1
|
Yang K, Zhu Y, Chen J, Zhou W. Interleukin-8 in HepG2 cells: Enhancing antiviral proteins in uninfected cells but promoting HBV replication in infected cells. Biochem Biophys Res Commun 2024; 734:150455. [PMID: 39083972 DOI: 10.1016/j.bbrc.2024.150455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
In vitro studies have revealed that hepatitis B virus (HBV) infection upregulates interleukin-8 (IL-8), which enhances HBV replication. Clinically, elevated IL-8 levels in chronic HBV patients are associated with diminished therapeutic efficacy of interferon-α (IFN-α). Our study advances these findings by demonstrating that IL-8 promotes the expression of myxovirus resistance A (MxA) and protein kinase R (PKR) in HepG2 cells via the PI3K-AKT pathway. However, HBV-infected cells fail to exhibit IL-8-induced upregulation of MxA and PKR, likely due to HBV's upregulation of PP2A that inhibits the PI3K-AKT pathway. Notably, IL-8 targets the C/EBPα transcription factor, increasing HBV promoter activity and viral replication, which in turn partially suppresses the expression of MxA and PKR induced by IFN-α. Our findings uncover a mechanism by which HBV may evade immune responses, suggesting potential new strategies for immunotherapy against chronic HBV infection.
Collapse
Affiliation(s)
- Kai Yang
- School of Medical Technology, Anhui Medical College, Hefei, 230601, China.
| | - Yukai Zhu
- School of Medical Technology, Anhui Medical College, Hefei, 230601, China
| | - Jin Chen
- School of Medical Technology, Anhui Medical College, Hefei, 230601, China
| | - Weifeng Zhou
- School of Clinical Medicine, Anhui Medical College, Hefei, 230601, China
| |
Collapse
|
2
|
Guan G, Zhang T, Ning J, Tao C, Gao N, Zeng Z, Guo H, Chen CC, Yang J, Zhang J, Gu W, Yang E, Liu R, Guo X, Ren S, Wang L, Wei G, Zheng S, Gao Z, Chen X, Lu F, Chen X. Higher TP53BP2 expression is associated with HBsAg loss in peginterferon-α-treated patients with chronic hepatitis B. J Hepatol 2024; 80:41-52. [PMID: 37858684 DOI: 10.1016/j.jhep.2023.09.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 08/15/2023] [Accepted: 09/26/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND & AIMS HBsAg loss is only observed in a small proportion of patients with chronic hepatitis B (CHB) who undergo interferon treatment. Investigating the host factors crucial for functional cure of CHB can aid in identifying individuals who would benefit from peginterferon-α (Peg-IFNα) therapy. METHODS We conducted a genome-wide association study (GWAS) by enrolling 48 patients with CHB who achieved HBsAg loss after Peg-IFNα treatment and 47 patients who didn't. In the validation stage, we included 224 patients, of whom 90 had achieved HBsAg loss, to validate the identified significant single nucleotide polymorphisms. To verify the functional involvement of the candidate genes identified, we performed a series of in vitro and in vivo experiments. RESULTS GWAS results indicated a significant association between the rs7519753 C allele and serum HBsAg loss in patients with CHB after Peg-IFNα treatment (p = 4.85 × 10-8, odds ratio = 14.47). This association was also observed in two independent validation cohorts. Expression quantitative trait locus analysis revealed higher hepatic TP53BP2 expression in individuals carrying the rs7519753 C allele (p = 2.90 × 10-6). RNA-sequencing of liver biopsies from patients with CHB after Peg-IFNα treatment revealed that hepatic TP53BP2 levels were significantly higher in the HBsAg loss group compared to the HBsAg persistence group (p = 0.035). In vitro and in vivo experiments demonstrated that loss of TP53BP2 decreased interferon-stimulated gene levels and the anti-HBV effect of IFN-α. Mechanistically, TP53BP2 was found to downregulate SOCS2, thereby facilitating JAK/STAT signaling. CONCLUSION The rs7519753 C allele is associated with elevated hepatic TP53BP2 expression and an increased probability of serum HBsAg loss post-Peg-IFNα treatment in patients with CHB. TP53BP2 enhances the response of the hepatocyte to IFN-α by suppressing SOCS2 expression. IMPACT AND IMPLICATIONS Chronic hepatitis B (CHB) remains a global public health issue. Although current antiviral therapies are more effective in halting disease progression, only a few patients achieve functional cure for hepatitis B with HBsAg loss, highlighting the urgent need for a cure for CHB. This study revealed that the rs7519753 C allele, which is associated with high expression of hepatic TP53BP2, significantly increases the likelihood of serum HBsAg loss in patients with CHB undergoing Peg-IFNα treatment. This finding not only provides a promising predictor for HBsAg loss but identifies a potential therapeutic target for Peg-IFNα treatment. We believe our results are of great interest to a wide range of stakeholders based on their potential clinical implications.
Collapse
Affiliation(s)
- Guiwen Guan
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Ting Zhang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Jing Ning
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Changyu Tao
- Department of Human Anatomy and Histology and Embryology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Na Gao
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Zhenzhen Zeng
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Huili Guo
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Chia-Chen Chen
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing 100191, China; National Heart and Lung Institute Faculty of Medicine (NHLI), Imperial College London, Hammersmith campus, W12 0NN, London, UK
| | - Jing Yang
- School of Medicine, Shihezi University, Shihezi 832002, Xinjiang, China
| | - Jing Zhang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Weilin Gu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Ence Yang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Ren Liu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Xiaosen Guo
- Forensics Genomics International (FGI), BGI-Shenzhen, Shenzhen 518083, China
| | - Shan Ren
- First Department of Liver Disease Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Lin Wang
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Guochao Wei
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Sujun Zheng
- First Department of Liver Disease Center, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Zhiliang Gao
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, China; Guangdong Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China; Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong 510080, China.
| | - Xinyue Chen
- First Department of Liver Disease Center, Beijing Youan Hospital, Capital Medical University, Beijing, China.
| | - Fengmin Lu
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University Hepatology Institute, Peking University People's Hospital, Beijing 100044, China.
| | - Xiangmei Chen
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
3
|
Zhang X, Xia H, Wang Q, Cui M, Zhang C, Wang Q, Liu X, Chen K. SOCSs: important regulators of host cell susceptibility or resistance to viral infection. Z NATURFORSCH C 2023; 78:327-335. [PMID: 37233326 DOI: 10.1515/znc-2023-0024] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023]
Abstract
Suppressors of cytokine signaling (SOCSs) are implicated in viral infection and host antiviral innate immune response. Recent studies demonstrate that viruses can hijack SOCSs to inhibit Janus kinase-signal transducers and activators of transcription (JAK-STAT) pathway, block the production and signaling of interferons (IFNs). At the same time, viruses can hijack SOCS to regulate non-IFN factors to evade antiviral response. Host cells can also regulate SOCSs to resist viral infection. The competition of the control of SOCSs may largely determine the fate of viral infection and the susceptibility or resistance of host cells, which is of significance for development of novel antiviral therapies targeting SOCSs. Accumulating evidence reveal that the regulation and function of SOCSs by viruses and host cells are very complicated, which is determined by characteristics of both viruses and host cell types. This report presents a systematic review to evaluate the roles of SOCSs in viral infection and host antiviral responses. One of messages worth attention is that all eight SOCS members should be investigated to accurately characterize their roles and relative contribution in each viral infection, which may help identify the most effective SOCS to be used in "individualized" antiviral therapy.
