810016, Qinghai, China
| | - Yi Li
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Academy of Agriculture and Forestry, Qinghai University, Ningda Road 253, Xining, 810016, Qinghai, China.
| | - Laisheng Chen
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Academy of Agriculture and Forestry, Qinghai University, Ningda Road 253, Xining, 810016, Qinghai, China.
| |
Collapse
|
19
|
Khan MA, Khan ST, Sequeira MC, Faheem SM, Rais N. Illumina sequencing of 16S rRNA genes reveals a unique microbial community in three anaerobic sludge digesters of Dubai. PLoS One 2021; 16:e0249023. [PMID: 33793629 PMCID: PMC8016227 DOI: 10.1371/journal.pone.0249023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/09/2021] [Indexed: 01/12/2023] Open
Abstract
Understanding the microbial communities in anaerobic digesters, especially bacteria and archaea, is key to its better operation and regulation. Microbial communities in the anaerobic digesters of the Gulf region where climatic conditions and other factors may impact the incoming feed are not documented. Therefore, Archaeal and Bacterial communities of three full-scale anaerobic digesters, namely AD1, AD3, and AD5 of the Jebel Ali Sewage water Treatment Plant (JASTP) were analyzed by Illumina sequencing of 16S rRNA genes. Among bacteria, the most abundant genus was fermentative bacteria Acetobacteroides (Blvii28). Other predominant bacterial genera in the digesters included thermophilic bacteria (Fervidobacterium and Coprothermobacter) and halophilic bacteria like Haloterrigena and Sediminibacter. This can be correlated with the climatic condition in Dubai, where the bacteria in the incoming feed may be thermophilic or halophilic as much of the water used in the country is desalinated seawater. The predominant Archaea include mainly the members of the phyla Euryarchaeota and Crenarchaeota belonging to the genus Methanocorpusculum, Metallosphaera, Methanocella, and Methanococcus. The highest population of Methanocorpusculum (more than 50% of total Archaea), and other hydrogenotrophic archaea, is in agreement with the high population of bacterial genera Acetobacteroides (Blvii28) and Fervidobacterium, capable of fermenting organic substrates into acetate and H2. Coprothermobacter, which is known to improve protein degradation by establishing syntrophy with hydrogenotrophic archaea, is also one of the digesters’ dominant genera. The results suggest that the microbial community in three full-scale anaerobic digesters is different. To best of our knowledge this is the first detailed report from the UAE.
Collapse
Affiliation(s)
- Munawwar Ali Khan
- Department of Life and Environmental Sciences, College of Natural and Health Sciences, Zayed University, Dubai, United Arab Emirates
| | - Shams Tabrez Khan
- Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
- * E-mail:
| | - Milred Cedric Sequeira
- School of Life Sciences, Manipal Academy of Higher Education, Academic City, Dubai, United Arab Emirates
| | - Sultan Mohammad Faheem
- School of Life Sciences, Manipal Academy of Higher Education, Academic City, Dubai, United Arab Emirates
| | - Naushad Rais
- School of Life Sciences, Manipal Academy of Higher Education, Academic City, Dubai, United Arab Emirates
| |
Collapse
|
20
|
Halophyte Plants and Their Residues as Feedstock for Biogas Production—Chances and Challenges. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11062746] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The importance of green technologies is steadily growing. Salt-tolerant plants have been proposed as energy crops for cultivation on saline lands. Halophytes such as Salicornia europaea, Tripolium pannonicum, Crithmum maritimum and Chenopodium quinoa, among many other species, can be cultivated in saline lands, in coastal areas or for treating saline wastewater, and the biomass might be used for biogas production as an integrated process of biorefining. However, halophytes have different salt tolerance mechanisms, including compartmentalization of salt in the vacuole, leading to an increase of sodium in the plant tissues. The sodium content of halophytes may have an adverse effect on the anaerobic digestion process, which needs adjustments to achieve stable and efficient conversion of the halophytes into biogas. This review gives an overview of the specificities of halophytes that needs to be accounted for using their biomass as feedstocks for biogas plants in order to expand renewable energy production. First, the different physiological mechanisms of halophytes to grow under saline conditions are described, which lead to the characteristic composition of the halophyte biomass, which may influence the biogas production. Next, possible mechanisms to avoid negative effects on the anaerobic digestion process are described, with an overview of full-scale applications. Taking all these aspects into account, halophyte plants have a great potential for biogas and methane production with yields similar to those produced by other energy crops and the simultaneous benefit of utilization of saline soils.
Collapse
|
21
|
Microbiome of Seven Full-Scale Anaerobic Digestion Plants in South Korea: Effect of Feedstock and Operational Parameters. ENERGIES 2021. [DOI: 10.3390/en14030665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, the microbiomes linked with the operational parameters in seven mesophilic full-scale AD plants mainly treating food waste (four plants) and sewage sludge (three plants) were analyzed. The results obtained indicated lower diversity and evenness of the microbial population in sludge digestion (SD) plants compared to food digestion (FD) plants. Candidatus Accumulibacter dominated (up to 42.1%) in SD plants due to microbial immigration from fed secondary sludge (up to 89%). Its potential activity in SD plants was correlated to H2 production, which was related to the dominance of hydrogenotrophic methanogens (Methanococcus). In FD plants, a balance between the hydrogenotrophic and methylotrophic pathways was found, while Flavobacterium and Levilinea played an important role during acidogenesis. Levilinea also expressed sensitivity to ammonia in FD plants. The substantial differences in hydraulic retention time (HRT), organic loading rate (OLR), and total ammonium nitrogen (TAN) among the studied FD plants did not influence the archaeal methane production pathway. In addition, the bacterial genera responsible for acetate production through syntrophy and homoacetogenesis (Smithella, Treponema) were present in all the plants studied.
