1
|
Moussavi-Harami SF, Cleary SJ, Magnen M, Seo Y, Conrad C, English BC, Qiu L, Wang KM, Abram CL, Lowell CA, Looney MR. Neutrophil-specific Shp1 loss results in lethal pulmonary hemorrhage in mouse models of acute lung injury. J Clin Invest 2024; 134:e183161. [PMID: 39352872 PMCID: PMC11645157 DOI: 10.1172/jci183161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is associated with significant morbidity and mortality, and neutrophils are critical to its pathogenesis. Neutrophil activation is closely regulated by inhibitory tyrosine phosphatases including Src homology region 2 domain-containing phosphatase-1 (Shp1). Here, we report that loss of neutrophil Shp1 in mice produced hyperinflammation and lethal pulmonary hemorrhage in sterile inflammation and pathogen-induced models of acute lung injury (ALI) through a Syk kinase-dependent mechanism. We observed large intravascular neutrophil clusters, perivascular inflammation, and excessive neutrophil extracellular traps in neutrophil-specific Shp1-KO mice, suggesting an underlying mechanism for the observed pulmonary hemorrhage. Targeted immunomodulation through the administration of a Shp1 activator (SC43) reduced agonist-induced reactive oxygen species in vitro and ameliorated ALI-induced alveolar neutrophilia and NETs in vivo. We propose that the pharmacologic activation of Shp1 has the potential to fine tune neutrophil hyperinflammation that is central to the pathogenesis of ARDS.
Collapse
Affiliation(s)
- S. Farshid Moussavi-Harami
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine
- Division of Pediatric Critical Care Medicine, Department of Pediatrics
| | - Simon J Cleary
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine
| | - Mélia Magnen
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine
| | - Yurim Seo
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine
| | - Catharina Conrad
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine
| | | | - Longhui Qiu
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine
| | - Kristin M. Wang
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine
| | - Clare L. Abram
- Department of Laboratory Medicine, UCSF, San Francisco, California, USA
| | | | - Mark R. Looney
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine
- Department of Laboratory Medicine, UCSF, San Francisco, California, USA
| |
Collapse
|
2
|
Wang A, Zhang Y, Lv X, Liang G. Therapeutic potential of targeting protein tyrosine phosphatases in liver diseases. Acta Pharm Sin B 2024; 14:3295-3311. [PMID: 39220870 PMCID: PMC11365412 DOI: 10.1016/j.apsb.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 09/04/2024] Open
Abstract
Protein tyrosine phosphorylation is a post-translational modification that regulates protein structure to modulate demic organisms' homeostasis and function. This physiological process is regulated by two enzyme families, protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). As an important regulator of protein function, PTPs are indispensable for maintaining cell intrinsic physiology in different systems, as well as liver physiological and pathological processes. Dysregulation of PTPs has been implicated in multiple liver-related diseases, including chronic liver diseases (CLDs), hepatocellular carcinoma (HCC), and liver injury, and several PTPs are being studied as drug therapeutic targets. Therefore, given the regulatory role of PTPs in diverse liver diseases, a collated review of their function and mechanism is necessary. Moreover, based on the current research status of targeted therapy, we emphasize the inclusion of several PTP members that are clinically significant in the development and progression of liver diseases. As an emerging breakthrough direction in the treatment of liver diseases, this review summarizes the research status of PTP-targeting compounds in liver diseases to illustrate their potential in clinical treatment. Overall, this review aims to support the development of novel PTP-based treatment pathways for liver diseases.
Collapse
Affiliation(s)
- Ao Wang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China
| | - Yi Zhang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Xinting Lv
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Guang Liang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
3
|
Moussavi-Harami SF, Cleary SJ, Magnen M, Seo Y, Conrad C, English BC, Qiu L, Wang KM, Abram CL, Lowell CA, Looney MR. Loss of neutrophil Shp1 produces hemorrhagic and lethal acute lung injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.23.595575. [PMID: 38854059 PMCID: PMC11160570 DOI: 10.1101/2024.05.23.595575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The acute respiratory distress syndrome (ARDS) is associated with significant morbidity and mortality and neutrophils are critical to its pathogenesis. Neutrophil activation is closely regulated by inhibitory tyrosine phosphatases including Src homology region 2 domain containing phosphatase-1 (Shp1). Here, we report that loss of neutrophil Shp1 in mice produced hyperinflammation and lethal pulmonary hemorrhage in sterile inflammation and pathogen-induced models of acute lung injury (ALI) through a Syk kinase-dependent mechanism. We observed large intravascular neutrophil clusters, perivascular inflammation, and excessive neutrophil extracellular traps in neutrophil-specific Shp1 knockout mice suggesting an underlying mechanism for the observed pulmonary hemorrhage. Targeted immunomodulation through the administration of a Shp1 activator (SC43) reduced agonist-induced reactive oxygen species in vitro and ameliorated ALI-induced alveolar neutrophilia and NETs in vivo. We propose that the pharmacologic activation of Shp1 has the potential to fine-tune neutrophil hyperinflammation that is central to the pathogenesis of ARDS.