Collapse
Affiliation(s)
- Xin Zhang
- Jiangsu University, Zhenjiang, 212013, China
| | - Hengchuan Xia
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Qian Wang
- Jiangsu University, Zhenjiang, China
| | - Miao Cui
- Jiangsu University, Zhenjiang, Jiangsu, China
| | - Cong Zhang
- Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qiang Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | | | - Keping Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
4
|
Yang G, Yue Z, Pan P, Li Y. In Memory of the Virologist Jianguo Wu, 1957-2022. Viruses 2023; 15:1754. [PMID: 37632095 PMCID: PMC10457867 DOI: 10.3390/v15081754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
It is with deep sorrow that we mourn the passing of the virologist Professor Jianguo Wu [...].
Collapse
Affiliation(s)
- Ge Yang
- Foshan Institute of Medical Microbiology, Foshan 528315, China
| | - Zhaoyang Yue
- Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
- Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
| | - Pan Pan
- Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
- The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Yongkui Li
- Foshan Institute of Medical Microbiology, Foshan 528315, China
- Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
- Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
| |
Collapse
|
5
|
Ying L, Pan Z, Lin-Yi Z, Wan-Er H, De-He W, Zhen-Jie Z, Xi C, Yi-Qun W, Tian-Bai S, Wei Z. Treatment of Liver Fibrosis after Hepatitis B with TCM Combined with NAs Evaluated by Noninvasive Diagnostic Methods: A Retrospective Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:5711151. [PMID: 37143511 PMCID: PMC10154089 DOI: 10.1155/2023/5711151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 05/06/2023]
Abstract
Objective. Chronic hepatitis B liver fibrosis is an important intermediate link in the development of liver cirrhosis. A retrospective cohort study was conducted in Longhua Hospital affiliated to the Shanghai University of Traditional Chinese Medicine in order to prove whether integrated traditional Chinese and Western medicine could improve the incidence of CHB complications and clinical prognosis. There are 130 patients with hepatitis B liver fibrosis (being treated from 2011-2021) included in the study, and the patients were divided into 64 TCM users (NAs combined with TCM) and 66 TCM nonusers (NAs antiviral therapy). The serum noninvasive diagnostic model (APRI, FIB-4) and LSM value were used to classify the stages of fibrosis. The results showed that the LSM value was decreased significantly in TCM users compared with TCM nonusers (40.63% versus 28.79%). Indicators of FIB-4 and APRI of TCM users have improved significantly compared with that of TCM nonusers (32.81% versus 10.61% and 35.94% versus 24.24%). The AST, TBIL, and HBsAg levels in TCM users were lower than those in TCM nonusers, and the HBsAg level was inversely correlated with the CD3+, CD4+, and CD8+ in TCM users. The PLT and spleen thickness of TCM users also were improved considerably. The incidence rate of end-point events (decompensated cirrhosis/liver cancer) in TCM nonusers was higher than that of TCM users (16.67% versus 1.56%). The long course of the disease and a family history of hepatitis B were the risk factors for disease progression, and long-term oral administration of TCM was the protective factor. As a result, the serum noninvasive fibrosis index and imaging parameters in TCM users were lower than those of TCM nonusers. Patients in the treatment of NAs combined with TCM had better prognoses such as a lower HBsAg level, a more stable lymphocyte function, and a lower incidence of end-point events. The present findings suggest the effect of TCM combined with NAs in the treatment of chronic hepatitis B liver fibrosis is better than that of single drug treatment.
Collapse
Affiliation(s)
- Li Ying
- Department of Hepatology, Longhua Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhou Pan
- Department of Hepatology, Longhua Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhu Lin-Yi
- Changhai Community Health Service Center, Yangpu District of Shanghai, Shanghai, China
| | - Hong Wan-Er
- Department of Hepatology, Longhua Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wang De-He
- Department of Hepatology, Longhua Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhang Zhen-Jie
- Department of Hepatology, Longhua Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chu Xi
- Department of Hepatology, Longhua Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wang Yi-Qun
- Department of Hepatology, Longhua Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shen Tian-Bai
- Department of Hepatology, Longhua Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhang Wei
- Department of Hepatology, Longhua Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
6
|
Padarath K, Deroubaix A, Kramvis A. The Complex Role of HBeAg and Its Precursors in the Pathway to Hepatocellular Carcinoma. Viruses 2023; 15:v15040857. [PMID: 37112837 PMCID: PMC10144019 DOI: 10.3390/v15040857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Hepatitis B virus (HBV) is one of the seven known human oncogenic viruses and has adapted to coexist with a single host for prolonged periods, requiring continuous manipulation of immunity and cell fate decisions. The persistence of HBV infection is associated with the pathogenesis of hepatocellular carcinoma, and various HBV proteins have been implicated in promoting this persistence. The precursor of hepatitis e antigen (HBeAg), is translated from the precore/core region and is post-translationally modified to yield HBeAg, which is secreted in the serum. HBeAg is a non-particulate protein of HBV and can act as both a tolerogen and an immunogen. HBeAg can protect hepatocytes from apoptosis by interfering with host signalling pathways and acting as a decoy to the immune response. By evading the immune response and interfering with apoptosis, HBeAg has the potential to contribute to the hepatocarcinogenic potential of HBV. In particular, this review summarises the various signalling pathways through which HBeAg and its precursors can promote hepatocarcinogenesis via the various hallmarks of cancer.