Collapse
|
22
|
Huang Q, Zakaria BS, Zhang Y, Zhang L, Liu Y, Dhar BR. A high-rate anaerobic biofilm reactor for biomethane recovery from source-separated blackwater at ambient temperature. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:61-74. [PMID: 32329182 DOI: 10.1002/wer.1347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
Anaerobic bioreactors for source-separated blackwater are mostly operated at low organic loading rates (OLRs) due to low biodegradability and the potential of ammonia inhibition. In this study, an anaerobic biofilm reactor having conductive carbon fibers as the media was investigated for the high-rate treatment of blackwater collected from vacuum toilets. The bioreactor was operated at different OLRs ranged from 0.77 to 3.01 g COD/L-d in four stages for a total operating period of ~ 250 days. With the increase of OLRs, the specific methane production rate increased from 105.3 to 304.6 ml/L-d with high methane content in biogas (75.5%-83%). The maximum methane yield was achieved at hydraulic retention time (HRT) of 15 days. Highest organics and suspended solids removal (80%-83%) were achieved at 20-days HRT, while increased OLRs resulted in diminished removal efficiencies. The state variables, including pH, total ammonia nitrogen, short-chain volatile fatty acids, and soluble chemical oxygen demand, indicated the system had a great capability to withstand the high OLRs. Microbial community analysis revealed that the high performance might be attributed to direct interspecies electron transfer (DIET) facilitated by potentially electroactive bacteria (e.g., Syntrophomonas, Clostridium) and electrotrophic archaea (e.g., Methanosaeta and Methanosarcina species) enriched on the carbon fibers. PRACTITIONER POINTS: An anaerobic biofilm reactor was investigated for biomethane recovery from source-separated blackwater. Conductive carbon fibers were utilized as the media to stimulate enrichment of potentially electroactive methanogenic communities. The bioreactor was operated at ambient temperature for over 250 days. High methane production rate and high-quality biogas were achieved at OLRs ranged from 0.77 to 3.01 g COD/L-d. Microbial community analysis suggested direct interspecies electron transfer (DIET) between specific electroactive bacteria and electrotrophic archaea.
Collapse
Affiliation(s)
- Qi Huang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada
| | - Basem S Zakaria
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada
| | - Yingdi Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada
| | - Lei Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada
| | - Bipro R Dhar
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
23
|
Xiong W, Wang S, Zhou N, Chen Y, Su H. Granulation enhancement and microbial community shift of tylosin-tolerant aerobic granular sludge on the treatment of tylosin wastewater. BIORESOURCE TECHNOLOGY 2020; 318:124041. [PMID: 32889122 DOI: 10.1016/j.biortech.2020.124041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
To reduce the environment pollution from the extensive use of tylosin (TYL), in this study, an antibiotic adaptive strategy was used to enhance the TYL tolerance of aerobic granular sludge (AGS) for the treatment of TYL wastewater. The results showed that the granulation process was enhanced after 30 days of operation. The TYL-tolerant AGS gradually formed and maintained a diameter of 1.2 mm, with the mixed liquor suspended solids (MLSS) of 6810 mg⋅L-1 and sludge volume index (SVI) of 26 mL⋅g-1. Meanwhile, the chemical oxygen demand (COD), NH4+-N, and total N removal effiencies could reach up to 92.9%, 91.7%, 88.5%, respectively. The average TYL removal rate was 85.5% with the effuent TYL of 1.45 mg⋅L-1. In addition, the microbial communities shifted significantly that Bacteroidetes and Proteobacteria dominated the phylm, and the Macellibacteroides was the major genus which might possess the anitibiotic resistance genes of TYL.
Collapse
Affiliation(s)
- Wei Xiong
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Shaojie Wang
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China; Institute of Nano Biomedicine and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Nan Zhou
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yingyun Chen
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Haijia Su
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| |
Collapse
|
24
|
Pytlak A, Kasprzycka A, Szafranek-Nakonieczna A, Grządziel J, Kubaczyński A, Proc K, Onopiuk P, Walkiewicz A, Polakowski C, Gałązka A, Lalak-Kańczugowska J, Stępniewska Z, Bieganowski A. Biochar addition reinforces microbial interspecies cooperation in methanation of sugar beet waste (pulp). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 730:138921. [PMID: 32388369 DOI: 10.1016/j.scitotenv.2020.138921] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 05/22/2023]
Abstract
Biogas production and microbial community structure were analyzed as an effect of biochar addition to a fermentation sludge containing sugar beet pulp. Positive effects of the treatment including an increase in process efficiency and better biogas quality were noted. The effect of biochar on AD (anaerobic digestion process) microbial communities was investigated after total DNA extraction from biochar-amended fermentation mixtures by PCR amplification of bacterial 16S rRNA gene fragments and Illumina amplicon sequencing. A combination of microbiological and physico-chemical analyses was used to study the mechanism by which biochar influences the process of anaerobic digestion of sugar beep pulp. It was found that the main reason of the changes in biogas production was the reshaping of the microbial communities, in particular enrichment of Bacteroidales and Clostridiales. It was proposed that biochar, in addition to being a conductor for mediating interspecies electron transfer, serves also as a habitat for hydrolytic bacteria. It was elucidated that the main driving force for the preferential colonization of biochar surfaces is its hydrophobicity. The presented research indicates the high potential of biochar to stimulate the methane fermentation process.
