1
|
Chan KYK, Ko WH. Modeling Fertilization Outcome in a Changing World. Integr Comp Biol 2024; 64:905-920. [PMID: 38871950 DOI: 10.1093/icb/icae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024] Open
Abstract
Marine organisms have complex life histories. For broadcast spawners, successful continuation of the population requires their small gametes to make contact in the water column for sufficiently long periods for fertilization to occur. Anthropogenic climate change has been shown to impact fertilization success in various marine invertebrates, including sea urchins, which are key grazers in their habitats. Gamete performance of both sexes declined when exposed to elevated temperatures and/or pCO2 levels. Examples of reduced performance included slower sperm swimming speed and thinning egg jelly coat. However, such responses to climate change stress were not uniform between individuals. Such variations could serve as the basis for selection. Fertilization kinetics have long been modeled as a particle collision process. Here, we present a modified fertilization kinetics model that incorporates individual variations in performance in a more environmentally relevant regime, and which the performance of groups with different traits can be separately tracked in a mixture. Numerical simulations highlight that fertilization outcomes are influenced by changes in gamete traits as they age in sea water and the presence of competition groups (multiple dams or sires). These results highlight the importance of considering multiple individuals and at multiple time points during in vivo assays. We also applied our model to show that interspecific variation in climate stress vulnerabilities elevates the risk of hybridization. By making a numerical model open-source, we aim to help us better understand the fate of organisms in the face of climate change by enabling the community to consider the mean and variance of the response to capture adaptive potential.
Collapse
Affiliation(s)
| | - Wing Ho Ko
- Physics and Astronomy Department, Swarthmore College, Swarthmore, PA 19081, USA
| |
Collapse
|
2
|
Gambardella C, Miroglio R, Prieto Amador M, Castelli F, Castellano L, Piazza V, Faimali M, Garaventa F. High concentrations of phthalates affect the early development of the sea urchin Paracentrotus lividus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116473. [PMID: 38781890 DOI: 10.1016/j.ecoenv.2024.116473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/29/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
The toxicity of three phthalates (PAEs) - butylbenzyl phthalate (BBP), diethyl phthalate (DEP), and di-(2-ethylhexyl) phthalate (DEHP) - was tested on the Mediterranean sea urchin Paracentrotus lividus. Fertilized eggs were exposed to environmental and high PAE concentrations for 72 h. The potential toxic effects on larval development and any morphological anomalies were then assessed to estimate PAEs impact. Environmental concentrations never affected development, while high concentrations induced toxic effects in larvae exposed to BBP (EC50: 2.9 ×103 µg/L) and DEHP (EC50: 3.72 ×103 µg/L). High concentrations caused skeletal anomalies, with a slight to moderate impact for DEP/DEHP and BBP, respectively. PAE toxicity was: BBP>DEHP>DEP. In conclusion, the three PAEs at environmental concentrations do not pose a risk to sea urchins. However, PAE concentrations should be further monitored in order not to constitute a concern to marine species, especially at their early developmental stages.
Collapse
Affiliation(s)
- Chiara Gambardella
- CNR-IAS, via de Marini 6, Genova 16149, Italy; National Biodiversity Future Center (NBFC) S.c.a.r.l., Piazza Marina 61 (c/o palazzo Steri), Palermo, Italy.
| | - Roberta Miroglio
- CNR-IAS, via de Marini 6, Genova 16149, Italy; National Biodiversity Future Center (NBFC) S.c.a.r.l., Piazza Marina 61 (c/o palazzo Steri), Palermo, Italy
| | | | | | - Laura Castellano
- Costa Edutainment SpA - Acquario di Genova, Area Porto Antico, Ponte Spinola, Genoa 16128, Italy
| | | | - Marco Faimali
- CNR-IAS, via de Marini 6, Genova 16149, Italy; National Biodiversity Future Center (NBFC) S.c.a.r.l., Piazza Marina 61 (c/o palazzo Steri), Palermo, Italy
| | - Francesca Garaventa
- CNR-IAS, via de Marini 6, Genova 16149, Italy; National Biodiversity Future Center (NBFC) S.c.a.r.l., Piazza Marina 61 (c/o palazzo Steri), Palermo, Italy
| |
Collapse
|
3
|
Rahman MS, Billah MM, Rangel V, Cantu E. Elevated temperature triggers increase in global DNA methylation, 5-methylcytosine expression levels, apoptosis and NOx levels in the gonads of Atlantic sea urchin. Comp Biochem Physiol B Biochem Mol Biol 2024; 269:110899. [PMID: 37673203 DOI: 10.1016/j.cbpb.2023.110899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/24/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
Global warming is one of the greatest threats to living organisms. Among them, marine invertebrates are severely impacted on reproductive fitness by rising seawater surface temperatures due to climate change (e.g., massive heat waves). In this study, we used highly sensitive radioimmunoassay, immunohistochemistry, enzyme-linked immunosorbent assay (ELISA), in situ TUNEL assay, luminescence assay, and colorimetric assay techniques to investigate the impacts of high temperatures on global DNA methylation, cellular apoptosis, and nitrative stress in gonads of Atlantic sea urchin (Arbacia punctulata, a commercially important species). Young adult sea urchins were exposed to 24, 28, and 32 °C for one week in a controlled laboratory setting. High temperatures (28 and 32 °C) markedly increased global DNA methylation (around 1.1-1.5-fold in testes and ~ 1.7-fold in ovaries) and 5-methylcytosine (5-mC) levels in gonads (around 2.7- to ~5.1-fold in ovaries and ~ 3.5- to ~6.2-fold in testes) compared with controls (24 °C). The number of apoptotic nuclei in gonads was much higher in high-temperature groups. The caspase activity also increased significantly (P < 0.05) in gonads in high-temperature groups. Nitrate/nitrites (NOx, a biomarker of reactive nitrogen species) levels were increased around 2.6- to ~5.2-fold in testes and ~ 1.9- to ~3.8-fold in ovaries in high-temperature groups. Collectively, these outcomes indicate that high temperatures drastically induce global DNA methylation, 5-mC expression levels, cellular apoptosis, and NOx levels in the gonads of Atlantic sea urchin.