Collapse
Affiliation(s)
- S F Moussavi-Harami
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of California, San Francisco
| | - S J Cleary
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco
| | - M Magnen
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco
| | - Y Seo
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco
| | - C Conrad
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco
| | - B C English
- Department of Microbiology & Immunology, University of California, San Francisco
- CoLabs, University of California, San Francisco
| | - L Qiu
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco
| | - K M Wang
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco
| | - C L Abram
- Department of Laboratory Medicine, University of California, San Francisco
| | - C A Lowell
- Department of Laboratory Medicine, University of California, San Francisco
| | - M R Looney
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco
- Department of Laboratory Medicine, University of California, San Francisco
| |
Collapse
|
4
|
Mao T, He P, Xu Z, Lai Y, Huang J, Yu Z, Li P, Gong X. Impacts of small-molecule STAT3 inhibitor SC-43 on toxicity, global proteomics and metabolomics of HepG2 cells. J Pharm Biomed Anal 2024; 242:116023. [PMID: 38395000 DOI: 10.1016/j.jpba.2024.116023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/27/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024]
Abstract
OBJECTIVE In this study, we aimed to investigate the cytotoxicity and potential mechanisms of SC-43 by analyzing the global proteomics and metabolomics of HepG2 cells exposed to SC-43. METHODS The effect of SC-43 on cell viability was evaluated through CCK-8 assay. Proteomics and metabolomics studies were performed on HepG2 cells exposed to SC-43, and the functions of differentially expressed proteins and metabolites were categorized. Drug affinity responsive target stability (DARTS) was utilized to identify the potential binding proteins of SC-43 in HepG2 cells. Finally, based on the KEGG pathway database, the co-regulatory mechanism of SC-43 on HepG2 cells was elucidated by conducting a joint pathway analysis on the differentially expressed proteins and metabolites using the MetaboAnalyst 5.0 platform. RESULTS Liver cell viability is significantly impaired by continuous exposure to high concentrations of SC-43. Forty-eight dysregulated proteins (27 upregulated, 21 downregulated) were identified by proteomics analysis, and 184 dysregulated metabolites (65 upregulated, 119 downregulated) were determined by metabolomics in HepG2 cells exposed to SC-43 exposure compared with the control. A joint pathway analysis of proteomics and metabolomics data using the MetaboAnalyst 5.0 platform supported the close correlation between SC-43 toxicity toward HepG2 and the disturbances in pyrimidine metabolism, ferroptosis, mismatch repair, and ABC transporters. Specifically, SC-43 significantly affected the expression of several proteins and metabolites correlated with the above-mentioned functional pathways, such as uridine 5'-monophosphate, uridine, 3'-CMP, glutathione, γ-Glutamylcysteine, TF, MSH2, RPA1, RFC3, TAP1, and glycerol. The differential proteins suggested by the joint analysis were further selected for ELISA validation. The data showed that the RPA1 and TAP1 protein levels significantly increased in HepG2 cells exposed to SC-43 compared to the control group. The results of ELISA and joint analysis were basically in agreement. Notably, DARTS and biochemical analysis indicated that SART3 might be a potential target for SC-43 toxicity in HepG2 cells. CONCLUSION In summary, prolonged exposure of liver cells to high concentrations of SC-43 can result in significant damage. Based on a multi-omics analysis, we identified proteins and metabolites associated with SC-43-induced hepatocellular injury and clarified the underlying mechanism, providing new insights into the toxic mechanism of SC-43.