Collapse
|
7
|
IFIT3 Is Increased in Serum from Patients with Chronic Hepatitis B Virus (HBV) Infection and Promotes the Anti-HBV Effect of Interferon Alpha via JAK-STAT2 In Vitro. Microbiol Spectr 2022; 10:e0155722. [PMID: 36314949 PMCID: PMC9769971 DOI: 10.1128/spectrum.01557-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Increasing evidence indicates that interferon alpha (IFN-α) therapy is an effective treatment option for a subgroup of patients with chronic hepatitis B virus (HBV) infection. It has been confirmed that interferon-induced protein with tetratricopeptide repeats 3 (IFIT3), a member of the interferon-stimulated genes (ISGs), could inhibit the replication of various viruses. However, its effect on HBV replication is unclear. The present study sought to explore the role and mechanism of IFIT3 in IFN-α antiviral activities against HBV. IFIT3 mRNA levels in the peripheral blood of 108 treatment-naive patients and 70 healthy controls were analyzed first. The effect of IFIT3 on the Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway under the dual intervention of IFN-α and HBV was also explored in vitro. Treatment-naive individuals exhibited elevated levels of IFIT3 mRNA compared to the controls (P < 0.0001). Mechanistically, the knockdown of IFIT3 inhibited the phosphorylation of signal transducer and activator of transcription 2 (STAT2), whereas the overexpression of IFIT3 produced the opposite effect in vitro. Meanwhile, the overexpression of IFIT3 enhanced the expression of IFN-α-triggered ISGs, including myxovirus resistance A (MxA), 2'-5'-oligoadenylate synthetase 1 (OAS1), and double-stranded RNA-activated protein kinase (PKR), while a weaker induction of IFN-α-triggered ISGs was observed in ruxolitinib-treated cells. After decreasing IFIT3 expression by validated small hairpin RNAs (shRNAs), the levels of hepatitis B surface antigen (HBsAg), hepatitis B e antigen (HBeAg), and HBV DNA secreted by HepG2 cells transiently transfected with the pHBV1.2 plasmid were increased. Our findings suggest that IFIT3 works in a STAT2-dependent manner to promote the antiviral effect of IFN-α through the JAK-STAT pathway in HBV infection in both human hepatocytes and hepatocarcinoma cells. IMPORTANCE Our study contributes new insights into the understanding of the functions and roles of interferon-induced protein with tetratricopeptide repeats 3 (IFIT3), which is one of the interferon-stimulated genes induced by hepatitis B virus infection in human hepatocytes and hepatocarcinoma cells, and may help to identify targeted genes promoting the efficacy of interferon alpha.
Collapse
|
8
|
Oncolytic Vaccinia Virus Harboring Aphrocallistes vastus Lectin Inhibits the Growth of Hepatocellular Carcinoma Cells. Mar Drugs 2022; 20:md20060378. [PMID: 35736181 PMCID: PMC9230886 DOI: 10.3390/md20060378] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/29/2022] [Accepted: 06/01/2022] [Indexed: 02/04/2023] Open
Abstract
Oncolytic vaccinia virus has been developed as a novel cancer therapeutic drug in recent years. Our previous studies demonstrated that the antitumor effect of oncolytic vaccina virus harboring Aphrocallistes vastus lectin (oncoVV-AVL) was significantly enhanced in several cancer cells. In the present study, we investigated the underlying mechanisms of AVL that affect virus replication and promote the antitumor efficacy of oncolytic virus in hepatocellular carcinoma (HCC). Our results showed that oncoVV-AVL markedly exhibited antitumor effects in both hepatocellular carcinoma cell lines and a xenograft mouse model. Further investigation illustrated that oncoVV-AVL could activate tumor immunity by upregulating the expression of type I interferons and enhance virus replication by inhibiting ISRE mediated viral defense response. In addition, we inferred that AVL promoted the ability of virus replication by regulating the PI3K/Akt, MAPK/ERK, and Hippo/MST pathways through cross-talk Raf-1, as well as metabolism-related pathways. These findings provide a novel perspective for the exploitation of marine lectins in oncolytic therapy.
Collapse
|
9
|
You H, Qin S, Zhang F, Hu W, Li X, Liu D, Kong F, Pan X, Zheng K, Tang R. Regulation of Pattern-Recognition Receptor Signaling by HBX During Hepatitis B Virus Infection. Front Immunol 2022; 13:829923. [PMID: 35251017 PMCID: PMC8891514 DOI: 10.3389/fimmu.2022.829923] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/24/2022] [Indexed: 12/16/2022] Open
Abstract
As a small DNA virus, hepatitis B virus (HBV) plays a pivotal role in the development of various liver diseases, including hepatitis, cirrhosis, and liver cancer. Among the molecules encoded by this virus, the HBV X protein (HBX) is a viral transactivator that plays a vital role in HBV replication and virus-associated diseases. Accumulating evidence so far indicates that pattern recognition receptors (PRRs) are at the front-line of the host defense responses to restrict the virus by inducing the expression of interferons and various inflammatory factors. However, depending on HBX, the virus can control PRR signaling by modulating the expression and activity of essential molecules involved in the toll-like receptor (TLR), retinoic acid inducible gene I (RIG-I)-like receptor (RLR), and NOD-like receptor (NLR) signaling pathways, to not only facilitate HBV replication, but also promote the development of viral diseases. In this review, we provide an overview of the mechanisms that are linked to the regulation of PRR signaling mediated by HBX to inhibit innate immunity, regulation of viral propagation, virus-induced inflammation, and hepatocarcinogenesis. Given the importance of PRRs in the control of HBV replication, we propose that a comprehensive understanding of the modulation of cellular factors involved in PRR signaling induced by the viral protein may open new avenues for the treatment of HBV infection.
Collapse
Affiliation(s)
- Hongjuan You
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Suping Qin
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Fulong Zhang
- Imaging Department, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Wei Hu
- Nanjing Drum Tower Hospital Group Suqian Hospital, The Affiliate Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - Xiaocui Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Dongsheng Liu
- Nanjing Drum Tower Hospital Group Suqian Hospital, The Affiliate Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - Fanyun Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Xiucheng Pan
- Department of Infectious Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
10
|
Tsai KN, Ou JHJ. Hepatitis B virus e antigen and viral persistence. Curr Opin Virol 2021; 51:158-163. [PMID: 34717215 PMCID: PMC8643334 DOI: 10.1016/j.coviro.2021.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 08/27/2021] [Accepted: 10/07/2021] [Indexed: 02/08/2023]
Abstract
Hepatitis B virus (HBV) e antigen (HBeAg) was discovered in the sera of HBV patients nearly 50 years ago. It is not essential for HBV to infect or replicate in hepatocytes. Earlier clinical studies suggested that this antigen might play an important role for HBV to establish persistence in babies after its mother-to-child transmission. Subsequent clinical studies also suggested that HBeAg might have immunomodulatory activities. In recent years, a large body of information on how HBeAg might modulate host immunity was published. In this review, we summarize recent research progresses on the immunomodulatory activities of HBeAg and discuss how these activities of HBeAg may promote HBV persistence.
Collapse
Affiliation(s)
- Kuen-Nan Tsai
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, 2011 Zonal Avenue, HMR-401, Los Angeles, CA, 90033, USA
| | - Jing-Hsiung James Ou
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, 2011 Zonal Avenue, HMR-401, Los Angeles, CA, 90033, USA.