Collapse
Affiliation(s)
- Md Saydur Rahman
- School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA; School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA.
| | - Mohammad Maruf Billah
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| | - Victor Rangel
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| | - Esmirna Cantu
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| |
Collapse
|
4
|
Contreras-Porcia L, Meynard A, Bulboa C, Vargas P, Rivas J, Latorre-Padilla N, Navarrete SA, Search FV, Oyarzo-Miranda C, Toro-Mellado F. Expansion of marine pollution along the coast: Negative effects on kelps and contamination transference to benthic herbivores? MARINE ENVIRONMENTAL RESEARCH 2023; 192:106229. [PMID: 37866196 DOI: 10.1016/j.marenvres.2023.106229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/29/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023]
Abstract
Heavy metals and polycyclic aromatic hydrocarbons (PAHs) are ubiquitous contaminants that frequently co-occur in coastal environments. These contaminants can have negative impacts on the health and stability of marine and coastal ecosystems, affecting both the organisms themselves and the humans who consume them. A coastal industrial park in central Chile, housing a coal thermal power plant and other industrial activities, contributes to such pollution of coastal waters; however, neither the spatial alongshore distribution of heavy metals and PAHs, nor an assessment of their ecological effects on the biota have been systematically documented to date. In this paper, we present evidence regarding the direct negative effect of contamination by heavy metals and PAHs on the early life stages of kelps-being extremely harmful to their population persistence near highly polluted sites-as well as the indirect effects of their transference through the food web to higher trophic levels, leading to negative consequences for the feeding intake, growth, fertility, and larval development of marine herbivores that consume the contaminated seaweed. Likewise, the dispersion of contaminants by ocean currents can exacerbate the effects of pollution, having an adverse influence on marine ecosystem health even at sites far from the pollution source. Therefore, it is necessary to investigate the distribution patterns and extent of pollution along the coast to understand the impact of heavy metals and PAHs pollution on seaweed populations and the food web. It is considered critical for the development of effective environmental policies and regulations to protect these ecosystems and the people who depend on them.
Collapse
Affiliation(s)
- Loretto Contreras-Porcia
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, 8370251, Chile; Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Quintay, Valparaíso, 2531015, Chile; Center of Applied Ecology and Sustainability (CAPES), Santiago, 8331150, Chile; Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago, 8370251, Chile.
| | - Andrés Meynard
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, 8370251, Chile; Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Quintay, Valparaíso, 2531015, Chile; Center of Applied Ecology and Sustainability (CAPES), Santiago, 8331150, Chile; Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago, 8370251, Chile
| | - Cristian Bulboa
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, 8370251, Chile; Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Quintay, Valparaíso, 2531015, Chile; Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago, 8370251, Chile
| | - Paulina Vargas
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, 8370251, Chile; Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Quintay, Valparaíso, 2531015, Chile; Center of Applied Ecology and Sustainability (CAPES), Santiago, 8331150, Chile; Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago, 8370251, Chile
| | - Jorge Rivas
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, 8370251, Chile; Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Quintay, Valparaíso, 2531015, Chile; Center of Applied Ecology and Sustainability (CAPES), Santiago, 8331150, Chile; Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago, 8370251, Chile
| | - Nicolás Latorre-Padilla
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, 8370251, Chile; Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Quintay, Valparaíso, 2531015, Chile; Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago, 8370251, Chile
| | - Sergio A Navarrete
- Center of Applied Ecology and Sustainability (CAPES), Santiago, 8331150, Chile; Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago, 8370251, Chile; Estación Costera de Investigaciones Marinas, Facultad de Ciencias Biológicas, Millenium Nucleus for Ecology and Conservation of Temperate Mesophotic Reef Ecosystems (NUTME), Pontificia Universidad Católica de Chile & Center for Oceanographic Research COPAS-COASTAL, Universidad de Concepción, Las Cruces, Chile
| | - Francesca V Search
- Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago, 8370251, Chile; Estación Costera de Investigaciones Marinas, Facultad de Ciencias Biológicas, Millenium Nucleus for Ecology and Conservation of Temperate Mesophotic Reef Ecosystems (NUTME), Pontificia Universidad Católica de Chile & Center for Oceanographic Research COPAS-COASTAL, Universidad de Concepción, Las Cruces, Chile
| | - Carolina Oyarzo-Miranda
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, 8370251, Chile; Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Quintay, Valparaíso, 2531015, Chile
| | - Fernanda Toro-Mellado
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, 8370251, Chile; Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Quintay, Valparaíso, 2531015, Chile; Center of Applied Ecology and Sustainability (CAPES), Santiago, 8331150, Chile; Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago, 8370251, Chile; Programa de Doctorado en Biotecnología, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
5
|
Flasz B, Ajay AK, Tarnawska M, Babczyńska A, Majchrzycki Ł, Kędziorski A, Napora-Rutkowski Ł, Świerczek E, Augustyniak M. Multigenerational Effects of Graphene Oxide Nanoparticles on Acheta domesticus DNA Stability. Int J Mol Sci 2023; 24:12826. [PMID: 37629006 PMCID: PMC10454164 DOI: 10.3390/ijms241612826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/03/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
The use of nanoparticles like graphene oxide (GO) in nanocomposite industries is growing very fast. There is a strong concern that GO can enter the environment and become nanopollutatnt. Environmental pollutants' exposure usually relates to low concentrations but may last for a long time and impact following generations. Attention should be paid to the effects of nanoparticles, especially on the DNA stability passed on to the offspring. We investigated the multigenerational effects on two strains (wild and long-lived) of house cricket intoxicated with low GO concentrations over five generations, followed by one recovery generation. Our investigation focused on oxidative stress parameters, specifically AP sites (apurinic/apyrimidinic sites) and 8-OHdG (8-hydroxy-2'-deoxyguanosine), and examined the global DNA methylation pattern. Five intoxicated generations were able to overcome the oxidative stress, showing that relatively low doses of GO have a moderate effect on the house cricket (8-OHdG and AP sites). The last recovery generation that experienced a transition from contaminated to uncontaminated food presented greater DNA damage. The pattern of DNA methylation was comparable in every generation, suggesting that other epigenetic mechanisms might be involved.