Collapse
Affiliation(s)
- Anna Pytlak
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| | - Agnieszka Kasprzycka
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Anna Szafranek-Nakonieczna
- Institute of Biological Sciences, The John Paul II Catholic University of Lublin, Konstantynów 1 I, 20-708 Lublin, Poland
| | - Jarosław Grządziel
- Department of Agricultural Microbiology, Institute of Soil Science and Plant Cultivation-State Research Institute (IUNG-PIB), Czartoryskich 8, 24-100 Puławy, Poland
| | - Adam Kubaczyński
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Kinga Proc
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Paulina Onopiuk
- Institute of Biological Sciences, The John Paul II Catholic University of Lublin, Konstantynów 1 I, 20-708 Lublin, Poland
| | - Anna Walkiewicz
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Cezary Polakowski
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Anna Gałązka
- Department of Agricultural Microbiology, Institute of Soil Science and Plant Cultivation-State Research Institute (IUNG-PIB), Czartoryskich 8, 24-100 Puławy, Poland
| | - Justyna Lalak-Kańczugowska
- Department of Pathogen Genetics and Plant Resistance, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland
| | - Zofia Stępniewska
- Department of Biochemistry and Environmental Chemistry, The John Paul II Catholic University of Lublin, Konstantynów 1 I, 20-708 Lublin, Poland
| | - Andrzej Bieganowski
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| |
Collapse
|
25
|
Zhang J, Zhang R, He Q, Ji B, Wang H, Yang K. Adaptation to salinity: Response of biogas production and microbial communities in anaerobic digestion of kitchen waste to salinity stress. J Biosci Bioeng 2020; 130:173-178. [DOI: 10.1016/j.jbiosc.2019.11.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 10/04/2019] [Accepted: 11/23/2019] [Indexed: 12/24/2022]
|
26
|
Variations and Potential Factors of Gut Prokaryotic Microbiome During Spawning Migration in Coilia nasus. Curr Microbiol 2020; 77:2802-2812. [PMID: 32583157 DOI: 10.1007/s00284-020-02088-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 06/12/2020] [Indexed: 02/01/2023]
Abstract
Coilia nasus is influenced by various external pressures during spawning migration and these anadromous transitions can lead to specific gut microbiome characteristics that affecting the host biological process. Therefore, the purpose of this study was to determine the variations of components and functions in the gut prokaryotic microbiome during spawning migration as well as the key factors that triggered the changes. The gut microbiome in C. nasus was mainly consisted of Proteobacteria, Bacteroidetes, Firmicutes, Deinococcus-Thermus and Fusobacteria via 16S rRNA Gene Amplicon Sequencing. The relative abundance of Acinetobacter and Clostridium increased, while Corynebacterium, Actinomyces, Bacillus, Klebsiella and Ochrobactrum decreased after entering freshwater, indicated the preference of C. nasus gut microbial members transferred from seawater to freshwater. Additionally, the proportion of Firmicutes significantly decreased and then increased, as well as the arise of some soil bacteria in gut, corresponding to the phenomenon that C. nasus are fasting during the upstream process and refeeding after entering the spawning grounds. The function prediction of gut microbiome was also consistent with the above results. The present study generally demonstrated the gut microbiome dynamics and the significant correlation between the gut microbiome and salinity and feeding behavior in the spawning migration of C. nasus.
Collapse
|
27
|
Wang J, Wu B, Sierra JM, He C, Hu Z, Wang W. Influence of particle size distribution on anaerobic degradation of phenol and analysis of methanogenic microbial community. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:10391-10403. [PMID: 31939015 DOI: 10.1007/s11356-020-07665-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
Sludge morphology considerably affects the mechanism underlying microbial anaerobic degradation of phenol. Here, we assessed the phenol degradation rate, specific methanogenic activity, electron transport activity, coenzyme F420 concentration, and microbial community structure of five phenol-degrading sludge of varying particle sizes (i.e., < 20, 20-50, 50-100, 100-200, and > 200 μm). The results indicated an increase in phenol degradation rate and microbial community structure that distinctly correlated with an increase in sludge particle size. Although the sludge with the smallest particle size (< 20 μm) showed the lowest phenol degradation rate (9.3 mg COD·gVSS-1 day-1), its methanogenic activity with propionic acid, butyric acid, and H2/CO2 as substrates was the best, and the concentration of coenzyme F420 was the highest. The small particle size sludge did not contain abundant syntrophic bacteria or hydrogenotrophic methanogens, but contained abundant acetoclastic methanogens. Moreover, the floc sizes of the different sludge varied in important phenol-degrading bacteria and archaea, which may dominate the synergistic mechanism. This study provides a new perspective on the role of sludge floc size on the anaerobic digestion of phenol.