| |
Collapse
|
11
|
Wang SJ, Chen ZM, Wei M, Liu JQ, Li ZL, Shi TS, Nian S, Fu R, Wu YT, Zhang YL, Wang YB, Zhang TY, Zhang J, Xiong JH, Tong SP, Ge SX, Yuan Q, Xia NS. Specific determination of hepatitis B e antigen by antibodies targeting precore unique epitope facilitates clinical diagnosis and drug evaluation against hepatitis B virus infection. Emerg Microbes Infect 2021; 10:37-50. [PMID: 33296295 PMCID: PMC7832009 DOI: 10.1080/22221751.2020.1862631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatitis B e antigen (HBeAg) is a widely used marker both for chronic hepatitis B (CHB) clinical management and HBV-related basic research. However, due to its high amino acid sequence homology to hepatitis B core antigen (HBcAg), most of available anti-HBe antibodies are cross-reactive with HBcAg resulting in high interference against accurate measurement of the status and level of HBeAg. In the study, we generated several monoclonal antibodies (mAbs) targeting various epitopes on HBeAg and HBcAg. Among these mAbs, a novel mAb 16D9, which recognizes the SKLCLG (aa -10 to -5) motif on the N-terminal residues of HBeAg that is absent on HBcAg, exhibited excellent detection sensitivity and specificity in pairing with another 14A7 mAb targeting the HBeAg C-terminus (STLPETTVVRRRGR, aa141 to 154). Based on these two mAbs, we developed a novel chemiluminescent HBeAg immunoassay (NTR-HBeAg) which could detect HBeAg derived from various HBV genotypes. In contrast to widely used commercial assays, the NTR-HBeAg completely eliminated the cross-reactivity with secreted HBcAg from precore mutant (G1896A) virus in either cell culture or patient sera. The improved specificity of the NTR-HBeAg assay enables its applicability in cccDNA-targeting drug screening in cell culture systems and also provides an accurate tool for clinical HBeAg detection.
Collapse
Affiliation(s)
- Shao-Juan Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen, People's Republic of China
| | - Zi-Min Chen
- Xiamen Innodx Biotech Co., Ltd., Xiamen, People's Republic of China
| | - Min Wei
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen, People's Republic of China
| | - Jia-Qi Liu
- Xiamen Innodx Biotech Co., Ltd., Xiamen, People's Republic of China
| | - Zong-Lin Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen, People's Republic of China
| | - Tian-Shu Shi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen, People's Republic of China
| | - Sheng Nian
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen, People's Republic of China
| | - Rao Fu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen, People's Republic of China
| | - Yang-Tao Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen, People's Republic of China
| | - Ya-Li Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen, People's Republic of China
| | - Ying-Bin Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen, People's Republic of China
| | - Tian-Ying Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen, People's Republic of China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen, People's Republic of China
| | - Jun-Hui Xiong
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen, People's Republic of China.,Xiamen Innodx Biotech Co., Ltd., Xiamen, People's Republic of China
| | - Shu-Ping Tong
- Liver Research Center, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Sheng-Xiang Ge
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen, People's Republic of China
| | - Quan Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen, People's Republic of China
| | - Ning-Shao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, People's Republic of China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Science, Xiamen University, Xiamen, People's Republic of China
| |
Collapse
|
12
|
MafF Is an Antiviral Host Factor That Suppresses Transcription from Hepatitis B Virus Core Promoter. J Virol 2021; 95:e0076721. [PMID: 33980595 DOI: 10.1128/jvi.00767-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Hepatitis B virus (HBV) is a stealth virus that exhibits only minimal induction of the interferon system, which is required for both innate and adaptive immune responses. However, 90% of acutely infected adults can clear the virus, suggesting the presence of additional mechanisms that facilitate viral clearance. Here, we report that Maf bZIP transcription factor F (MafF) promotes host defense against infection with HBV. Using a small interfering RNA (siRNA) library and an HBV/NanoLuc (NL) reporter virus, we screened to identify anti-HBV host factors. Our data showed that silencing of MafF led to a 6-fold increase in luciferase activity after HBV/NL infection. Overexpression of MafF reduced HBV core promoter transcriptional activity, which was relieved upon mutation of the putative MafF binding region. Loss of MafF expression through CRISPR/Cas9 editing (in HepG2-hNTCP-C4 cells) or siRNA silencing (in primary hepatocytes [PXB cells]) induced HBV core RNA and HBV pregenomic RNA (pgRNA) levels, respectively, after HBV infection. MafF physically binds to the HBV core promoter and competitively inhibits HNF-4α binding to an overlapping sequence in the HBV enhancer II sequence (EnhII), as seen by chromatin immunoprecipitation (ChIP) analysis. MafF expression was induced by interleukin-1β (IL-1β) or tumor necrosis factor alpha (TNF-α) treatment in both HepG2 and PXB cells, in an NF-κB-dependent manner. Consistently, MafF expression levels were significantly enhanced and positively correlated with the levels of these cytokines in patients with chronic HBV infection, especially in the immune clearance phase. IMPORTANCE HBV is a leading cause of chronic liver diseases, infecting about 250 million people worldwide. HBV has developed strategies to escape interferon-dependent innate immune responses. Therefore, the identification of other anti-HBV mechanisms is important for understanding HBV pathogenesis and developing anti-HBV strategies. MafF was shown to suppress transcription from the HBV core promoter, leading to significant suppression of the HBV life cycle. Furthermore, MafF expression was induced in chronic HBV patients and in primary human hepatocytes (PXB cells). This induction correlated with the levels of inflammatory cytokines (IL-1β and TNF-α). These data suggest that the induction of MafF contributes to the host's antiviral defense by suppressing transcription from selected viral promoters. Our data shed light on a novel role for MafF as an anti-HBV host restriction factor.
Collapse
|
13
|
Novotny LA, Evans JG, Su L, Guo H, Meissner EG. Review of Lambda Interferons in Hepatitis B Virus Infection: Outcomes and Therapeutic Strategies. Viruses 2021; 13:1090. [PMID: 34207487 PMCID: PMC8230240 DOI: 10.3390/v13061090] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 12/27/2022] Open
Abstract
Hepatitis B virus (HBV) chronically infects over 250 million people worldwide and causes nearly 1 million deaths per year due to cirrhosis and liver cancer. Approved treatments for chronic infection include injectable type-I interferons and nucleos(t)ide reverse transcriptase inhibitors. A small minority of patients achieve seroclearance after treatment with type-I interferons, defined as sustained absence of detectable HBV DNA and surface antigen (HBsAg) antigenemia. However, type-I interferons cause significant side effects, are costly, must be administered for months, and most patients have viral rebound or non-response. Nucleos(t)ide reverse transcriptase inhibitors reduce HBV viral load and improve liver-related outcomes, but do not lower HBsAg levels or impart seroclearance. Thus, new therapeutics are urgently needed. Lambda interferons (IFNLs) have been tested as an alternative strategy to stimulate host antiviral pathways to treat HBV infection. IFNLs comprise an evolutionarily conserved innate immune pathway and have cell-type specific activity on hepatocytes, other epithelial cells found at mucosal surfaces, and some immune cells due to restricted cellular expression of the IFNL receptor. This article will review work that examined expression of IFNLs during acute and chronic HBV infection, the impact of IFNLs on HBV replication in vitro and in vivo, the association of polymorphisms in IFNL genes with clinical outcomes, and the therapeutic evaluation of IFNLs for the treatment of chronic HBV infection.
Collapse
Affiliation(s)
- Laura A. Novotny
- Division of Infectious Diseases, Medical University of South Carolina, Charleston, SC 29525, USA; (L.A.N.); (J.G.E.)
| | - John Grayson Evans
- Division of Infectious Diseases, Medical University of South Carolina, Charleston, SC 29525, USA; (L.A.N.); (J.G.E.)
| | - Lishan Su
- Division of Virology, Pathogenesis, and Cancer, Institute of Human Virology, Departments of Pharmacology, Microbiology, and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Haitao Guo
- Department of Microbiology and Molecular Genetics, Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA;
| | - Eric G. Meissner
- Division of Infectious Diseases, Medical University of South Carolina, Charleston, SC 29525, USA; (L.A.N.); (J.G.E.)