Collapse
Affiliation(s)
- Barbara Flasz
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland; (B.F.)
| | - Amrendra K. Ajay
- Department of Medicine, Division of Renal Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Monika Tarnawska
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland; (B.F.)
| | - Agnieszka Babczyńska
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland; (B.F.)
| | - Łukasz Majchrzycki
- Center for Advanced Technology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Andrzej Kędziorski
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland; (B.F.)
| | - Łukasz Napora-Rutkowski
- Polish Academy of Sciences, Institute of Ichthyobiology and Aquaculture in Gołysz, 43-520 Chybie, Poland
| | - Ewa Świerczek
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland; (B.F.)
| | - Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland; (B.F.)
| |
Collapse
|
6
|
Kalachev AV, Tankovich AE. The dopamine effect on sea urchin larvae depends on their age. Dev Growth Differ 2023; 65:120-131. [PMID: 36645274 DOI: 10.1111/dgd.12839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/18/2022] [Accepted: 01/10/2023] [Indexed: 01/17/2023]
Abstract
Activation of the dopamine type-D2 receptor in late gastrula of sea urchins is known to decrease the growth rate of post-oral arms of larvae, and, as a result, the phenotype of these larvae mimics that of larvae developing in the abundance of food. Our data indicate that the effect of dopamine on sea urchin larvae is stage-dependent. In our experiment, the early four-armed plutei (96 hours post fertilization, hpf) of Strongylocentrotus intermedius had substantially shorter post-oral arms if they developed from the larvae treated with dopamine at the early pluteus stage (48 hpf), when they had already formed the first dopaminergic neurons, as compared to the plutei from the larvae treated with dopamine at the mid to late gastrula stage (24 hpf), when they did not have any neurons yet. The pre-treatment of larvae in 6-hydroxydopamine, a neurotoxic analog of dopamine that specifically disrupts activity of dopaminergic neurons, prevented the development of the short post-oral arms phenotype in larvae. These results confirm the assumption that dopaminergic neurons play an important role in the development of the short post-oral arms phenotype in sea urchin larvae. Another finding of our study is that the dopamine treatment also affects the growth of the body rods and the overall larval body growth. Based on these observations, we suggest researchers to carefully select the developmental stage, pharmacological agents, and incubation time for experimental manipulation of sea urchin larvae phenotypes through dopaminergic nervous system.
Collapse
Affiliation(s)
- Alexander V Kalachev
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Alina E Tankovich
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
7
|
Ghantabpour T, Nashtaei MS, Nekoonam S, Rezaei H, Amidi F. The Effect of Astaxanthin on Motility, Viability, Reactive Oxygen Species, Apoptosis, and Lipid Peroxidation of Human Spermatozoa During the Freezing-Thawing Process. Biopreserv Biobank 2022; 20:367-373. [PMID: 35984938 DOI: 10.1089/bio.2021.0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cryopreservation of spermatozoa is a general procedure to preserve viable sperm for an indefinite period. Despite the efficiency of sperm cryopreservation, excessive reactive oxygen species (ROS) production during cryopreservation can induce structural and functional changes in spermatozoa. Also, cryopreservation has been shown to decrease the spermatozoa's antioxidant activity inducing them to be more sensitive to damage caused by ROS. Experimental evidence suggests that astaxanthin (AXT) has essential activities such as antioxidant, antibacterial, and antithrombotic properties. Therefore, this study aimed to evaluate the effect of AXT on the sperm quality of healthy men during freezing-thawing. In the first phase, 10 semen samples with different concentrations of AXT (0.0, 0.5, 1, and 2 μM) were cryopreserved to achieve an optimal dose of AXT. Then, motility, viability, and phosphatidylserine (PS) externalization were evaluated. In the second phase, 25 samples were collected and divided into 3 groups: fresh group, control group (untreated frozen-thawed samples), and AXT group (treated frozen-thawed with AXT). Then, samples were cryopreserved in freezing media supplemented with or without the optimal concentration of AXT (1 μM). After thawing, the levels of sperm parameters, including motility (using a computer-assisted sperm analyzer), viability (eosin-nigrosin), early apoptotic change (annexin V/propidium iodide), ROS (flow cytometry), and lipid peroxidation (LPO) (using enzyme-linked immunosorbent assay), were evaluated. Our results showed that the addition of 1 μM AXT to sperm freezing media improved all parameters of sperm motility and viability (p ≤ 0.05). Furthermore, it could reduce the levels of ROS parameters (intracellular hydrogen peroxide and superoxide) compared with the control group (p ≤ 0.05). Also, AXT significantly decreased the level of PS externalization (p ≤ 0.05) and LPO (p ≤ 0.05) after the freezing-thawing process. In conclusion, our findings demonstrated that human semen treatment with 1 μM AXT before the freezing-thawing process has protective effects against oxidative stress and could diminish the destructive effects of this process on sperm quality.
Collapse
Affiliation(s)
- Taha Ghantabpour
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shabani Nashtaei
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeid Nekoonam
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Rezaei
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fardin Amidi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Wang X, Li X, Xiong D, Ren H, Chen H, Ju Z. Exposure of adult sea urchin Strongylocentrotus intermedius to stranded heavy fuel oil causes developmental toxicity on larval offspring. PeerJ 2022; 10:e13298. [PMID: 35462773 PMCID: PMC9029359 DOI: 10.7717/peerj.13298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/28/2022] [Indexed: 01/13/2023] Open
Abstract
Heavy fuel oil (HFO) spills pose serious threat to coastlines and sensitive resources. Stranded HFO that occurs along the coastline could cause long-term and massive damage to the marine environment and indirectly affect the survival of parental marine invertebrates. However, our understanding of the complex associations within invertebrates is primarily limited, particularly in terms of the toxicity effects on the offspring when parents are exposed to stranded HFO. Here, we investigated the persistent effects on the early development stage of the offspring following stranded HFO exposure on the sea urchin Strongylocentrotus intermedius. After 21 d exposure, sea urchins exhibited a significant decrease in the reproductive capacity; while the reactive oxygen species level, 3-nitrotyrosine protein level, protein carbonyl level, and heat shock proteins 70 expression in the gonadal tissues and gametes significantly increased as compared to the controls, indicating that HFO exposure could cause development toxicity on offspring in most traits of larval size. These results suggested that the stranded HFO exposure could increase oxidative stress of gonadal tissues, impair reproductive functions in parental sea urchins, and subsequently impact on development of their offspring. This study provides valuable information regarding the persistent toxicity effects on the offspring following stranded HFO exposure on sea urchins.
