1
|
Taghavi Fardood S, Moradnia F, Aminabhavi TM. Green synthesis of novel Zn 0.5Ni 0.5FeCrO 4 spinel magnetic nanoparticles: Photodegradation of 4-nitrophenol and aniline under visible light irradiation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124534. [PMID: 39004207 DOI: 10.1016/j.envpol.2024.124534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
This study explores novel nanoparticles used in environmental remediation of 4-nitrophenol and aniline from wastewater bodies. The Zn0.5Ni0.5FeCrO4 magnetic nanoparticles (MNPs) were synthesized using tragacanth gel as a green, low-cost, and easy sol-gel method. The MNPs were characterized by XRD, XPS, FT-IR, VSM, TEM, EDX, FESEM, BET, DRS, and elemental mapping. The analysis demonstrated that nanoparticles have a spinel cubic structure, spatial distribution of the elements, ferromagnetic activity, narrow bandgap, and uniform morphology. Furthermore, effectiveness of the developed MNPs to degrade recalcitrant organic pollutants such as 4-nitrophenol (4-NP) and aniline under visible light exposure were studied. The results indicated 95% aniline and 80% of 4-NP were successfully degraded in 180 and 150 min, respectively. The total organic carbon (TOC) analysis revealed 65% and 54% removal of aniline and 4-NP. LC-MS was employed to elucidate the photodegradation mechanism and to identify the degradation products, including small fragmented molecules.
Collapse
Affiliation(s)
| | - Farzaneh Moradnia
- Department of Chemistry, Faculty of Science, Ilam University, Ilam, 69315516, Iran
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, India; Korea University, Seoul, South Korea.
| |
Collapse
|
2
|
Ghasemi AH, Zoqi MJ, Zanganeh Ranjbar P. Enhanced photocatalytic degradation of methylene blue using a novel counter-rotating disc reactor. Front Chem 2024; 12:1335180. [PMID: 38464603 PMCID: PMC10920357 DOI: 10.3389/fchem.2024.1335180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/09/2024] [Indexed: 03/12/2024] Open
Abstract
Introduction: This research introduces an innovative photocatalytic reactor designed to address challenges in wastewater treatment, with a focus on enhancing dye degradation and reducing Chemical Oxygen Demand (COD). Methods: The reactor is designed with counter-rotational movements of discs to enhance hydrodynamics and mass transfer, along with a 3D-printed, interchangeable component system to boost efficacy. TiO2 nanoparticles, composed of 80% anatase and 20% rutile, are thermally immobilized on glass discs. The effectiveness of various treatment variables was assessed through a Central Composite Design (CCD), guided by a Response Surface Methodology (RSM) model. Results: The RSM analysis reveals that the linear, quadratic, and interactive effects of the counter-rotational movements significantly influence the efficiency of dye and COD removal. The RSM model yields coefficients of determination (R2) values of 0.9758 and 0.9765 for the predictive models of dye and COD removal, respectively. Optimized parameters for dye removal include a pH of 6.05, disc rotation speed of 22.35 rpm, initial dye concentration of 3.15 × 10-5 M, residence time of 7.98 h, and the number of nanoparticle layers set at 3.99, resulting in 96.63% dye removal and 65.81% COD removal under optimal conditions. Discussion: Notably, the reactor demonstrates potential for efficient treatment within a near-neutral pH range, which could reduce costs and resource use by eliminating the need for pH adjustments. The implementation of discs rotating in opposite directions marks a significant advancement in the process of dye removal.