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
14
|
Goh ZY, Ren EC, Ko HL. Intracellular interferon signalling pathways as potential regulators of covalently closed circular DNA in the treatment of chronic hepatitis B. World J Gastroenterol 2021; 27:1369-1391. [PMID: 33911462 PMCID: PMC8047536 DOI: 10.3748/wjg.v27.i14.1369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/23/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023] Open
Abstract
Infection with the hepatitis B virus (HBV) is still a major global health threat as 250 million people worldwide continue to be chronically infected with the virus. While patients may be treated with nucleoside/nucleotide analogues, this only suppresses HBV titre to sub-detection levels without eliminating the persistent HBV covalently closed circular DNA (cccDNA) genome. As a result, HBV infection cannot be cured, and the virus reactivates when conditions are favorable. Interferons (IFNs) are cytokines known to induce powerful antiviral mechanisms that clear viruses from infected cells. They have been shown to induce cccDNA clearance, but their use in the treatment of HBV infection is limited as HBV-targeting immune cells are exhausted and HBV has evolved multiple mechanisms to evade and suppress IFN signalling. Thus, to fully utilize IFN-mediated intracellular mechanisms to effectively eliminate HBV, instead of direct IFN administration, novel strategies to sustain IFN-mediated anti-cccDNA and antiviral mechanisms need to be developed. This review will consolidate what is known about how IFNs act to achieve its intracellular antiviral effects and highlight the critical interferon-stimulated gene targets and effector mechanisms with potent anti-cccDNA functions. These include cccDNA degradation by APOBECs and cccDNA silencing and transcription repression by epigenetic modifications. In addition, the mechanisms that HBV employs to disrupt IFN signalling will be discussed. Drugs that have been developed or are in the pipeline for components of the IFN signalling pathway and HBV targets that detract IFN signalling mechanisms will also be identified and discussed for utility in the treatment of HBV infections. Together, these will provide useful insights into design strategies that specifically target cccDNA for the eradication of HBV.
Collapse
Affiliation(s)
- Zhi Yi Goh
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore 119077, Singapore
| | - Ee Chee Ren
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119260, Singapore
| | - Hui Ling Ko
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore
| |
Collapse
|
15
|
Transcriptome Classification Reveals Molecular Subgroups in Patients with Hepatitis B Virus. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:5543747. [PMID: 33859718 PMCID: PMC8028738 DOI: 10.1155/2021/5543747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/27/2021] [Accepted: 03/09/2021] [Indexed: 12/28/2022]
Abstract
Hepatitis B virus (HBV) specifically infects hepatocytes, which can cause progressive liver fibrosis and a significantly increased risk of liver cancer. Multiple studies indicated host genetic, virological, and immunological factors could affect the HBV infection. However, the underlying mechanism involved in HBV infection remained unclear. Based on the analysis of gene expression data of 124 HBV patients (GEO accession: GSE84044), molecular subgroups of patients infected with hepatitis B virus were identified in this study, including C1, C2, and C3 groups. The age, fiber, degree of chemical and inflammation, and gene expression difference were also compared among the three sampling groups. Furthermore, the liver index was calculated using 93 liver-specific genes. The liver-specific gene expression in different molecular subgroups of HBV patients was thoroughly analyzed and then was compared with fibrosis and inflammation levels. Results showed that the C2 group was the youngest and the C3 group had the highest degree of fibrosis and inflammation. Enrichment analysis showed that metabolism-related pathways were mainly expressed in the C1 and C2 groups, and inflammation-related pathways and proteoglycans in cancer were highly expressed in the C1 and C3 groups. The liver index was higher in the C2 group than in the C1 and C3 groups, and it was the lowest in the C3 group. Macrophage M1/M2 and neutrophils were significantly different in the three groups. M1 was mainly abundant in the C3 group, and M2 and neutrophils were mainly abundant in the C2 group. This study provides novel information to understand the mechanisms of HBV infection in chronic hepatitis B (CHB) patients.
Collapse
|
16
|
Gu W, Ueda Y, Dansako H, Satoh S, Kato N. Antiviral mechanism of preclinical antimalarial compounds possessing multiple antiviral activities. FASEB Bioadv 2021; 3:356-373. [PMID: 33977235 PMCID: PMC8103717 DOI: 10.1096/fba.2020-00107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/18/2021] [Accepted: 02/09/2021] [Indexed: 11/15/2022] Open
Abstract
We previously found that N‐89 and its derivative, N‐251, which are being developed as antimalarial compounds, showed multiple antiviral activities including hepatitis C virus (HCV). In this study, we focused on the most characterized anti‐HCV activity of N‐89(N‐251) to clarify their antiviral mechanisms. We first prepared cells exhibiting resistance to N‐89(N‐251) than the parental cells by serial treatment of HCV–RNA‐replicating parental cells with N‐89(N‐251). Then, we newly generated HCV–RNA‐replicating cells with the replacement of HCV–RNAs derived from N‐89(N‐251)‐resistant cells and parental cells. Using these cells, we examined the degree of inhibition of HCV–RNA replication by N‐89(N‐251) and found that the host and viral factors contributed almost equally to the resistance to N‐89(N‐251). To further examine the contribution of the host factors, we selected several candidate genes by cDNA microarray analysis and found that the upregulated expression of at least RAC2 and CKMT1B genes independently and differently contributed to the acquisition of an N‐89(N‐251)‐resistant phenotype. For the viral factors, we selected several mutation candidates by the genetic comparative analysis of HCV–RNAs and showed that at least one M414I mutation in the HCV NS5B contributed to the resistance to N‐89. Moreover, we demonstrated that the combination of host factors (RAC2 and/or CKMT1B) and a viral factor (M414I mutation) additively increased the resistance to N‐89. In summary, we identified the host and viral factors contributing to the acquisition of N‐89(N‐251)‐resistance in HCV–RNA replication. These findings will be useful for clarification of the antiviral mechanism of N‐89(N‐251).
Collapse
Affiliation(s)
- Weilin Gu
- Department of Tumor Virology Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences Okayama Japan
| | - Youki Ueda
- Department of Tumor Virology Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences Okayama Japan
| | - Hiromichi Dansako
- Department of Tumor Virology Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences Okayama Japan
| | - Shinya Satoh
- Department of Tumor Virology Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences Okayama Japan
| | - Nobuyuki Kato
- Department of Tumor Virology Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences Okayama Japan
| |
Collapse
|
17
|
Zhao YZ, You J, Liu HE. Suppressor of cytokine signaling proteins 1 and 3 and hepatitis B virus infection. Shijie Huaren Xiaohua Zazhi 2020; 28:1076-1083. [DOI: 10.11569/wcjd.v28.i21.1076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Suppressor of cytokine signaling proteins (SOCS) are cytokine pathway inhibitors that play an important role in regulating the antiviral effect of interferon (IFN). Current studies have shown that SOCS1 and SOCS3 are closely related to hepatitis B virus (HBV) infection. Inhibition or stimulation of SOCS1 and SOCS3 expression may affect the antiviral effect by regulating the production of IFN, and may also affect the pathogenicity of HBV together with other cytokines or transcription regulators. This paper mainly discusses the possible mechanisms of SOCS1 and SOCS3 in HBV infection.