Collapse
|
9
|
Gambardella C, Marcellini F, Falugi C, Varrella S, Corinaldesi C. Early-stage anomalies in the sea urchin (Paracentrotus lividus) as bioindicators of multiple stressors in the marine environment: Overview and future perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117608. [PMID: 34182396 DOI: 10.1016/j.envpol.2021.117608] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
The morphological anomalies of the early development stages of the sea urchin Paracentrotus lividus, caused by exposure to environmental stressors, are used as biomarker in ecotoxicological and ecological investigations. Here, we reviewed the available literature and classified the embryo and larval anomalies identified so far, to highlight potential commonalities or differences related to the biological action of the different stressors and their ecological impact. Morphological anomalies are influenced by a) the developmental stage of exposure to stressors; b) the intensity of the stress; c) the intra- and inter-cellular mechanisms affected by the exposure to environmental agents. The classification and analysis of embryo and larvae anomalies, either observed by the authors of this review and reported in literature, indicate that sea urchin abnormalities, caused by exposure to different stressors, can be very similar among them and classified into 18 main types, which can occur individually or mixed. All anomalies can be used to calculate an Index of Contaminant Impact to assess the impact of multiple stressors and to identify relationships between morphological anomalies and compromised biological mechanisms. This approach could be useful for a first screening of the presence of potential stressors impairing the growth and development of the early life stages of marine organisms, thus providing a relevant advancement for in future monitoring activities devoted to assess the health status in coastal marine ecosystems.
Collapse
Affiliation(s)
- Chiara Gambardella
- Consiglio Nazionale Delle Ricerche - Istituto per Lo Studio Degli Impatti Antropici e Sostenibilità in Ambiente Marino (CNR-IAS), Via de Marini 6, 16149, Genova, Italy
| | | | - Carla Falugi
- Dipartimento di Scienze Della Vita e Dell'Ambiente, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Stefano Varrella
- Dipartimento di Scienze e Ingegneria Della Materia, Dell'Ambiente e Urbanistica, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Cinzia Corinaldesi
- Dipartimento di Scienze e Ingegneria Della Materia, Dell'Ambiente e Urbanistica, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| |
Collapse
|
10
|
Latorre-Padilla N, Meynard A, Rivas J, Contreras-Porcia L. Transfer of Pollutants from Macrocystis pyrifera to Tetrapygus niger in a Highly Impacted Coastal Zone of Chile. TOXICS 2021; 9:244. [PMID: 34678940 PMCID: PMC8539136 DOI: 10.3390/toxics9100244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 11/29/2022]
Abstract
PAHs and heavy metals are characteristic pollutants in urbanized coastal areas, especially those with industrial activity. Given this context and the ability of Macrocystis pyrifera to drift when detached and provide trophic subsidy in coastal systems, we analyzed the potential transfer of pollutants to the herbivore Tetrapygus niger, through diet, in an industrialized coastal zone in Central Chile (Caleta Horcón) and characterized the impacted zone using diverse polluted ecotoxicological indices. For this purpose, a culture experiment was conducted where M. pyrifera individuals from Algarrobo (control site) were cultivated in Caleta Horcón and then used as food for T. niger. The contents of both PAHs and heavy metal contents were subsequently determined in algal tissue and sea urchin gonads as well as in the seawater. The results show that algae cultivated in Caleta Horcón had higher concentrations of naphthalene (NAF) compared to those from a low industrial impact zone (Algarrobo) (2.5 and 1.8 mg kg-1, respectively). The concentrations of Cu, As, and Cd were higher in Caleta Horcón than in Algarrobo in both M. pyrifera and T. niger. For all metals, including Pb, higher concentrations were present in T. niger than in M. pyrifera (between 5 and 798 times higher). Additionally, as indicated by the toxicological indices MPI (0.00804) and PLI (10.89), Caleta Horcón is highly contaminated with metals compared to Algarrobo (0.0006 and 0.015, respectively). Finally, the bioconcentration factor (BCF) and trophic transfer factor (TTF) values were greater than one in most cases, with values in Caleta Horcón exceeding those in Algarrobo by one or two orders of magnitude. This study provides evidence that Caleta Horcón is a highly impacted zone (HIZ) compared to Algarrobo, in addition to evidence that the biomagnification of certain pollutants, including the possible responses to contaminants, are apparently not exclusively transferred to T. niger through diet.
Collapse
Affiliation(s)
- Nicolás Latorre-Padilla
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370251, Chile; (N.L.-P.); (A.M.); (J.R.)
- Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Valparaíso, Quintay 2531015, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago 8331150, Chile
- Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago 8370251, Chile
- Programa de Doctorado en Medicina de la Conservación, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370251, Chile
| | - Andrés Meynard
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370251, Chile; (N.L.-P.); (A.M.); (J.R.)
- Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Valparaíso, Quintay 2531015, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago 8331150, Chile
- Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago 8370251, Chile
| | - Jorge Rivas
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370251, Chile; (N.L.-P.); (A.M.); (J.R.)
- Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Valparaíso, Quintay 2531015, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago 8331150, Chile
- Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago 8370251, Chile
| | - Loretto Contreras-Porcia
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370251, Chile; (N.L.-P.); (A.M.); (J.R.)
- Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ciencias de la Vida, Universidad Andres Bello, Valparaíso, Quintay 2531015, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago 8331150, Chile
- Instituto Milenio en Socio-Ecología Costera (SECOS), Santiago 8370251, Chile
| |
Collapse
|
11
|
Masullo T, Biondo G, Natale MD, Tagliavia M, Bennici CD, Musco M, Ragusa MA, Costa S, Cuttitta A, Nicosia A. Gene Expression Changes after Parental Exposure to Metals in the Sea Urchin Affect Timing of Genetic Programme of Embryo Development. BIOLOGY 2021; 10:biology10020103. [PMID: 33535713 PMCID: PMC7912929 DOI: 10.3390/biology10020103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/20/2021] [Accepted: 01/30/2021] [Indexed: 12/14/2022]
Abstract
It is widely accepted that phenotypic traits can be modulated at the epigenetic level so that some conditions can affect the progeny of exposed individuals. To assess if the exposure of adult animals could result in effects on the offspring, the Mediterranean sea urchin and its well-characterized gene regulatory networks (GRNs) was chosen as a model. Adult animals were exposed to known concentrations of zinc and cadmium (both individually and in combination) for 10 days, and the resulting embryos were followed during the development. The oxidative stress occurring in parental gonads, embryo phenotypes and mortality, and the expression level of a set of selected genes, including members of the skeletogenic and endodermal GRNs, were evaluated. Increased oxidative stress at F0, high rates of developmental aberration with impaired gastrulation, in association to deregulation of genes involved in skeletogenesis (dri, hex, sm50, p16, p19, msp130), endodermal specification (foxa, hox11/13b, wnt8) and epigenetic regulation (kat2A, hdac1, ehmt2, phf8 and UBE2a) occurred either at 24 or 48 hpf. Results strongly indicate that exposure to environmental pollutants can affect not only directly challenged animals but also their progeny (at least F1), influencing optimal timing of genetic programme of embryo development, resulting in an overall impairment of developmental success.