Collapse
Affiliation(s)
- Amir Hossein Ghasemi
- Department of Civil Engineering, Faculty of Engineering, University of Birjand, Birjand, Iran
| | - Mohamad Javad Zoqi
- Department of Civil Engineering, Faculty of Engineering, University of Birjand, Birjand, Iran
| | - Payam Zanganeh Ranjbar
- Department of Civil Engineering, Faculty of Engineering, University of Guilan, Rasht, Iran
| |
Collapse
|
3
|
Nawaz MI, Yi C, Zafar AM, Yi R, Abbas B, Sulemana H, Wu C. Efficient degradation and mineralization of aniline in aqueous solution by new dielectric barrier discharge non-thermal plasma. ENVIRONMENTAL RESEARCH 2023; 237:117015. [PMID: 37648191 DOI: 10.1016/j.envres.2023.117015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/21/2023] [Accepted: 08/27/2023] [Indexed: 09/01/2023]
Abstract
Aniline is a priority pollutant that is unfavorable to the environment and human health due to its carcinogenic and mutagenic nature. The performance of the dielectric barrier discharge reactor was examined based on the aniline degradation efficiency. Different parameters were studied and optimized to treat various wastewater conditions. Role of active species for aniline degradation was investigated by the addition of inhibitors and promoters. The optimum conditions were 20 mg/L initial concentration, 1.8 kV applied voltage, 4 L/min gas flow rate and a pH of 8.82. It was observed that 87% of aniline was degraded in 60 min of dielectric barrier discharge treatment at optimum conditions. UV-Vis spectra showed gradual increase in the treatment efficiency of aniline with the propagation of treatment time. Mineralization of AN was confirmed by TOC measurement and a decrease in pH during the process. To elicit the aniline degradation route, HPLC and LC-MS techniques were used to detect the intermediates and byproducts. It was identified that aniline degraded into different organic byproducts and was dissociated into carbon dioxide and water. Comparison of the current system with existing advanced oxidation processes showed that DBD has a remarkable potential for the elimination of organic pollutants.
Collapse
Affiliation(s)
- Muhammad Imran Nawaz
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Chengwu Yi
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Abdul Mannan Zafar
- Civil and Environmental Engineering Department, United Arab Emirates University, AlAin, 15551, United Arab Emirates; Biotechnology Research Center, Technology Innovation Institute, Masdar, 9639, Abu Dhabi, United Arab Emirates.
| | - Rongjie Yi
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Babar Abbas
- Department of Environmental Engineering, University of Engineering and Technology, Taxila, 47080, Pakistan.
| | - Husseini Sulemana
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Chundu Wu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
4
|
Mishra S, Srikanth K, Rao TR, Kumar P, Samanta SK. Zinc ferrite-graphitic carbon nitride nanohybrid for photo-catalysis of the antibiotic ciprofloxacin. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01005d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
2D hybrid sheets of zinc ferrite and graphitic carbon nitride were explored for their application as a UV catalyst for the degradation of ciprofloxacin.
Collapse
Affiliation(s)
- Sandhya Mishra
- Department of Chemical and Biochemical Engineering, Indian Institute of Technology Patna, Bihta, Patna, Bihar, 801106-India
- Department of Chemical Engineering, Shree Dhanvantary College of Engineering and Technology, Kim (E), Surat Gujarat, 394110-India
| | - Korutla Srikanth
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Patna, Bihar, 801106-India
| | - T. Rajagopala Rao
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Patna, Bihar, 801106-India
| | - Prashant Kumar
- Department of Physics, Indian Institute of Technology Patna, Bihta, Patna, Bihar, 801106-India
- Global Innovative Centre for Advanced Nanomaterials, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Sujoy Kumar Samanta
- Department of Chemical and Biochemical Engineering, Indian Institute of Technology Patna, Bihta, Patna, Bihar, 801106-India
| |
Collapse
|
5
|
Nguyen Thi HT, Tran Thi KN, Hoang NB, Tran BT, Do TS, Phung CS, Nguyen Thi KO. Enhanced Degradation of Rhodamine B by Metallic Organic Frameworks Based on NH 2-MIL-125(Ti) under Visible Light. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7741. [PMID: 34947348 PMCID: PMC8704260 DOI: 10.3390/ma14247741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/12/2021] [Accepted: 09/22/2021] [Indexed: 12/12/2022]
Abstract
Samples of the bimetallic-based NH2-MIL-125(Ti) at a ratio of Mn+/Ti4+ is 0.15 (Mn+: Ni2+, Co2+ and Fe3+) were first synthesized using the solvothermal method. Their fundamental properties were analyzed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectra, scanning electron microscopy (SEM), N2 adsorption-desorption measurements, and UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS). The as-acquired materials were used as high-efficiency heterogeneous photocatalysts to remove Rhodamine B (RhB) dye under visible light. The results verified that 82.4% of the RhB (3 × 10-5 M) was degraded within 120 min by 15% Fe/Ti-MOFs. Furthermore, in the purpose of degrading Rhodamine B (RhB), the rate constant for the 15% Fe/Ti-MOFs was found to be 2.6 times as fast as that of NH2-MIL-125(Ti). Moreover, the 15% Fe/Ti-MOFs photocatalysts remained stable after three consecutive cycles. The trapping test demonstrated that the major active species in the degradation of the RhB process were hydroxyl radicals (HO∙) and holes (h+).