Collapse
Affiliation(s)
- Yin-Zhou Zhao
- The NHC Key Laboratory of Drug Addiction Medicine, Department of Infectious Diseases and Hepatology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan Province, China
| | - Jing You
- The NHC Key Laboratory of Drug Addiction Medicine, Department of Infectious Diseases and Hepatology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan Province, China
| | - Huai-E Liu
- The NHC Key Laboratory of Drug Addiction Medicine, Department of Infectious Diseases and Hepatology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan Province, China
| |
Collapse
|
18
|
MicroRNA-196a/-196b regulate the progression of hepatocellular carcinoma through modulating the JAK/STAT pathway via targeting SOCS2. Cell Death Dis 2019; 10:333. [PMID: 30988277 PMCID: PMC6465376 DOI: 10.1038/s41419-019-1530-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 02/07/2023]
Abstract
microRNAs (miRNAs) play essential roles in progression of hepatocellular carcinoma (HCC). However, the roles of miR-196a and miR-196b as well as mechanism in HCC progression remain poorly understood. The expressions of miR-196a, miR-196b and suppressor of cytokine signaling 2 (SOCS2) were measured in HCC tissues and cells by quantitative real-time polymerase chain reaction or immunohistochemistry. HCC progression was investigated by cell proliferation, glycolysis, cycle, clones, apoptosis, and necrosis. The interaction between SOCS2 and miR-196a or miR-196b was explored by luciferase activity and RNA immunoprecipitation analyses. The expressions of proteins in Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway were measured by western blot. A xenograft model was established to investigate the roles of miR-196a or miR-196b in vivo. We found that miR-196a and miR-196b were highly expressed in HCC tissues and cells. High expression of miR-196a or miR-196b was correlated with tumor size, tumor-node-metastasis stage, lymph node metastasis, albumin–bilirubin grade and poor 5-year survival. Knockdown of miR-196a or miR-196b suppressed cell proliferation, glycolysis, cell cycle process, colony formation but induced apoptosis or necrosis in HCC cells. SOCS2 was targeted by miR-196a and miR-196b and its interference ablated abrogation of miR-196a or miR-196b-mediated inhibitory effect on HCC progression. SOCS2 was negatively associated with activation of the JAK/STAT pathway. Besides, knockdown of miR-196a or miR-196b limited xenograft tumor growth by blocking the JAK/STAT pathway. We concluded that downregulation of miR-196a or miR-196b inhibited HCC progression through regulating the JAK/STAT pathway via targeting SOCS2, providing novel targets for prognosis and therapeutics of HCC.
Collapse
|
19
|
Jia J, Li Y, Wei C, Guo R, Xu H, Jia Y, Wu Y, Li Y, Wei Z, Qi X, Li Z, Gao X. Factors associated with disease progression and viral replication in patients with chronic hepatitis B virus infection. Exp Ther Med 2019; 17:4730-4740. [PMID: 31086607 DOI: 10.3892/etm.2019.7482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 03/07/2019] [Indexed: 12/26/2022] Open
Abstract
Hepatitis B virus (HBV) infection remains a severe clinical concern in China. Of note, the progression of HBV infection varies between different populations. To identify the factors that influence the disease progression and prognosis, a total of 478 chronic HBV-infected patients were enrolled, and liver function parameters, HBV DNA levels and hepatic fibrosis indices were analyzed. First, the results demonstrated a significant difference in hepatitis B e antigen (HBeAg) expression between male and female patients (χ2=4.061, P=0.044). Furthermore, when comparing either HBeAg-negative or -positive male and female patients, males exhibited a greater variation in HBV DNA levels. Although significant differences between male and female patients in certain abnormal ratios of liver function parameters were identified, a trend in the differences was observed in the HBeAg-negative and -positive groups. When considering age, the results of the present study confirmed that HBV DNA levels decreased with advanced age, and the values of the majority of biomarkers exhibited an evident decreasing trend with increasing age. In addition, it was demonstrated that all HBeAg seropositive patients had higher levels of hepatic fibrosis indexes and higher abnormal ratios of hepatic fibrosis values in their serum when compared with those of HBeAg seronegative patients, particularly with regard to serum IV collagen. The present results revealed that HBV DNA replication was closely associated with liver function; however, it was notable that in HBeAg-negative patients, the association between HBV DNA levels and liver function was particularly significant among subjects aged <61. Furthermore, this result was not observed in HBeAg-positive patients. In conclusion, the present study indicated the importance of host factors (including sex and age) and viral factors (including HBeAg expression pattern and HBV DNA levels) in the progression of chronic HBV infection, and its influence regarding prognosis and treatment. The present results provide a foundation for clinical management strategies for chronic HBV infection, particularly in individual schemes.
Collapse
Affiliation(s)
- Jing Jia
- Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Yonghong Li
- Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Chaojun Wei
- Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Rui Guo
- Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Hui Xu
- Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Yanjuan Jia
- Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Yu Wu
- Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Yuanting Li
- Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Zhenhong Wei
- Department of Blood Transfusion, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Xiaoming Qi
- Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Zhenhao Li
- Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Xiaoling Gao
- Institute of Clinical Research and Translational Medicine, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
20
|
Song H, Tan G, Yang Y, Cui A, Li H, Li T, Wu Z, Yang M, Lv G, Chi X, Niu J, Zhu K, Crispe IN, Su L, Tu Z. Hepatitis B Virus-Induced Imbalance of Inflammatory and Antiviral Signaling by Differential Phosphorylation of STAT1 in Human Monocytes. THE JOURNAL OF IMMUNOLOGY 2019; 202:2266-2275. [PMID: 30842274 DOI: 10.4049/jimmunol.1800848] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 02/12/2019] [Indexed: 12/14/2022]
Abstract
It is not clear how hepatitis B virus (HBV) modulates host immunity during chronic infection. In addition to the key mediators of inflammatory response in viral infection, monocytes also express a high-level IFN-stimulated gene, CH25H, upon response to IFN-α exerting an antiviral effect. In this study, the mechanism by which HBV manipulates IFN signaling in human monocytes was investigated. We observed that monocytes from chronic hepatitis B patients express lower levels of IFN signaling/stimulated genes and higher levels of inflammatory cytokines compared with healthy donors. HBV induces monocyte production of inflammatory cytokines via TLR2/MyD88/NF-κB signaling and STAT1-Ser727 phosphorylation and inhibits IFN-α-induced stat1, stat2, and ch25h expression through the inhibition of STAT1-Tyr701 phosphorylation and in an IL-10-dependent, partially autocrine manner. Further, we found that enhancement of STAT1 activity with a small molecule (2-NP) rescued HBV-mediated inhibition of IFN signaling and counteracted the induction of inflammatory cytokines. In conclusion, HBV contributes to the monocyte inflammatory response but inhibits their IFN-α/β responsiveness to impair antiviral innate immunity. These effects are mediated via differential phosphorylation of Tyr701 and Ser727 of STAT1.