Collapse
Affiliation(s)
- Tiziana Masullo
- Institute for Studies on the Mediterranean-National Research Council (ISMED-CNR), Detached Unit of Palermo, Via Filippo Parlatore 65, 90145 Palermo, Italy; (T.M.); (M.D.N.); (C.D.B.); (M.M.)
| | - Girolama Biondo
- Institute for Anthropic Impacts and Sustainability in Marine Environment-National Research Council (IAS-CNR), Detached Unit of Capo Granitola, Via del mare 3, 91021 Campobello di Mazara, Italy;
| | - Marilena Di Natale
- Institute for Studies on the Mediterranean-National Research Council (ISMED-CNR), Detached Unit of Palermo, Via Filippo Parlatore 65, 90145 Palermo, Italy; (T.M.); (M.D.N.); (C.D.B.); (M.M.)
- Department of Earth and Marine Science (DiSTeM), University of Palermo, Via Archirafi 20, 90123 Palermo, Italy
| | - Marcello Tagliavia
- Institute for Biomedical Research and Innovation-National Research Council-(IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy;
| | - Carmelo Daniele Bennici
- Institute for Studies on the Mediterranean-National Research Council (ISMED-CNR), Detached Unit of Palermo, Via Filippo Parlatore 65, 90145 Palermo, Italy; (T.M.); (M.D.N.); (C.D.B.); (M.M.)
| | - Marianna Musco
- Institute for Studies on the Mediterranean-National Research Council (ISMED-CNR), Detached Unit of Palermo, Via Filippo Parlatore 65, 90145 Palermo, Italy; (T.M.); (M.D.N.); (C.D.B.); (M.M.)
| | - Maria Antonietta Ragusa
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Ed. 16, 90128 Palermo, Italy; (M.A.R.); (S.C.)
| | - Salvatore Costa
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Ed. 16, 90128 Palermo, Italy; (M.A.R.); (S.C.)
| | - Angela Cuttitta
- Institute for Studies on the Mediterranean-National Research Council (ISMED-CNR), Detached Unit of Palermo, Via Filippo Parlatore 65, 90145 Palermo, Italy; (T.M.); (M.D.N.); (C.D.B.); (M.M.)
- Correspondence: (A.C.); (A.N.)
| | - Aldo Nicosia
- Institute for Biomedical Research and Innovation-National Research Council-(IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy;
- Correspondence: (A.C.); (A.N.)
| |
Collapse
|
12
|
Wang X, Ren H, Li X, Chen H, Ju Z, Xiong D. Sex-Specific Differences in the Toxic Effects of Heavy Fuel Oil on Sea Urchin ( Strongylocentrotus intermedius). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:E499. [PMID: 33435413 PMCID: PMC7827743 DOI: 10.3390/ijerph18020499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/31/2020] [Accepted: 01/07/2021] [Indexed: 11/16/2022]
Abstract
The purpose of this study was to explore and compare the sex-specific differences in the toxic effects of water-accommodated fractions of 380# heavy fuel oil (HFO WAF) on the sea urchin Strongylocentrotus intermedius. Sea urchins were acutely exposed to HFO WAF at different nominal concentrations (0%, 10% and 20%) for seven days. The results showed that females had a higher polycyclic aromatic hydrocarbons (PAHs) bioaccumulation in gonad tissues and that both the total antioxidant capacity (TAC) and lipid peroxidation (LPO) levels in the gonad tissues of females were much higher than those of males. The PAHs bioaccumulation in gametes indicated that parents' exposure could lead to a transfer of PAHs to their offspring, and eggs had higher TAC and LPO than sperms. After maternal and paternal exposure to HFO WAF, the frequency of morphological abnormalities of the offspring was increased when compared to the control. Overall, these results indicated that maternal exposure to HFO WAF could cause more significantly toxic effects on sea urchins than paternal exposure could, which could lead to more significantly negative effects on their offspring.
Collapse
Affiliation(s)
| | | | | | | | | | - Deqi Xiong
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China; (X.W.); (H.R.); (X.L.); (H.C.); (Z.J.)
| |
Collapse
|
13
|
Quetglas-Llabrés MM, Tejada S, Capó X, Langley E, Sureda A, Box A. Antioxidant response of the sea urchin Paracentrotus lividus to pollution and the invasive algae Lophocladia lallemandii. CHEMOSPHERE 2020; 261:127773. [PMID: 32736247 DOI: 10.1016/j.chemosphere.2020.127773] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 05/04/2023]
Abstract
Pollution derived from human activities and the arrival of invasive species are common worldwide and affect coastal marine ecosystems negatively, and more especially in a semi-closed sea such as the Mediterranean Sea. The aim of the study was to evaluate oxidative stress biomarkers in the gonadal tissue of the sea urchin Paracentrotus lividus (Lamarck, 1816) sampled in different areas of Sant Antoni de Portmany (Ibiza Island, Spain) with different anthropic activities, and in an area deeply covered by the invasive red algae Lophocladia lallemandii. The densities of P. lividus were higher in the area with the greatest anthropogenic influence, while the area invaded by L. lallemandii showed the lowest density. A significant increase in the activities of the antioxidant enzymes catalase, superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione reductase (GRd) and the phase II detoxifying enzyme glutathione S-transferase (GST) was found in the most impacted area by the human activity. Moreover, malondialdehyde (MDA) and nitrite levels were also increased in the most impacted area. Similarly, the presence of L. lallemandii induced oxidative stress in P. lividus evidenced by a significant increase in all analysed biomarkers. In conclusion, changes in oxidative stress biomarkers are a good proxy to evaluate the impacts induced by anthropogenic activities and by the presence of invasive algae to P. lividus.