Collapse
Affiliation(s)
- Hong-Tham Nguyen Thi
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City 70000, Vietnam; (H.-T.N.T.); (K.-N.T.T.); (N.B.H.); (C.S.P.)
- Vo Giu High School, Hoai An District, Binh Dinh Province 55000, Vietnam
| | - Kim-Ngan Tran Thi
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City 70000, Vietnam; (H.-T.N.T.); (K.-N.T.T.); (N.B.H.); (C.S.P.)
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City 70000, Vietnam
| | - Ngoc Bich Hoang
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City 70000, Vietnam; (H.-T.N.T.); (K.-N.T.T.); (N.B.H.); (C.S.P.)
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City 70000, Vietnam
| | - Bich Thuy Tran
- Institute of Environmental Science, Engineering and Management, Industrial University of Ho Chi Minh City, Ho Chi Minh City 70000, Vietnam;
| | - Trung Sy Do
- Institute of Chemistry, Vietnam Academy of Science and Technology, Hanoi City 10000, Vietnam;
| | - Chi Sy Phung
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City 70000, Vietnam; (H.-T.N.T.); (K.-N.T.T.); (N.B.H.); (C.S.P.)
| | - Kim-Oanh Nguyen Thi
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City 70000, Vietnam; (H.-T.N.T.); (K.-N.T.T.); (N.B.H.); (C.S.P.)
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City 70000, Vietnam
| |
Collapse
|
6
|
Eswaran SG, Narayan H, Vasimalai N. Reductive photocatalytic degradation of toxic aniline blue dye using green synthesized banyan aerial root extract derived silver nanoparticles. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Mohamed RM, Ismail AA, Alhaddad M. A novel design of porous Cr2O3@ZnO nanocomposites as highly efficient photocatalyst toward degradation of antibiotics: A case study of ciprofloxacin. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118588] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Liu J, Wu J, Wang J, Ma J, Sun L, Du Y, Li Y, Li H. Surface engineering of diatomite using nanostructured Zn compounds for adsorption and sunlight photocatalysis. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125977] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Effect of ZnO-based nanophotocatalyst on degradation of aniline. J Mol Model 2021; 27:92. [PMID: 33619651 DOI: 10.1007/s00894-021-04710-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
In this research, a zinc oxide/copper oxide/graphene oxide (ZnO/CuO/GO) nanophotocatalyst was synthesized for photodegradation of aniline as a pollutant, upon exposure to ultraviolet light (UV). Three variables including initial aniline concentration, the nanophotocatalyst dosage, and pH were designed. The statistical test and optimal conditions were determined. The consequences specified that the optimum values of pH, initial aniline concentration, the dosage of nanophotocatalyst, and the reaction time were 6, 150 ppm, 1 g/L, and 3 h, respectively. The obtained results revealed that the photodegradation of aniline was enhanced with doping zinc oxide and CuO on the graphene oxide. Under optimal conditions, 97% photodegradation of aniline was observed. The mechanism of aniline degradation with nanophotocatalyst was evaluated by molecular dynamic (MD) graphs. The interactions between nanophotocatalysts and aniline were considered by energy, density graph.