Collapse
Affiliation(s)
- Ting Mao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Peikun He
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Zhichao Xu
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Yingying Lai
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Jinlian Huang
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Zhijian Yu
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Peiyu Li
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China.
| | - Xianqiong Gong
- Hepatology Center, Xiamen Hospital, Beijing University of Chinese Medicine, Xiamen 361001, China.
| |
Collapse
|
5
|
Hong SY, Lu YT, Chen SY, Hsu CF, Lu YC, Wang CY, Huang KL. Targeting pathogenic macrophages by the application of SHP-1 agonists reduces inflammation and alleviates pulmonary fibrosis. Cell Death Dis 2023; 14:352. [PMID: 37291088 PMCID: PMC10249559 DOI: 10.1038/s41419-023-05876-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/07/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Abstract
Idiopathic pulmonary fibrosis is a progressive fibrotic disorder with no cure that is characterized by deterioration of lung function. Current FDA-approved drugs for IPF delay the decline in lung function, but neither reverse fibrosis nor significantly improve overall survival. SHP-1 deficiency results in hyperactive alveolar macrophages accumulating in the lung, which contribute to the induction of pulmonary fibrosis. Herein, we investigated whether employing a SHP-1 agonist ameliorates pulmonary fibrosis in a bleomycin-induced pulmonary fibrosis murine model. Histological examination and micro-computed tomography images showed that SHP-1 agonist treatment alleviates bleomycin-induced pulmonary fibrosis. Reduced alveolar hemorrhage, lung inflammation, and collagen deposition, as well as enhanced alveolar space, lung capacity, and improved overall survival were observed in mice administered the SHP-1 agonist. The percentage of macrophages collected from bronchoalveolar lavage fluid and circulating monocytes in bleomycin-instilled mice were also significantly reduced by SHP-1 agonist treatment, suggesting that the SHP-1 agonist may alleviate pulmonary fibrosis by targeting macrophages and reshaping the immunofibrotic niche. In human monocyte-derived macrophages, SHP-1 agonist treatment downregulated CSF1R expression and inactivated STAT3/NFκB signaling, culminating in inhibited macrophage survival and perturbed macrophage polarization. The expression of pro-fibrotic markers (e.g., MRC1, CD200R1, and FN1) by IL4/IL13-induced M2 macrophages that rely on CSF1R signaling for their fate-determination was restricted by SHP-1 agonist treatment. While M2-derived medium promoted the expression of fibroblast-to-myofibroblast transition markers (e.g., ACTA2 and COL3A1), the application of SHP-1 agonist reversed the transition in a dose-dependent manner. Our report indicates that pharmacological activation of SHP-1 ameliorates pulmonary fibrosis via suppression of CSF1R signaling in macrophages, reduction of pathogenic macrophages, and the inhibition of fibroblast-to-myofibroblast transition. Our study thus identifies SHP-1 as a druggable target for the treatment of IPF, and suggests that the SHP-1 agonist may be developed as an anti-pulmonary fibrosis medication that both suppresses inflammation and restrains fibroblast-to-myofibroblast transition.
Collapse
Affiliation(s)
- Shiao-Ya Hong
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
- Medical Research Center, Cardinal Tien Hospital, New Taipei, 23148, Taiwan
| | - Ya-Ting Lu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Shih-Yu Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Chiung-Fang Hsu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
- Medical Research Center, Cardinal Tien Hospital, New Taipei, 23148, Taiwan
| | - Yi-Chun Lu
- Medical Research Center, Cardinal Tien Hospital, New Taipei, 23148, Taiwan
| | - Cheng-Yi Wang
- Department of Internal Medicine, Cardinal Tien Hospital and School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, 23148, Taiwan.
| | - Kun-Lun Huang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, 11490, Taiwan.
- Division of Pulmonary and Critical Care Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, 11490, Taiwan.