Collapse
Affiliation(s)
- Jing Wang
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Benteng Wu
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Julian Muñoz Sierra
- Section Sanitary Engineering, Department of Water Management, Delft University of Technology, Stevinweg 1, 2628 CN, Delft, The Netherlands
- KWR Watercycle Research Institute, Groningenhaven 7, 3430 BB, Nieuwegein, The Netherlands
| | - Chunhua He
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Zhenhu Hu
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Wei Wang
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
28
|
Feedstock thermal pretreatment selectively steers process stability during the anaerobic digestion of waste activated sludge. Appl Microbiol Biotechnol 2020; 104:3675-3686. [DOI: 10.1007/s00253-020-10472-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/07/2020] [Accepted: 02/13/2020] [Indexed: 10/24/2022]
|
29
|
Diverse Microbial Community Profiles of Propionate-Degrading Cultures Derived from Different Sludge Sources of Anaerobic Wastewater Treatment Plants. Microorganisms 2020; 8:microorganisms8020277. [PMID: 32085468 PMCID: PMC7074800 DOI: 10.3390/microorganisms8020277] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/13/2020] [Accepted: 02/16/2020] [Indexed: 11/16/2022] Open
Abstract
Anaerobic digestion (AD) has been used for wastewater treatment and production of renewable energy or biogas. Propionate accumulation is one of the important problems leading to an unstable system and low methane production. Revealing propionate-degrading microbiome is necessary to gain a better knowledge for alleviation of the problem. Herein, we systematically investigated the propionate-degrading cultures enriched from various anaerobic sludge sources of agro-industrial wastewater treatment plants using 16S rRNA gene sequencing. Different microbial profiles were shown even though the methanogenic activities of all cultures were similar. Interestingly, non-classical propionate-degrading key players Smithella, Syntrophomonas, and Methanosaeta were observed as common prevalent taxa in our enriched cultures. Moreover, different hydrogenotrophic methanogens were found specifically to the different sludge sources. The enriched culture of high salinity sludge showed a distinct microbial profile compared to the others, containing mainly Thermovirga, Anaerolinaceae, Methanosaeta, Syntrophobactor, and Methanospirillum. Our microbiome analysis revealed different propionate-degrading community profiles via mainly the Smithella pathway and offers inside information for microbiome manipulation in AD systems to increase biogas production corresponding to their specific microbial communities.
Collapse
|
30
|
Golub N, Shynkarchuk M, Shynkarchuk A, Xinhua S, Ying Z, Kozlovets O. Vulnerabilities in the Production of Biogas from the Fat-Containing Tannery Waste. INNOVATIVE BIOSYSTEMS AND BIOENGINEERING 2019. [DOI: 10.20535/ibb.2019.3.4.185425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
31
|
Liu Y, Yuan Y, Wang W, Wachemo AC, Zou D. Effects of adding osmoprotectant on anaerobic digestion of kitchen waste with high level of salinity. J Biosci Bioeng 2019; 128:723-732. [DOI: 10.1016/j.jbiosc.2019.05.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/12/2019] [Accepted: 05/23/2019] [Indexed: 12/15/2022]
|
32
|
Ali M, Elreedy A, Ibrahim MG, Fujii M, Nakatani K, Tawfik A. Regulating acidogenesis and methanogenesis for the separated bio-generation of hydrogen and methane from saline-to-hypersaline industrial wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 250:109546. [PMID: 31545177 DOI: 10.1016/j.jenvman.2019.109546] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/22/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
Given the limitations of acidogens and methanogens activities under saline environments, this work aims to optimize the main operational parameters affecting hydrogen and methane production from saline-to-hypersaline wastewater containing mono-ethylene glycol (MEG). MEG is the main contaminant in several saline industrial effluents. Anaerobic baffled reactor (ABR), as a multi-stage system, was used at different temperatures (i.e., 19-31 °C [ambient] and 35 °C), organic loading rates (OLRs) of 0.6-2.2 gCOD/L/d, and salinity of 5-35 gNaCl/L. Mesophilic conditions of 35 °C substantially promoted MEG biodegradability (92-98%) and hydrogen/methane productivity, even at elevated salinity. Hydrogen yield (HY) and methane yield (MY) peaked to 258 and 140 mL/gCODadd, respectively, at OLR 0.64 gCOD/L/d and salinity up to 20-25 gNaCl/L. An immobilized sludge ABR (ISABR), packed with polyurethane media, was further compared with classical ABR, resulting in 1.8-fold higher MY, at 35 gNaCl/L. Microbial analysis showed that introducing attached growth system (ISABR) substantially promoted methanogens abundance, which was dominated by genus Methanosarcina. Among bacterial genera, Acetobacterium was dominant, particularly in 1st compartment, representing MEG-degrading/salt-tolerant genus. At high salinity up to 35 gNaCl/L, the multi-phase and attached growth configuration can efficiently reduce the induced salt stress, particularly on methanogens, towards balanced and separated acidogenesis/methanogenesis. Overall, producing hydrogen and methane from anaerobic treatment of MEG-based saline wastewater is feasible at optimized parameters and configuration.
Collapse
Affiliation(s)
- Manal Ali
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan; Environmental Engineering Department, Egypt-Japan University of Science and Technology, Alexandria, 21934, Egypt; Civil Engineering Department, Aswan University, Aswan, 81511, Egypt
| | - Ahmed Elreedy
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan; Sanitary Engineering Department, Alexandria University, Alexandria, 21544, Egypt.
| | - Mona G Ibrahim
- Environmental Engineering Department, Egypt-Japan University of Science and Technology, Alexandria, 21934, Egypt; Environmental Health Department, High Institute of Public Health, Alexandria University, Alexandria, 21544, Egypt
| | - Manabu Fujii
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan
| | - Kota Nakatani
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan
| | - Ahmed Tawfik
- Water Pollution Research Department, National Research Centre, Giza, 12622, Egypt
| |
Collapse
|
33
|
Abendroth C, Latorre-Pérez A, Porcar M, Simeonov C, Luschnig O, Vilanova C, Pascual J. Shedding light on biogas: Phototrophic biofilms in anaerobic digesters hold potential for improved biogas production. Syst Appl Microbiol 2019; 43:126024. [PMID: 31708159 DOI: 10.1016/j.syapm.2019.126024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 09/02/2019] [Accepted: 09/10/2019] [Indexed: 12/31/2022]
Abstract
Conventional anaerobic digesters intended for the production of biogas usually operate in complete darkness. Therefore, little is known about the effect of light on their microbial communities. In the present work, 16S rRNA gene amplicon Nanopore sequencing and shotgun metagenomic sequencing were used to study the taxonomic and functional structure of the microbial community forming a biofilm on the inner wall of a laboratory-scale transparent anaerobic biodigester illuminated with natural sunlight. The biofilm was composed of microorganisms involved in the four metabolic processes needed for biogas production, and it was surprisingly rich in Rhodopseudomonas faecalis, a versatile bacterium able to carry out photoautotrophic metabolism when grown under anaerobic conditions. The results suggested that this bacterium, which is able to fix carbon dioxide, could be considered for use in transparent biogas fermenters in order to contribute to the production of optimized biogas with a higher CH4:CO2 ratio than the biogas produced in regular, opaque digesters. To the best of our knowledge, this is the first study characterising the phototrophic biofilm associated with illuminated bioreactors.