Collapse
|
10
|
Visible-Light Photocatalytic Degradation of Aniline Blue by Stainless-Steel Foam Coated with TiO2 Grafted with Anthocyanins from a Maqui-Blackberry System. Catalysts 2020. [DOI: 10.3390/catal10111245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Anthocyanins from maqui (Aristotelia chilensis) and blackberry (Rubus glaucus) were used as light harvesters to improve the photocatalytic activity of titanium dioxide in visible light. Anthocyanins from both species were obtained using high-frequency ultrasound-assisted liquid-liquid extraction with methanol. Mixtures of anthocyanins were developed to study their effectiveness in the visible light/TiO2 reaction for the oxidation of aniline blue. For this purpose, stainless-steel foams were covered with TiO2 and anthocyanin and characterized by SEM. Different samples were fabricated by varying the ratio of the two anthocyanins in the mixture (100, 75, 50, 25 and 0 vol% of maqui-anthocyanin (delphinidin)). The mixtures of 25 vol% anthocyanin from maqui and 75 vol% anthocyanin from blackberry had higher total anthocyanin content and better photocatalytic activity in visible light: degradation of aniline blue was 40% at pH 7, 56% at pH 3 and 95% at pH 3 with the injection of oxygen for 2 h in comparison with TiO2-foam/UV light, which yielded values of 13% at pH 7 and 73% at pH 3 with and without the addition of oxygen. Natural dyes that are low-cost and environmentally friendly substances are shown to be capable of improving the visible-light photocatalytic activity of TiO2.
Collapse
|
11
|
Ghasemipour P, Fattahi M, Rasekh B, Yazdian F. Developing the Ternary ZnO Doped MoS 2 Nanostructures Grafted on CNT and Reduced Graphene Oxide (RGO) for Photocatalytic Degradation of Aniline. Sci Rep 2020; 10:4414. [PMID: 32157131 PMCID: PMC7064525 DOI: 10.1038/s41598-020-61367-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 02/26/2020] [Indexed: 01/17/2023] Open
Abstract
Transition metal sulfide semiconductors have achieved significant attention in the field of photocatalysis and degradation of pollutants. MoS2 with a two dimensional (2D) layered structure, a narrow bandgap and the ability of getting excited while being exposed to visible light, has demonstrated great potential in visible-light-driven photocatalysts. However, it possesses fast-paced recombination of charges. In this study, the coupled MoS2 nanosheets were synthesized with ZnO nanorods to develop the heterojunctions photocatalyst in order to obtain superior photoactivity. The charge transfer in this composite is not adequate to achieve desirable activity. Therefore, heterojunction was modified by reduced graphene oxide (RGO) nanosheets and carbon nanotubes (CNTs) to develop the RGO/ZnO/MoS2 and CNTs/ZnO/MoS2 ternary nanocomposites. The structure, morphology, composition, optical and photocatalytic properties of the as-fabricated samples were characterized through X-ray diffraction (XRD), Fourier Transform Infrared (FTIR), Field Emission Scanning Electron Microscopy (FESEM), Transmission Electron Microscopy (TEM), Energy-Dispersive X-ray (EDX), elemental mapping, Photoluminescence (PL), Ultraviolet-Visible spectroscopy (UV-VIS), and Brunauer-Emmett-Teller (BET) techniques. The photo-catalytic performance of all samples was evaluated through photodegradation of aniline in aqueous solution. The combination of RGO or CNTs into the ZnO/MoS2 greatly promoted the catalytic activity. However, the resulting RGO/ZnO/MoS2 ternary nanocomposites showed appreciably increased catalytic performance, faster than that of CNTs/ZnO/MoS2. Charge carrier transfer studies, the BET surface area analysis, and the optical studies confirmed this superiority. The role of operational variables namely, solution pH, catalyst dosage amount, and initial concentration of aniline was then investigated for obtaining maximum degradation. Complete degradation was observed, in the case of pH = 4, catalyst dosage of 0.7 g/L and aniline concentration of 80 ppm, and light intensity of 100 W. According to the results of trapping experiments, hydroxyl radical was found to be the main active species in the photocatalytic reaction. Meanwhile, a plausible mechanism was proposed for describing the degradation of aniline upon ternary composite. Moreover, the catalyst showed excellent reusability and stability after five consecutive cycles due to the synergistic effect between its components. Total-Organic-Carbon concentration (TOC) results suggested that complete mineralization of aniline occurred after 210 min of irradiation. Finally, a real petrochemical wastewater sample was evaluated for testing the catalytic ability of the as-fabricated composites in real case studies and it was observed that the process successfully quenched 100% and 93% of Chemical Oxygen Demand (COD) and TOC in the wastewater, respectively.