Collapse
Affiliation(s)
- Hongxiao Song
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Guangyun Tan
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yang Yang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - An Cui
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Haijun Li
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Tianyang Li
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Zhihui Wu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Miaomiao Yang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Xiumei Chi
- Institute of Liver Diseases, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Junqi Niu
- Institute of Liver Diseases, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Kangshun Zhu
- Department of Minimally Invasive Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Ian Nicholas Crispe
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China.,Department of Pathology, University of Washington, Seattle, WA 98195; and
| | - Lishan Su
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China.,Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Zhengkun Tu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China; .,Institute of Liver Diseases, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
21
|
Yang K, Guan S, Zhang H, Chen Z. Induction of interleukin 6 impairs the anti-HBV efficiency of IFN-α in human hepatocytes through upregulation of SOCS3. J Med Virol 2019; 91:803-812. [PMID: 30570770 DOI: 10.1002/jmv.25382] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/14/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Kai Yang
- Department of Pharmacology; Anhui Medical University; Hefei China
- Department of Clinical Laboratory; The Second Hospital of Anhui Medical University; Hefei China
| | - Shihe Guan
- Department of Clinical Laboratory; The Second Hospital of Anhui Medical University; Hefei China
| | - Hao Zhang
- Department of Clinical Laboratory; The Second Hospital of Anhui Medical University; Hefei China
| | - Zhiwu Chen
- Department of Pharmacology; Anhui Medical University; Hefei China
| |
Collapse
|
22
|
|
23
|
Core gene insertion in hepatitis B virus genotype G functions at both the encoded amino acid sequence and RNA structure levels to stimulate core protein expression. Virology 2018; 526:203-213. [PMID: 30415131 DOI: 10.1016/j.virol.2018.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 02/08/2023]
Abstract
Hepatitis B virus genotype G possesses a 36-nucleotide (nt) insertion at the 5' end of core gene, adding 12 residues to core protein. The insertion markedly increased core protein level irrespective of viral genotype, with the effect reproducible using CMV-core gene construct. Here we used such expression constructs and transient transfection experiments in Huh7 cells to identify the structural bases. The insertion is predicted to create a stem-loop structure 14nt downstream of core gene AUG. A + 1 or + 2 frameshift into the 36nt mitigated enhancement of core protein level. Point mutations to disrupt or restore the stem-loop had opposite effects on core protein expression. Shifting the translation initiation site downstream or further upstream of the stem-loop rendered it inhibitory or no longer stimulatory of core protein expression. Therefore, both the reading frame and a properly positioned stem-loop structure contribute to marked increase in core protein expression by the 36-nt insertion.
Collapse
|
24
|
Meier-Stephenson V, Bremner WTR, Dalton CS, van Marle G, Coffin CS, Patel TR. Comprehensive Analysis of Hepatitis B Virus Promoter Region Mutations. Viruses 2018; 10:E603. [PMID: 30388827 PMCID: PMC6265984 DOI: 10.3390/v10110603] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 10/27/2018] [Accepted: 10/31/2018] [Indexed: 02/06/2023] Open
Abstract
Over 250 million people are infected chronically with hepatitis B virus (HBV), the leading cause of liver cancer worldwide. HBV persists, due, in part, to its compact, stable minichromosome, the covalently-closed, circular DNA (cccDNA), which resides in the hepatocytes' nuclei. Current therapies target downstream replication products, however, a true virological cure will require targeting the cccDNA. Finding targets on such a small, compact genome is challenging. For HBV, to remain replication-competent, it needs to maintain nucleotide fidelity in key regions, such as the promoter regions, to ensure that it can continue to utilize the necessary host proteins. HBVdb (HBV database) is a repository of HBV sequences spanning all genotypes (A⁻H) amplified from clinical samples, and hence implying an extensive collection of replication-competent viruses. Here, we analyzed the HBV sequences from HBVdb using bioinformatics tools to comprehensively assess the HBV core and X promoter regions amongst the nearly 70,000 HBV sequences for highly-conserved nucleotides and variant frequencies. Notably, there is a high degree of nucleotide conservation within specific segments of these promoter regions highlighting their importance in potential host protein-viral interactions and thus the virus' viability. Such findings may have key implications for designing antivirals to target these areas.
Collapse
Affiliation(s)
- Vanessa Meier-Stephenson
- Department of Microbiology, Immunology and Infectious Diseases, Cumming, School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada.
- Alberta RNA Research & Training Institute, Department of Chemistry & Biochemistry, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada.
| | - William T R Bremner
- Department of Ecosystem & Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | - Chimone S Dalton
- Department of Ecosystem & Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | - Guido van Marle
- Department of Microbiology, Immunology and Infectious Diseases, Cumming, School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada.
| | - Carla S Coffin
- Department of Microbiology, Immunology and Infectious Diseases, Cumming, School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada.
- Liver Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Calgary, AB T2N 4Z6, Canada.
| | - Trushar R Patel
- Department of Microbiology, Immunology and Infectious Diseases, Cumming, School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada.
- Alberta RNA Research & Training Institute, Department of Chemistry & Biochemistry, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada.
- DiscoveryLab, Faculty of Medicine & Dentistry, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
25
|
Bussey KA, Brinkmann MM. Strategies for immune evasion by human tumor viruses. Curr Opin Virol 2018; 32:30-39. [PMID: 30241043 DOI: 10.1016/j.coviro.2018.08.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 08/24/2018] [Indexed: 12/14/2022]
Abstract
Immune evasion is a hallmark of viral persistence. For the seven human tumor viruses to establish lifelong infection in their hosts, they must successfully control the host response to them. Viral inhibition of immune responses occurs at many levels. While some viruses directly target the pattern recognition receptors (PRR) of the innate immune system, they may also antagonize downstream effectors of PRR signaling cascades or activation of transcription, which would otherwise induce a type I interferon (IFN) and/or pro-inflammatory cytokine response. Secretion of IFN activates the type I interferon receptor (IFNAR) signaling pathway, which is also prone to viral inhibition. To evade the adaptive host response, viruses also target various mechanisms including antigen processing and presentation.