Collapse
Affiliation(s)
- Maria Magdalena Quetglas-Llabrés
- Grup de Nutrició Comunitària i Estrès Oxidatiu, IUNICS, Departament de Biologia Fonamental i Ciències de la Salut, Universitat de les Illes Balears, E-07122, Palma de Mallorca, Spain; Instituto de Investigación Sanitaria Illes Balears (IdISBa), E-07120, Palma de Mallorca, Spain
| | - Silvia Tejada
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), E-07120, Palma de Mallorca, Spain; CIBEROBN (Physiopathology of Obesity and Nutrition), University of Balearic Islands, Palma de Mallorca, Spain; Laboratory of Neurophysiology, Department of Biology, University of the Balearic Islands, E-07122, Palma de Mallorca, Spain
| | - Xavier Capó
- Grup de Nutrició Comunitària i Estrès Oxidatiu, IUNICS, Departament de Biologia Fonamental i Ciències de la Salut, Universitat de les Illes Balears, E-07122, Palma de Mallorca, Spain; Instituto Español de Oceanografía, Centro Oceanográfico de Baleares, Muelle de Poniente s/n, E-07015, Palma de Mallorca, Spain
| | - Eli Langley
- CREM, Aquari Cap Blanc. Ctra. Cala Gració. Sant Antoni de Portmany, E-07820, Ibiza, Balearic Islands, Spain
| | - Antoni Sureda
- Grup de Nutrició Comunitària i Estrès Oxidatiu, IUNICS, Departament de Biologia Fonamental i Ciències de la Salut, Universitat de les Illes Balears, E-07122, Palma de Mallorca, Spain; Instituto de Investigación Sanitaria Illes Balears (IdISBa), E-07120, Palma de Mallorca, Spain; CIBEROBN (Physiopathology of Obesity and Nutrition), University of Balearic Islands, Palma de Mallorca, Spain.
| | - Antonio Box
- Consell Insular d'Eivissa, Dep. Agricultura, Ramaderia, Pesca, Caça i Cooperació Municipal. Av. Espanya nº49, E-07800 Ibiza, Balearic Islands, Spain.
| |
Collapse
|
14
|
Milito A, Murano C, Castellano I, Romano G, Palumbo A. Antioxidant and immune response of the sea urchin Paracentrotus lividus to different re-suspension patterns of highly polluted marine sediments. MARINE ENVIRONMENTAL RESEARCH 2020; 160:104978. [PMID: 32291250 DOI: 10.1016/j.marenvres.2020.104978] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
Marine pollution due to disused industrial activities is a major threat to ecosystems and human health, for example through the effects of re-suspension of toxic substances that are present in contaminated sediments. Here, we examined the effects of different re-suspension patterns of polluted sediments from the site of national interest Bagnoli-Coroglio, on the immune system of the sea urchin Paracentrotus lividus. An indoor experiment was set up exposing sea urchins for 34 days to such sediments and evaluating the effects of two patterns of water turbulence, mimicking natural storms at sea. One group of animals experienced an "aggregated" pattern of turbulence, consisting in two events, each lasting 2 days, separated by only 3 calm days, while a second group experienced two events of turbulence separated by 17 calm days (spaced pattern). At different times from the beginning of the experiment, coelomic fluid was collected from the animals and immune cells were examined for cell count and morphology, oxidative stress variables, and expression of genes involved in metal detoxification, stress response and inflammation. Our results highlighted that the aggregated pattern of turbulence was more noxious for sea urchins. Indeed, their immune system was altered, over the exposure time, as indicated by the increase of red amoebocytes number. Moreover, despite of an increase of the antioxidant power, animals from this group displayed a very significant ROS over-production at the end of the experiment. Conversely, animals in the spaced condition activated a different immune response, mainly having phagocytes as actors, and were able to partially recover from the received stress at the end of the experiment. No changes in the expression of genes related to antioxidant and anti-inflammatory responses were observed in both groups. By contrast, a down-regulation of various metallothioneins (4, 6, 7 and 8) in the group subjected to aggregated pattern was observed, while metallothionein 8 was up-regulated in the animals from the group exposed to the spaced pattern of turbulence. This work provides the first evidence of how sea urchins can respond to different re-suspension patterns of polluted sediments by modulating their immune system functions. The present data are relevant in relation to the possible environmental restoration of the study site, whose priorities include the assessment of the effects of marine pollution on local organisms, among which P. lividus represents a key benthic species.
Collapse
Affiliation(s)
- Alfonsina Milito
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Carola Murano
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy; Department of Physical, Earth and Environmental Sciences, University of Siena, 53100, Siena, Italy
| | - Immacolata Castellano
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Giovanna Romano
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Anna Palumbo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| |
Collapse
|
15
|
Varea R, Piovano S, Ferreira M. Knowledge gaps in ecotoxicology studies of marine environments in Pacific Island Countries and Territories - A systematic review. MARINE POLLUTION BULLETIN 2020; 156:111264. [PMID: 32510405 DOI: 10.1016/j.marpolbul.2020.111264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 05/06/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
The Pacific Island Countries and Territories (PICTs) are heavily dependent on the marine resources for food security, employment, government revenue and economic development, hence the concern about the potential exposure of these resources to pollutants. The main goal of this review was to identify ecotoxicology studies published that were done in PICTs. Four major gaps were identified: i) a quantitative gap, with low number of studies published on the PICTs; ii) a geographic gap, where ecotoxicology studies have unevenly covered the different PICTs; iii) a temporal gap, as no biological effect monitoring study has so far been published for the PICTs; and, iv) a pollutants gap, as all of the PICTs studies focused mainly on environmental monitoring studying on average two types of pollutants (heavy metals and pesticides) per PICT only. We suggest, therefore, the potential risk to the marine environment to be estimated by assessing the fate of pollutants via chemical and biological effect monitoring.
Collapse
Affiliation(s)
- Rufino Varea
- School of Marine Studies, Faculty of Science Technology and Environment, The University of the South Pacific, Laucala Bay Road, Suva, Fiji
| | - Susanna Piovano
- School of Marine Studies, Faculty of Science Technology and Environment, The University of the South Pacific, Laucala Bay Road, Suva, Fiji
| | - Marta Ferreira
- School of Marine Studies, Faculty of Science Technology and Environment, The University of the South Pacific, Laucala Bay Road, Suva, Fiji; CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
16
|
Effect of Polycyclic Aromatic Hydrocarbons on Development of the Ascidian Ciona intestinalis Type A. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17041340. [PMID: 32093017 PMCID: PMC7068557 DOI: 10.3390/ijerph17041340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 11/16/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are pollutants that exert harmful effects on marine invertebrates; however, the molecular mechanism underlying PAH action remains unclear. We investigated the effect of PAHs on the ascidian Ciona intestinalis type A (Ciona robusta). First, the influence of PAHs on early Ciona development was evaluated. PAHs such as dibenzothiophene, fluorene, and phenanthrene resulted in formation of abnormal larvae. PAH treatment of swimming larva induced malformation in the form of tail regression. Additionally, we observed the Cionaaryl hydrocarbon receptor (Ci-AhR) mRNA expression in swimming larva, mid body axis rotation, and early juvenile stages. The time correlation between PAH action and AhR mRNA expression suggested that Ci-AhR could be associated with PAH metabolism. Lastly, we analyzed Ci-AhR mRNA localization in Ciona juveniles. Ci-AhR mRNA was localized in the digestive tract, dorsal tubercle, ganglion, and papillae of the branchial sac, suggesting that Ci-AhR is a candidate for an environmental pollutant sensor and performs a neural function. Our results provide basic knowledge on the biological function of Ci-AhR and PAH activity in marine invertebrates.