Collapse
Affiliation(s)
- Parisa Ghasemipour
- Chemical Engineering Department, Abadan Faculty of Petroleum Engineering, Petroleum University of Technology, Abadan, Iran
| | - Moslem Fattahi
- Chemical Engineering Department, Abadan Faculty of Petroleum Engineering, Petroleum University of Technology, Abadan, Iran.
| | - Behnam Rasekh
- Microbiology and Biotechnology Research Group, Research Institute of Petroleum Industry, National Iranian Oil Company, Tehran, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran
| |
Collapse
|
12
|
Maleki A, Moradi F, Shahmoradi B, Rezaee R, Lee SM. The photocatalytic removal of diazinon from aqueous solutions using tungsten oxide doped zinc oxide nanoparticles immobilized on glass substrate. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.111918] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
13
|
Hegde S, Kumar A, Hegde G. Synthesis of Sustainable Carbon Nanospheres from Natural Bioresources and Their Diverse Applications. ACS SYMPOSIUM SERIES 2020. [DOI: 10.1021/bk-2020-1353.ch016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Supriya Hegde
- Centre for Nano-materials and Displays, B.M.S. College of Engineering, Bull Temple Road, Basavanagudi, Bengaluru 560019, India
| | - Anuj Kumar
- Natural Resources Institute Finland (Luke)/Luonnonvarakeskus (Luke), Joensuu Unit, Yliopistokatu 6 80100, JOENSUU, Finland
| | - Gurumurthy Hegde
- Centre for Nano-materials and Displays, B.M.S. College of Engineering, Bull Temple Road, Basavanagudi, Bengaluru 560019, India
| |
Collapse
|
14
|
Fowsiya J, Madhumitha G. Biomolecules Derived from Carissa edulis for the Microwave Assisted Synthesis of Ag2O Nanoparticles: A Study Against S. incertulas, C. medinalis and S. mauritia. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01627-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Photocatalytic degradation of organic dyes using WO3-doped ZnO nanoparticles fixed on a glass surface in aqueous solution. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.01.041] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Synthesis of immobilized cerium doped ZnO nanoparticles through the mild hydrothermal approach and their application in the photodegradation of synthetic wastewater. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.12.103] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Khan ST, Malik A. Engineered nanomaterials for water decontamination and purification: From lab to products. JOURNAL OF HAZARDOUS MATERIALS 2019; 363:295-308. [PMID: 30312926 DOI: 10.1016/j.jhazmat.2018.09.091] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 09/21/2018] [Accepted: 09/30/2018] [Indexed: 06/08/2023]
Abstract
Clean water is vital for life; it is required not only for drinking but also for the preparation of food and proper hygiene. Unfortunately, more than fifty percent of the world population mainly in China and India face a severe scarcity of water. Around 1.8 billion people inevitably drink water from sources having fecal contamination resulting in the death of about a million children every year. Scientists are developing various economic technologies to decontaminate and purify water. Nanomaterials-based technology offers an economic and effective alternative for water purification and decontamination. As nanomaterials are available globally, have remarkable antimicrobial activity and the ability to effectively remove organic and inorganic pollutants from water. This review discusses the potential role of nanomaterials in the purification of drinking water. As nanomaterials exhibit remarkable antimicrobial and antiparasitic activities against waterborne pathogens and parasites of primary concern like Shigella dysenteriae, Vibrio cholera, and Entamoeba histolytica. Nanomaterials also demonstrate the ability to absorb toxic chemicals like mercury and dyes from polluted water. However, for successful commercialization of the technology, some inherent bottlenecks need to be addressed adequately. These include nanoparticles aggregation, their seepage into drinking water and adverse effects on human health and the environment. Nanocomposites are being developed to overcome these problems and to combine two or more desirable properties for water purification. Widespread and large-scale use of nanomaterials for water purification soon may become a reality. Products containing nanomaterials such as Karofi, Lifestraw, and Tupperware for water purification are already available in the market.