Collapse
Affiliation(s)
- Christian Abendroth
- Robert Boyle Institut e.V., Jena, Germany; Technische Universität Dresden, Chair of Waste Management, Pratzschwitzer Str. 15, Pirna, Germany
| | | | - Manuel Porcar
- Darwin Bioprospecting Excellence, S.L., Paterna, Valencia, Spain; Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, Paterna, Valencia, Spain
| | | | | | | | - Javier Pascual
- Darwin Bioprospecting Excellence, S.L., Paterna, Valencia, Spain.
| |
Collapse
|
34
|
Nzila A, Razzak SA, Sankara S, Nazal MK, Al-Momani M, Kang GU, Ibal JC, Shin JH. Characterisation and microbial community analysis of lipid utilising microorganisms for biogas formation. PLoS One 2019; 14:e0224989. [PMID: 31703100 PMCID: PMC6839884 DOI: 10.1371/journal.pone.0224989] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022] Open
Abstract
In the anaerobic process, fat-oil-grease (FOG) is hydrolysed to long-chain fatty acids (LCFAs) and glycerol (GLYC), which are then used as substrates to produce biogas. The increase in FOG and LCFAs inhibits methanogenesis, and so far, most work investigating this inhibition has been carried out when FOG or LCFAs were used as co-substrates. In the current work, the inhibition of methanogenesis by FOG, LCFAs and GLYC was investigated when used as sole substrates. To gain more insight on the dynamics of this process, the change of microbial community was analysed using 16S rRNA gene amplicon sequencing. The results indicate that, as the concentrations of cooking olive oil (CO, which represents FOG) and LCFAs increase, methanogenesis is inhibited. For instance, at 0.01 g. L-1 of FOG, the rate of biogas formation was around 8 ml.L-1.day-1, and this decreased to <4 ml.L-1.day-1 at 40 g.L-1. Similar results were observed with the use of LCFAs. However, GLYC concentrations up to 100g.L-1 did not affect the rate of biogas formation. Acidic pH, temperature > = 45°C and NaCl > 3% led to a significant decrease in the rate of biogas formation. Microbial community analyses were carried out from samples from 3 different bioreactors (CO, OLEI and GLYC), on day 1, 5 and 15. In each bioreactor, microbial communities were dominated by Proteobacteria, Firmicutes and Bacteroidetes phyla. The most important families were Enterobacteriaceae, Pseudomonadaceae and Shewanellaceae (Proteobacteria phylum), Clostridiacea and Ruminococcaceae (Firmicutes) and Porphyromonadaceae and Bacteroidaceae (Bacteroidetes). In CO bioreactor, Proteobacteria bacteria decreased over time, while those of OLEI and GLYC bioreactors increased. A more pronounced increase in Bacteroidetes and Firmicutes were observed in CO bioreactor. The methanogenic archaea Methanobacteriaceae and Methanocorpusculaceae were identified. This analysis has shown that a set of microbial population is selected as a function of the substrate.
Collapse
Affiliation(s)
- Alexis Nzila
- Department of Life Sciences, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Shaikh Abdur Razzak
- Departments of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Saravanan Sankara
- Department of Life Sciences, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Mazen K. Nazal
- Research Institute, Center for Environment and Water, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Marwan Al-Momani
- Departments of Mathematics & Statistics, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Gi-Ung Kang
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Jerald Conrad Ibal
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Jae-Ho Shin
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
35
|
Changes in the Substrate Source Reveal Novel Interactions in the Sediment-Derived Methanogenic Microbial Community. Int J Mol Sci 2019; 20:ijms20184415. [PMID: 31500341 PMCID: PMC6770359 DOI: 10.3390/ijms20184415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 12/23/2022] Open
Abstract
Methanogenesis occurs in many natural environments and is used in biotechnology for biogas production. The efficiency of methane production depends on the microbiome structure that determines interspecies electron transfer. In this research, the microbial community retrieved from mining subsidence reservoir sediment was used to establish enrichment cultures on media containing different carbon sources (tryptone, yeast extract, acetate, CO2/H2). The microbiome composition and methane production rate of the cultures were screened as a function of the substrate and transition stage. The relationships between the microorganisms involved in methane formation were the major focus of this study. Methanogenic consortia were identified by next generation sequencing (NGS) and functional genes connected with organic matter transformation were predicted using the PICRUSt approach and annotated in the KEGG. The methane production rate (exceeding 12.8 mg CH4 L−1 d−1) was highest in the culture grown with tryptone, yeast extract, and CO2/H2. The analysis of communities that developed on various carbon sources casts new light on the ecophysiology of the recently described bacterial phylum Caldiserica and methanogenic Archaea representing the genera Methanomassiliicoccus and Methanothrix. Furthermore, it is hypothesized that representatives of Caldiserica may support hydrogenotrophic methanogenesis.