Collapse
|
17
|
Klein RD, Nogueira LS, Domingos-Moreira FXV, Gomes Costa P, Bianchini A, Wood CM. Effects of sublethal Cd, Zn, and mixture exposures on antioxidant defense and oxidative stress parameters in early life stages of the purple sea urchin Strongylocentrotus purpuratus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 217:105338. [PMID: 31711008 DOI: 10.1016/j.aquatox.2019.105338] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
Oxidative stress parameters were evaluated during the first 72 h of embryonic development of purple sea urchin Strongylocentrotus purpuratus continuously exposed to control conditions, to cadmium alone (Cd, 30 μg/L), to zinc alone (Zn, 9 μg/L) or to a Cd (28 μg/L) plus Zn (9 μg/L) mixture. These sublethal concentrations represent ∼ 10% of the acute EC50. Bioaccumulation, antioxidant capacity against peroxyl radicals (ACAP), total glutathione (GSH) level, glutathione-S-transferase (GST), glucose-6-phosphate dehydrogenase (G6PDH) and superoxide dismutase (SOD) activity, and lipid peroxidation (LPO) were analyzed at 24 h (blastula), 48 h (gastrula), and 72 h (pluteus) stages of development. Zinc (an essential metal) was well-regulated, whereas Cd (non-essential) bioaccumulated and whole-body [Cd] increased from blastula to pluteus stage in sea urchin larvae. In controls, ACAP progressively declined from 24 h to 72 h, while LPO reciprocally increased, but other parameters did not change. Cd alone was more potent than Zn alone as a pro-oxidant, with the major effects being decreases in SOD activity and parallel increases in LPO throughout development; GST activity also increased at 24 h. Zn alone caused only biphasic disturbances of ACAP. In all cases, the simultaneous presence of the other metal prevented the effects, and there was no instance where the oxidative stress response in the presence of the Cd/Zn mixture was greater than in the presence of either Cd or Zn alone. Therefore the sublethal effects of joint exposures were always less than additive or even protective, in agreement with classical toxicity data. Furthermore, our results indicate that SOD and Zn can play important roles in protecting sea urchin embryos against Cd-induced lipid peroxidation.
Collapse
Affiliation(s)
- Roberta Daniele Klein
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (ICB/FURG), Av. Itália, km 8, 96203-900, Rio Grande, RS, Brazil; Bamfield Marine Science Centre, Bamfield, British Columbia, V0R 1B0, Canada.
| | - Lygia S Nogueira
- Bamfield Marine Science Centre, Bamfield, British Columbia, V0R 1B0, Canada; CAPES Foundation, Ministry of Education of Brazil, Brasília, DF, 70040-020, Brazil; University of British Columbia, Department of Zoology, Vancouver, British Columbia, 12, V6T 1Z4, Canada
| | - Fabíola Xochilt Valdez Domingos-Moreira
- Bamfield Marine Science Centre, Bamfield, British Columbia, V0R 1B0, Canada; Instituto Nacional de Pesquisas da Amazônia (INPA), Laboratório de Ecotoxicologia Aquática na Amazônia, Manaus, Amazonas, 69067-375, Brazil; University of British Columbia, Department of Zoology, Vancouver, British Columbia, 12, V6T 1Z4, Canada
| | - Patrícia Gomes Costa
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (ICB/FURG), Av. Itália, km 8, 96203-900, Rio Grande, RS, Brazil
| | - Adalto Bianchini
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (ICB/FURG), Av. Itália, km 8, 96203-900, Rio Grande, RS, Brazil; Bamfield Marine Science Centre, Bamfield, British Columbia, V0R 1B0, Canada
| | - Chris M Wood
- Bamfield Marine Science Centre, Bamfield, British Columbia, V0R 1B0, Canada; University of British Columbia, Department of Zoology, Vancouver, British Columbia, 12, V6T 1Z4, Canada; McMaster University Dept. of Biology, Hamilton, Ontario, L8S 4K1, Canada
| |
Collapse
|
18
|
Clark MS, Suckling CC, Cavallo A, Mackenzie CL, Thorne MAS, Davies AJ, Peck LS. Molecular mechanisms underpinning transgenerational plasticity in the green sea urchin Psammechinus miliaris. Sci Rep 2019; 9:952. [PMID: 30700813 PMCID: PMC6353892 DOI: 10.1038/s41598-018-37255-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 11/30/2018] [Indexed: 01/01/2023] Open
Abstract
The pre-conditioning of adult marine invertebrates to altered conditions, such as low pH, can significantly impact offspring outcomes, a process which is often referred to as transgenerational plasticity (TGP). This study describes for the first time, the gene expression profiles associated with TGP in the green sea urchin Psammechinus miliaris and evaluates the transcriptional contribution to larval resilience. RNA-Seq was used to determine how the expression profiles of larvae spawned into low pH from pre-acclimated adults differed to those of larvae produced from adults cultured under ambient pH. The main findings demonstrated that adult conditioning to low pH critically pre-loads the embryonic transcriptional pool with antioxidants to prepare the larvae for the “new” conditions. In addition, the classic cellular stress response, measured via the production of heat shock proteins (the heat shock response (HSR)), was separately evaluated. None of the early stage larvae either spawned in low pH (produced from both ambient and pre-acclimated adults) or subjected to a separate heat shock experiment were able to activate the full HSR as measured in adults, but the capacity to mount an HSR increased as development proceeded. This compromised ability clearly contributes to the vulnerability of early stage larvae to acute environmental challenge.