Collapse
Affiliation(s)
- Shams Tabrez Khan
- Department of Agricultural Microbiology, Faculty of Agriculture Sciences, Aligarh Muslim University, Aligarh, UP, India.
| | - Abdul Malik
- Department of Agricultural Microbiology, Faculty of Agriculture Sciences, Aligarh Muslim University, Aligarh, UP, India
| |
Collapse
|
18
|
Yadav NG, Chaudhary LS, Sakhare PA, Dongale TD, Patil PS, Sheikh AD. Impact of collected sunlight on ZnFe2O4 nanoparticles for photocatalytic application. J Colloid Interface Sci 2018; 527:289-297. [PMID: 29800878 DOI: 10.1016/j.jcis.2018.05.051] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/09/2018] [Accepted: 05/18/2018] [Indexed: 11/30/2022]
Affiliation(s)
- N G Yadav
- School of Nanoscience and Technology, Shivaji University, Kolhapur 416004, MS, India
| | - L S Chaudhary
- School of Nanoscience and Technology, Shivaji University, Kolhapur 416004, MS, India
| | - P A Sakhare
- School of Nanoscience and Technology, Shivaji University, Kolhapur 416004, MS, India
| | - T D Dongale
- School of Nanoscience and Technology, Shivaji University, Kolhapur 416004, MS, India
| | - P S Patil
- School of Nanoscience and Technology, Shivaji University, Kolhapur 416004, MS, India; Thin Film Materials Lab, Department of Physics, Shivaji University, Kolhapur 416004, MS, India
| | - A D Sheikh
- School of Nanoscience and Technology, Shivaji University, Kolhapur 416004, MS, India.
| |
Collapse
|
19
|
Lu H, Wang J, Li F, Huang X, Tian B, Hao H. Highly Efficient and Reusable Montmorillonite/Fe₃O₄/Humic Acid Nanocomposites for Simultaneous Removal of Cr(VI) and Aniline. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E537. [PMID: 30018225 PMCID: PMC6070813 DOI: 10.3390/nano8070537] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/13/2018] [Accepted: 07/14/2018] [Indexed: 11/30/2022]
Abstract
Recyclable nanomaterials are in great need to develop clean technology for applications in the removal of water contaminants. In this work, easily separable montmorillonite/Fe₃O₄/humic acid (MFH) nanocomposites were fabricated through a facile hydrothermal route. It was found the adsorption ability and stability of MFH was significantly enhanced due to the synergistic effects between montmorillonite, Fe₃O₄ nanoparticles and humic acid. The MFH nanocomposites are highly efficient and recyclable as they can remove at least 82.3% of Cr(VI) and 95.1% of aniline in six consecutive runs. The adsorption mechanism was investigated by analyzing the kinetic parameters of pseudo first-order, pseudo second-order, and intraparticle diffusion models and describing the equilibrium isotherms of Langmuir and Freundlich models. Results indicated different adsorption mechanisms of Cr(VI) and aniline by MFH. The readily synthesized MFH nanocomposites can act as effective and practical materials for environmental applications.
Collapse
Affiliation(s)
- Haijiao Lu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 30072, China.
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 30072, China.
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 30072, China.
| | - Jingkang Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 30072, China.
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 30072, China.
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 30072, China.
| | - Fei Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 30072, China.
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 30072, China.
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 30072, China.
| | - Xin Huang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 30072, China.
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 30072, China.
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 30072, China.
| | - Beiqian Tian
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 30072, China.
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 30072, China.
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 30072, China.
| | - Hongxun Hao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 30072, China.
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 30072, China.