Collapse
|
36
|
Lu Q, Yu Z, Yu S, Liang Z, Li H, Sun L, Wang S. Organic matter rather than salinity as a predominant feature changes performance and microbiome in methanogenic sludge digesters. JOURNAL OF HAZARDOUS MATERIALS 2019; 377:349-356. [PMID: 31173985 DOI: 10.1016/j.jhazmat.2019.05.075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/01/2019] [Accepted: 05/26/2019] [Indexed: 06/09/2023]
Abstract
Due to low digestibility and long retention time of anaerobic sludge digestion, pre-treatment with alkaline/acid has been widely employed to enhance the rate and extent of sludge digestion. Nonetheless, effects of gradient concentrations of alkaline/acid pre-treatments and resulting salinity on digestion performance and sludge microbiome remain poorly understood. To elucidate these effects, both batch- and reactor-experiments were setup with varied feeding sludge. Significant digestion improvement and sludge microbiome changes were observed with alkaline/acid sludge pre-treatment, compared to non-pretreatment controls, e.g., ˜88% increase of carbon removal in sludge digesters. Surprisingly, with the same concentration of influent sludge, no notable change in digestion performance and sludge microbiome was observed in digesters when increasing alkaline/acid concentrations from 0.25 to 0.8 mol/L, and in batch serum bottles with or without NaCl amendment. Consequently, organic compounds dissolved in sludge pre-treatment could be a predominant selective pressure driving the performance and microbiome changes. By contrast, salinity as a consequence of the alkaline/acid pre-treatment could only enrich specific lineages, without altering the overall community profile and function. Together, this study provided insights into specific impacts of major factors on digester performance and sludge microbiome, and shed lights on optimization of sludge digestion.
Collapse
Affiliation(s)
- Qihong Lu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China; Environmental Microbiome Research Center, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Zehui Yu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Sining Yu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Zhiwei Liang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Haocong Li
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China; Environmental Microbiome Research Center, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Lianpeng Sun
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510006, China
| | - Shanquan Wang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China; Environmental Microbiome Research Center, Sun Yat-Sen University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510006, China.
| |
Collapse
|
37
|
Gao M, Guo B, Zhang L, Zhang Y, Liu Y. Microbial community dynamics in anaerobic digesters treating conventional and vacuum toilet flushed blackwater. WATER RESEARCH 2019; 160:249-258. [PMID: 31152950 DOI: 10.1016/j.watres.2019.05.077] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/06/2019] [Accepted: 05/24/2019] [Indexed: 06/09/2023]
Abstract
Decentralized wastewater treatment represents a promising sustainable option for future wastewater management. Blackwater collected from toilets contains high concentrations of organic matter, ideal for energy recovery using anaerobic digestion. Up-flow anaerobic sludge blanket (UASB) reactors treating conventional toilet (CT, 9 L water per flush) and vacuum toilet (VT, 1 L water per flush) blackwater with increments of loadings were successfully operated to steady state in three phases. The organic loading rates were maintained at comparable levels between the two reactors. The methanisation rates were 0.23-0.29 and 0.41-0.48 gCH4-COD/gfeedCOD in the CT and VT reactors, and the COD removal rates were 72% and 89%, respectively. The enriched microbial consortia and the community dynamics under different loading phases were compared. The rank abundance distributions and alpha-diversity showed that archaeal communities were predominated by mono-enrichments in both CT and VT reactors, while bacterial communities showed lower diversity in the VT reactor. Through principal coordinates analysis (beta-diversity), clear divergences of archaeal and bacterial communities between the CT and VT reactors were revealed, and the archaeal community developed at a slower rate than the bacterial community. The enriched archaea were hydrogenotrophic methanogens, Methanolinea in the CT reactor (56.6%), and Methanogenium in the VT reactor (62.3%). The enriched bacteria were Porphyromonadaceae in both CT (15.9%) and VT (13.4%) reactors, sulfate-reducing bacteria in the CT reactor, and Fibrobacteraceae in the VT reactor (13.8%). Links between enriched consortia and ammonia stress were discussed. Isotope fraction analysis of the biogas showed a slight shift from acetoclastic methanogenesis to hydrogenotrophic methanogenesis. A closer look into the predicted metagenomic functional profiles showed agreeing results, where hydrogenotrophic methanogenesis and fhs gene abundances were higher in the VT reactor. We demonstrated that different blackwater types enriched different microbial consortia, probably due to ammonia concentrations and sulfate loadings, which should be taken into consideration for practical applications.
Collapse
Affiliation(s)
- Mengjiao Gao
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Bing Guo
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Lei Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Yingdi Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada.
| |
Collapse
|
38
|
Wong JWC, Kaur G, Mehariya S, Karthikeyan OP, Chen G. Food waste treatment by anaerobic co-digestion with saline sludge and its implications for energy recovery in Hong Kong. BIORESOURCE TECHNOLOGY 2018; 268:824-828. [PMID: 30064901 DOI: 10.1016/j.biortech.2018.07.113] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/21/2018] [Accepted: 07/23/2018] [Indexed: 06/08/2023]
Abstract
Potential of methane production by co-digestion of food waste with saline sludge produced from sewage receiving seawater toilet flushing was investigated to determine its suitability for food waste management in Hong Kong by making use of excess design capacity of sludge digesters. High salinity of saline sludge (12.8 mS/cm) affected degradation of organic compounds resulting in an increase in sCOD by 135% as compared to an increase by 283% in treatments with non-saline sludge (4.2 mS/cm) co-digestion. This inhibitory effect was also evident by lower VS removal efficiency of 32.65% for saline versus 54.23% for non-saline sludge based co-digestion. Furthermore, non-saline sludge gave a 3.4-fold higher methane yield than saline sludge co-digestion. It is concluded that co-digestion of food waste with both sludges could be adopted as a potential strategy to make use of excess digestion capacity of existing wastewater treatment facilities but is more viable for non-saline sludge.