| |
Collapse
|
6
|
Zhu L, Li X, Liu D, Bai W, Yang H, Cheng Q, Xu L, Fang J. The positive feedback loop of MAD2L1/TYK2/STAT3 induces progression in B-cell acute lymphoblastic leukaemia. J Cancer Res Clin Oncol 2023:10.1007/s00432-023-04613-5. [PMID: 36781502 DOI: 10.1007/s00432-023-04613-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/27/2023] [Indexed: 02/15/2023]
Abstract
PURPOSE Mitotic arrest deficient 2 like 1 (MAD2L1) has been extensively studied in several malignancies; however, its role in B-cell acute lymphoblastic leukaemia (B-ALL) remains unclear. METHODS The expression of MAD2L1 was evaluated by real-time quantitative polymerase chain reaction. The biological functions of MAD2L1 in B-ALL were explored through Cell Counting Kit-8 (CCK-8), 5-Ethynyl-2'-deoxyuridine assay (EDU), transwell assay, flow cytometry and xenograft models. The Western blotting and co-immunoprecipitation were utilized to evaluate the interplay between MAD2L1 and the TYK2/STAT3 pathway. The luciferase reporter and chromatin immunoprecipitation (ChIP) assay were employed to identify interactions between STAT3 and MAD2L1. RESULTS We demonstrated that MAD2L1 was markedly upregulated in B-ALL, and its expression level not only correlated with the relapse and remission of the condition but also with a poor prognosis. MAD2L1 promoted the proliferation, migration and invasion of B-ALL cells in vitro and in vivo, whereas MAD2L1 knockdown had the opposite effects. Mechanistically, MAD2L1 induces the progression of B-ALL by activating the TYK2/STAT3 signaling pathway to phosphorylate. Interestingly, STAT3 induces the expression of MAD2L1 by binding directly to its promoter region, resulting in a positive-feedback loop of MAD2L1/TYK2/STAT3. CONCLUSION This study uncovered a reciprocal loop of MAD2L1/TYK2/STAT3, which contributed to the development of B-ALL. Therefore, MAD2L1 can be considered a potential diagnostic biomarker as well as a novel therapeutic target for B-ALL.
Collapse
Affiliation(s)
- Liwen Zhu
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Xinyu Li
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Diandian Liu
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Wenke Bai
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Huaqing Yang
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Qianyi Cheng
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Luhong Xu
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, Guangdong, People's Republic of China.
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China.
| | - Jianpei Fang
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, Guangdong, People's Republic of China.
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
7
|
Chen JL, Chu PY, Huang CT, Huang TT, Wang WL, Lee YH, Chang YY, Dai MS, Shiau CW, Liu CY. Interfering B cell receptor signaling via SHP-1/p-Lyn axis shows therapeutic potential in diffuse large B-cell lymphoma. Mol Med 2022; 28:93. [PMID: 35941532 PMCID: PMC9358803 DOI: 10.1186/s10020-022-00518-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 07/25/2022] [Indexed: 11/21/2022] Open
Abstract
Background Diffuse large B cell lymphoma (DLBCL) is an aggressive and molecularly heterogeneous non-Hodgkin’s lymphoma. The B cell receptor (BCR) signaling pathway in DLBCL emerges as a new drug target. Protein phosphatase SHP-1 negatively regulates several oncogenic tyrosine kinases and plays a tumor suppressive role. Methods The direct SHP-1 agonists were used to evaluate the potential therapeutic implication of SHP-1 in DLBCL. Immunohistochemical staining for SHP-1 was quantified by H-score. The SHP-1 phosphatase activity was determined using tyrosine phosphatase assay. In vitro studies, including MTT, western blot analysis and cell apoptosis, were utilized to examined biological functions of SHP-1. Results Oral administration of SHP-1 agonist showed the potent anti-tumor effects compared to a selective Bruton’s tyrosine kinase (BTK) inhibitor ibrutinib in mice bearing U2932 xenografts. SHP-1 agonist increased SHP-1 activity as well as downregulated p-Lyn in vivo. Here, we demonstrated that immunohistochemical staining for SHP-1 expression was positive in 76% of DLBCL samples. SHP-1 agonist exerted anti-proliferative and apoptotic effects compared with ibrutinib in DLBCL cells. Mechanistically, SHP-1 agonist decreased BCR signaling, especially p-Lyn, and led to apoptosis. Conclusions These data suggest that SHP-1 negatively regulates phosphorylation of Lyn, and targeting SHP-1/p-Lyn using SHP-1 agonist has therapeutic potential for treatment of DLBCL. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-022-00518-0.