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 30072, China.
| |
Collapse
|
20
|
Pirsaheb M, Moradi S, Shahlaei M, Farhadian N. Application of carbon dots as efficient catalyst for the green oxidation of phenol: Kinetic study of the degradation and optimization using response surface methodology. JOURNAL OF HAZARDOUS MATERIALS 2018; 353:444-453. [PMID: 29704796 DOI: 10.1016/j.jhazmat.2018.04.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/09/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
The reactivity of bio-polymer based nano carbon dots (NCDs) was studied for catalyzing the decomposition of H2O2 to generate free hydroxyl radicals and consequently its applicability in the removal of phenol. To the best of our knowledge, for the first time, this work reports that bio-polymer based NCDs could activate H2O2 and yielding more than 99% phenol degradation within 20 min in the presence of 12 mmol H2O2. Herein, a simple hydrothermal carbonization route was employed for the synthesis of NCDs. The surface morphology, functional groups and crystallinity of the NCDs are studied. SEM images show the NCDs with spherical shape. The graphitic nature of the NCDs was evident from the XRD pattern. The presence of many surface functional groups is confirmed by FT-IR spectra. The influences of three independent operating parameters involving hydrogen peroxide concentration (4-12 mmol), reaction time (10-20 min) and catalyst amount (50-1000 ppm) on the phenol oxidation rate by two NCDs were examined using response surface methodology (RSM). Terephthalic acid (TA) dosimetry demonstrates that the as-prepared NCDs can produce hydroxyl radicals from H2O2, and hence catalyze the oxidation of phenol. Finally, the reusability of the NCDs catalysts was examined and the produced catalysts exhibit good recyclability.
Collapse
Affiliation(s)
- Meghdad Pirsaheb
- Research Center for Environmental Determinants of Health (RCEDH), School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Moradi
- Nano Drug Delivery Research Center, School of Pharmacy, Kermanshah University of Medical, Sciences, Kermanshah, Iran
| | - Mohsen Shahlaei
- Nano Drug Delivery Research Center, School of Pharmacy, Kermanshah University of Medical, Sciences, Kermanshah, Iran
| | - Negin Farhadian
- Research Center for Environmental Determinants of Health (RCEDH), School of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
21
|
Solar Thermo-coupled Electrochemical Oxidation of Aniline in Wastewater for the Complete Mineralization Beyond an Anodic Passivation Film. Sci Rep 2018; 8:3103. [PMID: 29449601 PMCID: PMC5814425 DOI: 10.1038/s41598-018-21473-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 02/05/2018] [Indexed: 12/04/2022] Open
Abstract
Herein, we report the solar thermal electrochemical process (STEP) aniline oxidation in wastewater for totally solving the two key obstacles of the huge energy consumption and passivation film in the electrochemical treatment. The process, fully driven by solar energy without input of any other energies, sustainably serves as an efficient thermoelectrochemical oxidation of aniline by the control of the thermochemical and electrochemical coordination. The thermocoupled electrochemical oxidation of aniline achieved a fast rate and high efficiency for the full minimization of aniline to CO2 with the stability of the electrode and without formation of polyaniline (PAN) passivation film. A clear mechanism of aniline oxidation indicated a switching of the reactive pathway by the STEP process. Due to the coupling of solar thermochemistry and electrochemistry, the electrochemical current remained stable, significantly improving the oxidation efficiency and mineralization rate by apparently decreasing the electrolytic potential when applied with high temperature. The oxidation rate of aniline and chemical oxygen demand (COD) removal rate could be lifted up to 2.03 and 2.47 times magnification compared to conventional electrolysis, respectively. We demonstrate that solar-driven STEP processes are capable of completely mineralizing aniline with high utilization of solar energy. STEP aniline oxidation can be utilized as a green, sustainable water treatment.
Collapse
|
22
|
Duarah R, Karak N. High performing smart hyperbranched polyurethane nanocomposites with efficient self-healing, self-cleaning and photocatalytic attributes. NEW J CHEM 2018. [DOI: 10.1039/c7nj03889e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tough smart starch modified hyperbranched polyurethane/reduced graphene oxide–silver–reduced carbon nanodot nanocomposites with self-healing and self-cleaning attributes under a sustainable energy source.
Collapse
Affiliation(s)
- Rituparna Duarah
- Advanced Polymer and Nanomaterial Laboratory
- Center for Polymer Science and Technology
- Department of Chemical Sciences
- Tezpur University
- Napaam 784028
| | - Niranjan Karak
- Advanced Polymer and Nanomaterial Laboratory
- Center for Polymer Science and Technology
- Department of Chemical Sciences
- Tezpur University
- Napaam 784028
| |
Collapse
|