Collapse
Affiliation(s)
- Jonathan W C Wong
- Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong.
| | - Guneet Kaur
- Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Sanjeet Mehariya
- Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Obulisamy Parthiba Karthikeyan
- Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Guanghao Chen
- Department of Civil and Environmental Engineering, Water Technology Center, Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong
| |
Collapse
|
39
|
Zeng T, Zhang S, Gao X, Wang G, Lens PNL, Xie S. Assessment of Bacterial Community Composition of Anaerobic Granular Sludge in Response to Short-Term Uranium Exposure. MICROBIAL ECOLOGY 2018; 76:648-659. [PMID: 29417188 DOI: 10.1007/s00248-018-1152-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 01/23/2018] [Indexed: 06/08/2023]
Abstract
The effect of 10-50 μM uranium (U(VI)) on the bacterial community of anaerobic granular sludge was investigated by 24-h exposure tests, after which the bacterial community was analyzed by high-throughput sequencing. The specific U(VI) reducing activity of the anaerobic granular sludge ranged between 3.1 to 19.7 μM U(VI) g-1(VSS) h-1, independently of the initial U(VI) concentration. Alpha diversity revealed that microbial richness and diversity was the highest for anaerobic granular sludge upon 10 μM uranium exposure. Compared with the original biomass, the phylum of Euryarchaeota was significantly affected, whereas the Bacteroidetes, Firmicutes, and Synergistetes phyla were only slightly affected. However, the abundance of Chloroflexi and Proteobacteria phyla clearly increased after 24 h uranium exposure. Based on the genus level analysis, significant differences appeared in the bacterial abundance after uranium exposure. The proportions of Pseudomonas, Acinetobacter, Parabacteroides, Brevundimonas, Sulfurovum, and Trichococcus increased significantly, while the abundance of Paludibacter and Erysipelotrichaceae incertae sedis decreased dramatically. This study shows a dynamic diversification of the bacterial composition as a response to a short time (24 h) U(VI) exposure (10-50 μM).
Collapse
Affiliation(s)
- Taotao Zeng
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, People's Republic of China.
- UNESCO-IHE Institute for Water Education, Delft, The Netherlands.
| | - Shiqi Zhang
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, People's Republic of China
| | - Xiang Gao
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, People's Republic of China
| | - Guohua Wang
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, People's Republic of China
| | - Piet N L Lens
- UNESCO-IHE Institute for Water Education, Delft, The Netherlands
| | - Shuibo Xie
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, People's Republic of China
- Key Discipline Laboratory for National Defence for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, People's Republic of China
| |
Collapse
|
40
|
Shelton JL, Andrews RS, Akob DM, DeVera CA, Mumford A, McCray JE, McIntosh JC. Microbial community composition of a hydrocarbon reservoir 40 years after a CO2 enhanced oil recovery flood. FEMS Microbiol Ecol 2018; 94:5067868. [PMID: 30101289 PMCID: PMC6108538 DOI: 10.1093/femsec/fiy153] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/07/2018] [Indexed: 11/17/2022] Open
Abstract
Injecting CO2 into depleted oil reservoirs to extract additional crude oil is a common enhanced oil recovery (CO2-EOR) technique. However, little is known about how in situ microbial communities may be impacted by CO2 flooding, or if any permanent microbiological changes occur after flooding has ceased. Formation water was collected from an oil field that was flooded for CO2-EOR in the 1980s, including samples from areas affected by or outside of the flood region, to determine the impacts of CO2-EOR on reservoir microbial communities. Archaea, specifically methanogens, were more abundant than bacteria in all samples, while identified bacteria exhibited much greater diversity than the archaea. Microbial communities in CO2-impacted and non-impacted samples did not significantly differ (ANOSIM: Statistic R = -0.2597, significance = 0.769). However, several low abundance bacteria were found to be significantly associated with the CO2-affected group; very few of these species are known to metabolize CO2 or are associated with CO2-rich habitats. Although this study had limitations, on a broad scale, either the CO2 flood did not impact the microbial community composition of the target formation, or microbial communities in affected wells may have reverted back to pre-injection conditions over the ca. 40 years since the CO2-EOR.
Collapse
Affiliation(s)
- Jenna Lk Shelton
- Eastern Energy Resources Science Center, U.S. Geological Survey, 12201 Sunrise Valley Drive, Reston, VA, 20192 USA
| | - Robert S Andrews
- Water Mission Area, U.S. Geological Survey, 12201 Sunrise Valley Drive, Reston, VA, 20192 USA
| | - Denise M Akob
- Water Mission Area, U.S. Geological Survey, 12201 Sunrise Valley Drive, Reston, VA, 20192 USA
| | - Christina A DeVera
- Eastern Energy Resources Science Center, U.S. Geological Survey, 12201 Sunrise Valley Drive, Reston, VA, 20192 USA
| | - Adam Mumford
- Water Mission Area, U.S. Geological Survey, 12201 Sunrise Valley Drive, Reston, VA, 20192 USA
| | - John E McCray
- Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illisnois Street, Golden, CO, 80401 USA.,Hydrologic Science and Engineering Program, Colorado School of Mines, 1500 Illinois Street, Golden, CO, 80401 USA
| | - Jennifer C McIntosh
- Department of Hydrology and Atmospheric Sciences, University of Arizona, 1133 E. James E. Rogers Way, Tucson, AZ, 85721 USA
| |
Collapse
|
41
|
Cheng DL, Ngo HH, Guo WS, Chang SW, Nguyen DD, Kumar SM, Du B, Wei Q, Wei D. Problematic effects of antibiotics on anaerobic treatment of swine wastewater. BIORESOURCE TECHNOLOGY 2018; 263:642-653. [PMID: 29759819 DOI: 10.1016/j.biortech.2018.05.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 06/08/2023]
Abstract
Swine wastewaters with high levels of organic pollutants and antibiotics have become serious environmental concerns. Anaerobic technology is a feasible option for swine wastewater treatment due to its advantage in low costs and bioenergy production. However, antibiotics in swine wastewater have problematic effects on micro-organisms, and the stability and performance of anaerobic processes. Thus, this paper critically reviews impacts of antibiotics on pH, COD removal efficiencies, biogas and methane productions as well as the accumulation of volatile fatty acids (VFAs) in the anaerobic processes. Meanwhile, impacts on the structure of bacteria and methanogens in anaerobic processes are also discussed comprehensively. Furthermore, to better understand the effect of antibiotics on anaerobic processes, detailed information about antimicrobial mechanisms of antibiotics and microbial functions in anaerobic processes is also summarized. Future research on deeper knowledge of the effect of antibiotics on anaerobic processes are suggested to reduce their adverse environmental impacts.