Collapse
Affiliation(s)
- Ji-Lin Chen
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Taipei, 112, Taiwan
| | - Pei-Yi Chu
- Department of Pathology, Show Chwan Memorial Hospital, No. 542, Sec. 1, Chung-Shan Rd., Changhua City, 500, Taiwan.,School of Medicine, Fu Jen Catholic University, No. 510, Zhong-zheng Rd., Xin-zhuang Dist., New Taipei City, 24205, Taiwan.,Department of Health Food, Chung Chou University of Science and Technology, Changhua, 510, Taiwan
| | - Chun-Teng Huang
- School of Medicine, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan.,Division of Hematology and Oncology, Department of Medicine, Yang-Ming Branch of Taipei City Hospital, No.145, Zhengzhou Rd., Datong Dist., Taipei, 10341, Taiwan
| | - Tzu-Ting Huang
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Taipei, 112, Taiwan
| | - Wan-Lun Wang
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Taipei, 112, Taiwan.,Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Taipei, 112, Taiwan
| | - Yu-Hsuan Lee
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Taipei, 112, Taiwan
| | - Yuan-Ya Chang
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Taipei, 112, Taiwan
| | - Ming-Shen Dai
- Hematology/Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chung-Wai Shiau
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong Street, Taipei, 112, Taiwan
| | - Chun-Yu Liu
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Taipei, 112, Taiwan. .,School of Medicine, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan. .,Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Taipei, 112, Taiwan. .,Division of Transfusion Medicine, Department of Medicine, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Taipei, 112, Taiwan.
| |
Collapse
|
8
|
Evaluation of the Mechanism of Jiedu Huazhuo Quyu Formula in Treating Wilson's Disease-Associated Liver Fibrosis by Network Pharmacology Analysis and Molecular Dynamics Simulation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9363131. [PMID: 35707473 PMCID: PMC9192323 DOI: 10.1155/2022/9363131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 03/28/2022] [Accepted: 05/14/2022] [Indexed: 12/23/2022]
Abstract
The Jiedu Huazhuo Quyu formula (JHQ) shows significant beneficial effects against liver fibrosis caused by Wilson's disease (WD). Hence, this study aimed to clarify the mechanisms of the JHQ treatment in WD-associated liver fibrosis. First, we collected 103 active compounds and 527 related targets of JHQ and 1187 targets related to WD-associated liver fibrosis from multiple databases. Next, 113 overlapping genes (OGEs) were obtained. Then, we built a protein-protein interaction (PPI) network with Cytoscape 3.7.2 software and performed the Gene Ontology (GO) term and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway enrichment analyses with GENE DENOVO online sites. Furthermore, module analysis was performed, and the core target genes in the JHQ treatment of WD-associated liver fibrosis were obtained. Pathway and functional enrichment analyses, molecular docking studies, molecular dynamic (MD) simulation, and Western blot (WB) were then performed. The results indicated that 8 key active compounds including quercetin, luteolin, and obacunone in JHQ might affect the 6 core proteins including CXCL8, MAPK1, and AKT1 and 107 related signaling pathways including EGFR tyrosine kinase inhibitor resistance, Kaposi sarcoma-associated herpesvirus infection, and human cytomegalovirus infection signaling pathways to exhibit curative effects on WD-associated liver fibrosis. Mechanistically, JHQ might inhibit liver inflammatory processes and vascular hyperplasia, regulate the cell cycle, and suppress both the activation and proliferation of hepatic stellate cells (HSCs). This study provides novel insights for researchers to systematically explore the mechanism of JHQ in treating WD-associated liver fibrosis.
Collapse
|
9
|
Tang YX, Liu M, Liu L, Zhen BR, Wang TT, Li N, Lv N, Zhu Z, Sun G, Wang X, Chen S. Lipophilic Constituents in Salvia miltiorrhiza Inhibit Activation of the Hepatic Stellate Cells by Suppressing the JAK1/STAT3 Signaling Pathway: A Network Pharmacology Study and Experimental Validation. Front Pharmacol 2022; 13:770344. [PMID: 35517817 PMCID: PMC9065469 DOI: 10.3389/fphar.2022.770344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Liver fibrosis is currently a global health challenge with no approved therapy, with the activation of hepatic stellate cells being a principal factor. Lipophilic constituents in Salvia miltiorrhiza (LS) have been reported to improve liver function and reduce the indicators of liver fibrosis for patients with chronic hepatitis B induced hepatic fibrosis. However, the pharmacological mechanisms of LS on liver fibrosis have not been clarified. In this study, 71 active compounds, 342 potential target proteins and 22 signaling pathways of LS were identified through a network pharmacology strategy. Through text mining and data analysis, the JAK1/STAT3 signaling pathway was representatively selected for further experimental validation. We firstly confirmed the protective effect of LS on liver fibrosis in vivo by animal experiments. Hepatic stellate cells, which proliferated and displayed a fibroblast-like morphology similar to activated primary stellate cells, were applied to evaluate its underlying mechanisms. The results showed that LS could inhibit the cell viability, promote the cell apoptosis, decrease the expression of liver fibrosis markers, and downregulate the JAK1/STAT3 signaling pathway. These results demonstrated that LS could exert anti-liver-fibrosis effects by inhibiting the activation of HSCs and regulating the JAK1/STAT3 signaling pathway, which is expected to benefit its clinical application.