Collapse
Affiliation(s)
- Kendra A Bussey
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany; Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany.
| | - Melanie M Brinkmann
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany; Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany.
| |
Collapse
|
26
|
Chen H, He G, Chen Y, Zhang X, Wu S. Differential Activation of NLRP3, AIM2, and IFI16 Inflammasomes in Humans with Acute and Chronic Hepatitis B. Viral Immunol 2018; 31:639-645. [PMID: 30222506 DOI: 10.1089/vim.2018.0058] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nod-like receptor protein 3 (NLRP3), absent in melanoma 2 (AIM2), and interferon gamma inducible protein 16 (IFI16) are innate immune sensors for intracellular microbes, which can be activated by various dangerous signals and subsequently lead to caspase-1 (CASP1) activation and the maturation cleavage of effector molecules pro-IL-1β and pro-IL-18. Their roles in immunopathology of acute and chronic hepatitis B virus (HBV) infection are still unclear. In this study, we first investigated the activation of NLRP3, AIM2, and IFI16 inflammasomes in peripheral blood mononuclear cells (PBMCs) from patients infected with acute hepatitis B (AHB) and chronic hepatitis B (CHB) by quantitative real-time PCR and enzyme-linked immunosorbent assay. We next analyzed the impact of hepatitis B e antigen (HBeAg) on activation of AIM2 and IFI16 inflammasomes in PBMCs of CHB patients stimulated in vitro with AIM2 and IFI16 agonist ligands, poly (dA:dT) and VACA-70mer, respectively. The results showed that the mRNA expression levels of AIM2, IFI16, and CASP1 in PBMCs from AHB and CHB patients were both upregulated. Furthermore, the mRNA levels of AIM2 and IFI16 in CHB patients were significantly positively correlated with serum HBV loads. However, only in patients with AHB there was elevation of serum IL-1β and IL-18. There was no activation of NLRP3, AIM2, and IFI16 inflammasomes in CHB patients. Stimulation of PBMCs of CHB patients in vitro with poly (dA:dT) and VACA-70mer induced the activation of AIM2 and IFI16 inflammasomes, respectively. This ligand-induced activation was suppressed by HBeAg. Our results suggest that there exists activation of the AIM2 and IFI16 inflammasomes, but not the NLRP3 inflammasome, in AHB, and the activation of the AIM2 and IFI16 inflammasomes can be inhibited by HBeAg in CHB, which may contribute to HBV-induced immunotolerance.
Collapse
Affiliation(s)
- Hongtao Chen
- 1 Department of Infectious Diseases, The Second Clinical Medical College, Jinan University , Shenzhen, China .,2 Key Laboratory of Pathogenic Microorganism of Shenzhen , Shenzhen, China
| | - Guirong He
- 3 Department of Clinical Laboratory, The Second Clinical Medical College, Jinan University , Shenzhen, China
| | - Yue Chen
- 3 Department of Clinical Laboratory, The Second Clinical Medical College, Jinan University , Shenzhen, China
| | - Xiaoyong Zhang
- 4 Hepatology Unit and Key Laboratory for Organ Failure Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Shipin Wu
- 1 Department of Infectious Diseases, The Second Clinical Medical College, Jinan University , Shenzhen, China
| |
Collapse
|
27
|
Shen J, Liu J, Li C, Wen T, Yan L, Yang J. The prognostic significance of serum HBeAg on the recurrence and long-term survival after hepatectomy for hepatocellular carcinoma: A propensity score matching analysis. J Viral Hepat 2018; 25:1057-1065. [PMID: 29660216 DOI: 10.1111/jvh.12911] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/01/2018] [Indexed: 02/05/2023]
Abstract
The effects of serum hepatitis B e antigen (HBeAg) on the prognosis of hepatocellular carcinoma (HCC) patients after hepatectomy remain controversial. Our aim was to explore the prognostic significance of serum HBeAg on the prognosis of patients with HCC using a propensity matching model. Between January 2009 and March 2015, 953 patients with HCC who underwent hepatectomy in West China Hospital were analysed. Propensity matching analysis was applied, and survival analysis was performed using the Kaplan-Meier method. Risk factors were identified by the Cox proportional hazards model. All patients with HCC were classified into an HBeAg(-) group (n = 775, 81.3%) or an HBeAg(+) group (n = 178, 18.7%). Patients with positive serum HBeAg had poorer recurrence-free survival and overall survival before and after propensity matching. Similar results were found in patients within the Milan criteria. For patients beyond the Milan criteria, the HBeAg(+) group had poor overall survival before and after propensity matching. In term of recurrence-free survival, there was no statistically significant impact after propensity matching (P = .055), although there was a trend for HBeAg(+) patient to have reduced recurrence-free survival. Positive serum HBeAg, positive HBV-DNA load, largest tumour size, multiple tumours, microvascular invasion and a high serum level of preoperative alpha-fetoprotein were risk factors for recurrence. Our propensity model confirmed that positive serum HBeAg had a negative impact on the recurrence and long-term survival irrespective of tumour stages. HBeAg seroconversion might be beneficial for reducing the rate of recurrence.
Collapse
Affiliation(s)
- J Shen
- Department of Liver Surgery & Liver Transplantation Center, West China Hospital, Sichuan University, Chengdu, China
| | - J Liu
- Department of Liver Surgery & Liver Transplantation Center, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - C Li
- Department of Liver Surgery & Liver Transplantation Center, West China Hospital, Sichuan University, Chengdu, China
| | - T Wen
- Department of Liver Surgery & Liver Transplantation Center, West China Hospital, Sichuan University, Chengdu, China
| | - L Yan
- Department of Liver Surgery & Liver Transplantation Center, West China Hospital, Sichuan University, Chengdu, China
| | - J Yang
- Department of Liver Surgery & Liver Transplantation Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
28
|
Eren E, Watts NR, Dearborn AD, Palmer IW, Kaufman JD, Steven AC, Wingfield PT. Structures of Hepatitis B Virus Core- and e-Antigen Immune Complexes Suggest Multi-point Inhibition. Structure 2018; 26:1314-1326.e4. [PMID: 30100358 DOI: 10.1016/j.str.2018.06.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/13/2018] [Accepted: 06/29/2018] [Indexed: 12/22/2022]
Abstract
Hepatitis B virus (HBV) is the leading cause of liver disease worldwide. While an adequate vaccine is available, current treatment options are limited, not highly effective, and associated with adverse effects, encouraging the development of alternative therapeutics. The HBV core gene encodes two different proteins: core, which forms the viral nucleocapsid, and pre-core, which serves as an immune modulator with multiple points of action. The two proteins mostly have the same sequence, although they differ at their N and C termini and in their dimeric arrangements. Previously, we engineered two human-framework antibody fragments (Fab/scFv) with nano- to picomolar affinities for both proteins. Here, by means of X-ray crystallography, analytical ultracentrifugation, and electron microscopy, we demonstrate that the antibodies have non-overlapping epitopes and effectively block biologically important assemblies of both proteins. These properties, together with the anticipated high tolerability and long half-lives of the antibodies, make them promising therapeutics.
Collapse
Affiliation(s)
- Elif Eren
- Laboratory of Structural Biology Research, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Norman R Watts
- Protein Expression Laboratory, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Altaira D Dearborn
- Protein Expression Laboratory, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ira W Palmer
- Protein Expression Laboratory, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joshua D Kaufman
- Protein Expression Laboratory, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alasdair C Steven
- Laboratory of Structural Biology Research, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paul T Wingfield
- Protein Expression Laboratory, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|