Collapse
Affiliation(s)
- D L Cheng
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - H H Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia.
| | - W S Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - S W Chang
- Department of Environmental Energy & Engineering, Kyonggi University, 442-760, Republic of Korea
| | - D D Nguyen
- Department of Environmental Energy & Engineering, Kyonggi University, 442-760, Republic of Korea
| | - S Mathava Kumar
- Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, Tamilnadu 600036, India
| | - B Du
- School of Resources and Environment, University of Jinan, Jinan 250022, PR China
| | - Q Wei
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - D Wei
- School of Resources and Environment, University of Jinan, Jinan 250022, PR China
| |
Collapse
|
42
|
Wang L, Deng S, Wang S, Su H. Analysis of aerobic granules under the toxic effect of ampicillin in sequencing batch reactors: Performance and microbial community. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 204:152-159. [PMID: 28869824 DOI: 10.1016/j.jenvman.2017.08.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 07/29/2017] [Accepted: 08/15/2017] [Indexed: 06/07/2023]
Abstract
To study the change of the aerobic granules' microbial community in the present of antibiotics, ampicillin (AMP) was selected as a model component. With acetate as carbon source, different concentrations of AMP (5, 10 and 15 mg L-1) were applied to the inflow intermittently and the results showed that the stability of the aerobic granules was maintained below 10 mg L-1 AMP. Simultaneously, under exposure to 5 and 10 mg L-1 AMP, the COD removal efficiency in the batch reactors remained at 86% and AMP was degraded almost completely with a removal efficiency of 97%. However, the EPS concentration and dehydrogenase activity decreased constantly with increasing AMP dosage. High-throughput sequencing analysis revealed that Proteobacteria was the most prominent phylum in the whole experiment and contributed to the degradation of AMP. The percentages of Azoarcus and Mycoplana increased at 10 mg L-1 AMP. In addition, Hydrogenophaga and Enterococcus played a key role in the microbial metabolism.
Collapse
Affiliation(s)
- Luxi Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Shuang Deng
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Shaojie Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Haijia Su
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| |
Collapse
|
43
|
Liu J, Shi S, Ji X, Jiang B, Xue L, Li M, Tan L. Performance and microbial community dynamics of electricity-assisted sequencing batch reactor (SBR) for treatment of saline petrochemical wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:17556-17565. [PMID: 28597382 DOI: 10.1007/s11356-017-9446-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 06/01/2017] [Indexed: 06/07/2023]
Abstract
High-salinity wastewater is often difficult to treat by common biological technologies due to salinity stress on the bacterial community. Electricity-assisted anaerobic technologies have significantly enhanced the treatment performance by alleviating the impact of salinity stress on the bacterial community, but electricity-assisted aerobic technologies have less been reported. Herein, a novel bio-electrochemistry system has been designed and operated in which a pair of stainless iron mesh-graphite plate electrodes were installed into a sequencing batch reactor (SBR, designated as S1) to strengthen the performance of saline petrochemical wastewater under aerobic conditions. The removal efficiency of phenol and chemical oxygen demand (COD) in S1 were 94.1 and 91.2%, respectively, on day 45, which was clearly higher than the removal efficiency of a single SBR (S2) and an electrochemical reactor (S3), indicating that a coupling effect existed between the electrochemical process and biodegradation. A certain amount of salinity (≤8000 mg/L) could enhance the treatment performance in S1 but weaken that in S2. Illumina sequencing revealed that microbial communities in S1 on days 45 and 91 were richer and more diverse than in S2, which suggests that electrical stimulation could enhance the diversity and richness of the microbial community, and reduce the negative effect of salinity on the microorganisms and enrich some salt-adapted microorganisms, thus improve the ability of S1 to respond to salinity stress. This novel bio-electrochemistry system was shown to be an alternative technology for the high saline petrochemical wastewater.
Collapse
Affiliation(s)
- Jiaxin Liu
- School of Life Science, Liaoning Normal University, Dalian, 116081, China
| | - Shengnan Shi
- School of Life Science, Liaoning Normal University, Dalian, 116081, China.
| | - Xiangyu Ji
- School of Life Science, Liaoning Normal University, Dalian, 116081, China
| | - Bei Jiang
- School of Life Science, Liaoning Normal University, Dalian, 116081, China.
- Liaoning Key Lab of Marine Fishery Molecular Biology, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China.
| | - Lanlan Xue
- School of Life Science, Liaoning Normal University, Dalian, 116081, China
| | - Meidi Li
- School of Life Science, Liaoning Normal University, Dalian, 116081, China
| | - Liang Tan
- School of Life Science, Liaoning Normal University, Dalian, 116081, China
| |
Collapse
|