Collapse
Affiliation(s)
- Ya-Xin Tang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
- School of Medicine, Shanghai University, Shanghai, China
- GongQing Institute of Science and Technology, Gong Qing, China
| | - Mingming Liu
- Lianyungang Second People’s Hospital, Lianyungang, China
| | - Long Liu
- GongQing Institute of Science and Technology, Gong Qing, China
| | - Bo-Rui Zhen
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Tian-Tian Wang
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Na Li
- School of Medicine, Shanghai University, Shanghai, China
| | - Nanning Lv
- Lianyungang Second People’s Hospital, Lianyungang, China
| | - Zhenyu Zhu
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Guoquan Sun
- Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Guoquan Sun, ; Xiaobo Wang, ; Si Chen,
| | - Xiaobo Wang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
- The 967th Hospital of the Chinese People’s Liberation Army Joint Logistics Support Force, Dalian, China
- *Correspondence: Guoquan Sun, ; Xiaobo Wang, ; Si Chen,
| | - Si Chen
- School of Medicine, Shanghai University, Shanghai, China
- *Correspondence: Guoquan Sun, ; Xiaobo Wang, ; Si Chen,
| |
Collapse
|
10
|
Di Paola R, Modafferi S, Siracusa R, Cordaro M, D’Amico R, Ontario ML, Interdonato L, Salinaro AT, Fusco R, Impellizzeri D, Calabrese V, Cuzzocrea S. S-Acetyl-Glutathione Attenuates Carbon Tetrachloride-Induced Liver Injury by Modulating Oxidative Imbalance and Inflammation. Int J Mol Sci 2022; 23:ijms23084429. [PMID: 35457246 PMCID: PMC9024626 DOI: 10.3390/ijms23084429] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 01/14/2023] Open
Abstract
Liver fibrosis, depending on the stage of the disease, could lead to organ dysfunction and cirrhosis, and no effective treatment is actually available. Emergent proof supports a link between oxidative stress, liver fibrogenesis and mitochondrial dysfunction as molecular bases of the pathology. A valid approach to protect against the disease would be to replenish the endogenous antioxidants; thus, we investigated the protective mechanisms of the S-acetyl-glutathione (SAG), a glutathione (GSH) prodrug. Preliminary in vitro analyses were conducted on primary hepatic cells. SAG pre-treatment significantly protected against cytotoxicity induced by CCl4. Additionally, CCl4 induced a marked increase in AST and ALT levels, whereas SAG significantly reduced these levels, reaching values found in the control group. For the in vivo analyses, mice were administered twice a week with eight consecutive intraperitoneal injections of 1 mL/kg CCl4 (diluted at 1:10 in olive oil) to induce oxidative imbalance and liver inflammation. SAG (30 mg/kg) was administered orally for 8 weeks. SAG significantly restored SOD activity, GSH levels and GPx activity, while it strongly reduced GSSG levels, lipid peroxidation and H2O2 and ROS levels in the liver. Additionally, CCl4 induced a decrease in anti-oxidants, including Nrf2, HO-1 and NQO-1, which were restored by treatment with SAG. The increased oxidative stress characteristic on liver disfunction causes the impairment of mitophagy and accumulation of dysfunctional and damaged mitochondria. Our results showed the protective effect of SAG administration in restoring mitophagy, as shown by the increased PINK1 and Parkin expressions in livers exposed to CCl4 intoxication. Thus, the SAG administration showed anti-inflammatory effects decreasing pro-inflammatory cytokines TNF-α, IL-6, MCP-1 and IL-1β in both serum and liver, and suppressing the TLR4/NFkB pathway. SAG attenuated reduced fibrosis, collagen deposition, hepatocellular damage and organ dysfunction. In conclusion, our results suggest that SAG administration protects the liver from CCl4 intoxication by restoring the oxidative balance, ameliorating the impairment of mitophagy and leading to reduced inflammation.