Collapse
Affiliation(s)
- Melody S Clark
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK.
| | - Coleen C Suckling
- School of Ocean Sciences, Bangor University, Askew Street, Menai Bridge, Anglesey, LL59 5AB, UK.,Fisheries, Animal and Veterinary Sciences, University of Rhode Island, 4 East Alumni Avenue, Kingston, RI, 02881, USA
| | - Alessandro Cavallo
- School of Biological and Marine Sciences, Plymouth University, Drake Circus, Plymouth, PL4 8AA, UK
| | - Clara L Mackenzie
- Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, UK
| | - Michael A S Thorne
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Andrew J Davies
- School of Ocean Sciences, Bangor University, Askew Street, Menai Bridge, Anglesey, LL59 5AB, UK.,Biological Sciences, University of Rhode Island, 9 East Alumni Avenue, Kingston, RI, 02881, USA
| | - Lloyd S Peck
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| |
Collapse
|
19
|
Duan M, Xiong D, Bai X, Gao Y, Xiong Y, Gao X, Ding G. Transgenerational effects of heavy fuel oil on the sea urchin Strongylocentrotus intermedius considering oxidative stress biomarkers. MARINE ENVIRONMENTAL RESEARCH 2018; 141:138-147. [PMID: 30177415 DOI: 10.1016/j.marenvres.2018.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/12/2018] [Accepted: 08/14/2018] [Indexed: 06/08/2023]
Abstract
Stranding of oil onto a coastline after an oil spill threatens the health of marine benthic organisms. Here, the transgenerational effects of exposure to stranded heavy fuel oil (HFO) on the sea urchin Strongylocentrotus intermedius were assessed. The column containing gravel coated with HFO was prepared in the laboratory to simulate HFO-contaminated gravel shorelines. Adult sea urchins were exposed for 21 days to either a HFO-oiled gravel column at the oil loading of 3000 μg oil/g gravel or a non-HFO-oiled gravel column (as the control treatment) and then offspring were either exposed to HFO or ambient seawater conditions. The sublethal exposure to HFO for 21 days induced polycyclic aromatic hydrocarbons (PAHs) accumulation in gonads, accompanied by increased levels of oxidative lipid, protein and DNA damage and a reduction in total antioxidant capacity. Analysis of gametes indicated that both maternal and paternal exposure could result in the transfer of PAHs and DNA damage to their offspring. Parental (maternal, paternal or both) exposure to HFO caused increases in malformation rates of offspring compared to those from control parents under ambient seawater condition. Continued HFO exposure in the offspring resulted in further increased malformation rates compared with those reared in ambient seawater, as well as oxidative lipid, protein and DNA damage. Furthermore, mother exposure history reduced the total antioxidant capacity of larvae to response to continued HFO exposure. Overall, the results suggest an increased sensitivity to toxic effects of HFO in larvae from exposed both parents compared with those from control parents in S. intermedius, which may consequently affect the recruitment and population maintenance.
Collapse
Affiliation(s)
- Meina Duan
- School of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, Liaoning, China
| | - Deqi Xiong
- School of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, Liaoning, China.
| | - Xue Bai
- School of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, Liaoning, China
| | - Yali Gao
- School of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, Liaoning, China
| | - Yijun Xiong
- Department of Biological Chemistry, Grinnell College, 1115 8th Ave, Grinnell, IA, 50112, USA
| | - Xiang Gao
- School of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, Liaoning, China
| | - Guanghui Ding
- School of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, Liaoning, China
| |
Collapse
|
20
|
Duan M, Xiong D, Yang M, Xiong Y, Ding G. Parental exposure to heavy fuel oil induces developmental toxicity in offspring of the sea urchin Strongylocentrotus intermedius. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 159:109-119. [PMID: 29730404 DOI: 10.1016/j.ecoenv.2018.04.067] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 06/08/2023]
Abstract
The present study investigated the toxic effects of parental (maternal/paternal) exposure to heavy fuel oil (HFO) on the adult reproductive state, gamete quality and development of the offspring of the sea urchin Strongylocentrotus intermedius. Adult sea urchins were exposed to effluents from HFO-oiled gravel columns for 7 days to simulate an oil-contaminated gravel shore, and then gametes of adult sea urchins were used to produce embryos to determine developmental toxicity. For adult sea urchins, no significant difference in the somatic size and weight was found between the various oil loadings tested, while the gonad weight and gonad index were significantly decreased at higher oil loadings. The spawning ability of adults and fecundity of females significantly decreased. For gametes, no effect was observed on the egg size and fertilization success in any of the groups. However, a significant increase in the percentage of anomalies in the offspring was observed and then quantified by an integrative toxicity index (ITI) at 24 and 48 h post fertilization. The offspring from exposed parents showed higher ITI values with more malformed embryos. The results confirmed that parental exposure to HFO can cause adverse effects on the offspring and consequently affect the recruitment and population maintenance of sea urchins.
Collapse
Affiliation(s)
- Meina Duan
- School of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian 116026, Liaoning, China
| | - Deqi Xiong
- School of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian 116026, Liaoning, China.
| | - Mengye Yang
- School of Life Science, Wuhan University, Wuhan 430072, Hubei, China
| | - Yijun Xiong
- School of Biology and Chemistry, Grinnell College, 1115 8th Ave, Grinnell, IA 50112, USA
| | - Guanghui Ding
- School of Environmental Science and Engineering, Dalian Maritime University, Linghai Road 1, Dalian 116026, Liaoning, China
| |
Collapse
|
21
|
Biotic and environmental stress induces nitration and changes in structure and function of the sea urchin major yolk protein toposome. Sci Rep 2018; 8:4610. [PMID: 29545577 PMCID: PMC5854732 DOI: 10.1038/s41598-018-22861-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 03/02/2018] [Indexed: 12/17/2022] Open
Abstract
The major yolk protein toposome plays crucial roles during gametogenesis and development of sea urchins. We previously found that nitration of toposome increases in the gonads of a Paracentrotus lividus population living in a marine protected area affected by toxic blooms of Ostreospsis cf. ovata, compared to control populations. This modification is associated with ovatoxin accumulation, high levels of nitric oxide in the gonads, and a remarkable impairment of progeny development. However, nothing is known about the environmental-mediated-regulation of the structure and biological function of toposome. Here, we characterize through wide-ranging biochemical and structural analyses the nitrated toposome of sea urchins exposed to the bloom, and subsequently detoxified. The increased number of nitrated tyrosines in toposome of sea urchins collected during algal bloom induced structural changes and improvement of the Ca2+-binding affinity of the protein. After 3 months’ detoxification, ovatoxin was undetectable, and the number of nitric oxide-modified tyrosines was reduced. However, the nitration of specific residues was irreversible and occurred also in embryos treated with metals, used as a proxy of environmental pollutants. The structural and functional changes of toposome caused by nitration under adverse environmental conditions may be related to the defective development of sea urchins’ progeny.
Collapse
|