Collapse
Affiliation(s)
- Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy;
| | - Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy; (S.M.); (M.L.O.); (V.C.)
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.S.); (R.D.); (L.I.); (D.I.); (S.C.)
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.S.); (R.D.); (L.I.); (D.I.); (S.C.)
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy; (S.M.); (M.L.O.); (V.C.)
| | - Livia Interdonato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.S.); (R.D.); (L.I.); (D.I.); (S.C.)
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy; (S.M.); (M.L.O.); (V.C.)
- Correspondence: (A.T.S.); (R.F.)
| | - Roberta Fusco
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
- Correspondence: (A.T.S.); (R.F.)
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.S.); (R.D.); (L.I.); (D.I.); (S.C.)
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy; (S.M.); (M.L.O.); (V.C.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.S.); (R.D.); (L.I.); (D.I.); (S.C.)
| |
Collapse
|
11
|
Dahiya M, Dureja H. Sorafenib for hepatocellular carcinoma: potential molecular targets and resistance mechanisms. J Chemother 2021; 34:286-301. [PMID: 34291704 DOI: 10.1080/1120009x.2021.1955202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most widespread typical therapy-resistant, unresectable type of malignant solid tumour with a high death rate constituting huge medical concern. Sorafenib is a small molecule oral multi-target kinase potent inhibitor that acts by suppressing/blocking the multiplication of the tumour cells, angiogenesis, and encouraging apoptosis of the tumour cells. Though, the precise mechanism of tumour cell death induction by sorafenib is yet under exploration. Furthermore, genetic heterogeneity plays a critical role in developing sorafenib resistance, which leads the way to identify the need for predictive biomarkers responsible for drug resistance. Therefore, it is essential to find out the fundamental resistance mechanisms to expand therapeutic plans. The authors summarize the molecular concepts of resistance, progression, potential molecular targets, HCC management therapies, and discussion on the advancements expected in the coming future, inclusive of biomarker-driven treatment strategies, which may provide the prospects to design innovative therapeutically targeted strategies for the HCC treatment and the clinical implementation of emerging targeted agents.
Collapse
Affiliation(s)
- Mandeep Dahiya
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
12
|
Hassan S, Zil-e-Rubab, Shah H, Shawana S. Dysregulated epidermal growth factor and tumor growth factor-beta receptor signaling through GFAP-ACTA2 protein interaction in liver fibrosis. Pak J Med Sci 2020; 36:782-787. [PMID: 32494274 PMCID: PMC7260937 DOI: 10.12669/pjms.36.4.1845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVE Viral hepatitis is associated with high morbidity and mortality. Identification of biological pathways involved in hepatic fibrosis resulting from chronic hepatitis C are essential for better management of patients. Constructing the HCV-human protein interaction network through bioinformatics may enable us to discover diagnostic biological pathways. We investigated to identify dysregulated pathways and gene enrichment based on actin alpha 2 (ACTA2) and glial fibrillar acidic protein (GFAP) interaction network analysis in hepatic fibrosis. METHODS This is an in-silico study conducted at Ziauddin University from March,2019 to September 2019. Enrichment and protein-protein interaction (PPI) network analysis of the identified proteins: GFAP and ACTA2 along with their mapped gene data sets was performed using FunRich version 3.1.3. RESULTS Biological pathway grouping showed enrichment of proteins (85.7%) in signalling pathway by epidermal growth factor receptor (EGFR) and Tumor growth factor (TGF)-beta Receptor followed by signaling by PDGF, FGFR and NGF (71.4%) (p < 0.001). SRC, PRKACA, PRKCA and PRKCD were enriched in both EGFR and TGF-beta Signalling pathways. CONCLUSION EGFR and TGF-beta signalling pathways were enriched in liver fibrosis. SRC, PRKACA, PRKCA and PRKCD were enriched and differentially expressed in both EGFR and TGF-beta signalling pathways.
Collapse
Affiliation(s)
- Sobia Hassan
- Dr. Sobia Hassan, MBBS, M. Phil. Altamash Institute of Dental Medicine, Karachi, Pakistan
| | - Zil-e-Rubab
- Dr. Zil-e-Rubab, MBBS, M. Phil, PhD. Ziauddin University Clifton Campus, Karachi, Pakistan
| | - Hussain Shah
- Mr. Hussain Shah, Department of Chemical & Biomolecular Engineering, University of Melbourne, Australia
| | - Summayya Shawana
- Dr. Summayya Shawana, MBBs, M. Phil. Bahria University Medical & Dental College, Karachi, Pakistan
| |
Collapse
|
13
|
Zehender A, Huang J, Györfi AH, Matei AE, Trinh-Minh T, Xu X, Li YN, Chen CW, Lin J, Dees C, Beyer C, Gelse K, Zhang ZY, Bergmann C, Ramming A, Birchmeier W, Distler O, Schett G, Distler JHW. The tyrosine phosphatase SHP2 controls TGFβ-induced STAT3 signaling to regulate fibroblast activation and fibrosis. Nat Commun 2018; 9:3259. [PMID: 30108215 PMCID: PMC6092362 DOI: 10.1038/s41467-018-05768-3] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 07/25/2018] [Indexed: 12/31/2022] Open
Abstract
Uncontrolled activation of TGFβ signaling is a common denominator of fibrotic tissue remodeling. Here we characterize the tyrosine phosphatase SHP2 as a molecular checkpoint for TGFβ-induced JAK2/STAT3 signaling and as a potential target for the treatment of fibrosis. TGFβ stimulates the phosphatase activity of SHP2, although this effect is in part counterbalanced by inhibitory effects on SHP2 expression. Stimulation with TGFβ promotes recruitment of SHP2 to JAK2 in fibroblasts with subsequent dephosphorylation of JAK2 at Y570 and activation of STAT3. The effects of SHP2 on STAT3 activation translate into major regulatory effects of SHP2 on fibroblast activation and tissue fibrosis. Genetic or pharmacologic inactivation of SHP2 promotes accumulation of JAK2 phosphorylated at Y570, reduces JAK2/STAT3 signaling, inhibits TGFβ-induced fibroblast activation and ameliorates dermal and pulmonary fibrosis. Given the availability of potent SHP2 inhibitors, SHP2 might thus be a potential target for the treatment of fibrosis.
Collapse
Affiliation(s)
- Ariella Zehender
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Jingang Huang
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Ulmenweg 18, 91054, Erlangen, Germany.
| | - Andrea-Hermina Györfi
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Alexandru-Emil Matei
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Thuong Trinh-Minh
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Xiaohan Xu
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Yi-Nan Li
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Chih-Wei Chen
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Jianping Lin
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 Stadium Mall Drive Indiana, West Lafayette, 47907, USA
| | - Clara Dees
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Christian Beyer
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Kolja Gelse
- Department of Trauma Surgery, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Krankenhausstraße 12, 91054, Erlangen, Germany
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 Stadium Mall Drive Indiana, West Lafayette, 47907, USA
| | - Christina Bergmann
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Andreas Ramming
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Walter Birchmeier
- Max Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13092, Berlin, Germany
| | - Oliver Distler
- Department of Rheumatology, University Hospital Zurich, Gloriastrasse 25, 8091, Zurich, Switzerland
| | - Georg Schett
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Jörg H W Distler
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Ulmenweg 18, 91054, Erlangen, Germany.
| |
Collapse
|
14
|
Small molecule targeting of PTPs in cancer. Int J Biochem Cell Biol 2017; 96:171-181. [PMID: 28943273 DOI: 10.1016/j.biocel.2017.09.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 01/28/2023]
Abstract
Protein tyrosine phosphatases (PTPs) undeniably have a central role in the development and progression of human cancers. Historically, however, PTPs have not been viewed as privileged drug targets, and progress on identifying potent, selective, and cell-active small molecule PTP inhibitors has suffered accordingly. This situation is rapidly changing, however, due to biochemical advances in the study of PTPs and recent small molecule screening campaigns, which have identified potent and mechanistically diverse lead structures. These compounds are facilitating the exploration of the fundamental cellular processes controlled by PTPs in cancers, and could form the inflection point for new therapeutic paradigms for the treatment of a range of cancers. Herein, we review recent advances in the discovery and biological annotation of cancer-relevant small molecule PTP inhibitors.
Collapse
|