1
|
Jin R, Gao Q, Yin C, Zou M, Lu K, Liu W, Zhu Y, Zhang M, Cheng R. The CD146-HIF-1α axis regulates epithelial cell migration and alveolar maturation in a mouse model of bronchopulmonary dysplasia. J Transl Med 2022; 102:794-804. [PMID: 35306530 PMCID: PMC9309096 DOI: 10.1038/s41374-022-00773-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/12/2022] [Accepted: 02/13/2022] [Indexed: 11/09/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the most common challenge in preterm neonates. Retardation of alveolar development characterizes the pulmonary pathology in BPD. In the present study, we explored the roles of the CD146-HIF-1α axis in BPD. We demonstrated that the levels of reactive oxygen species (ROS) and soluble CD146 (sCD1146) were increased in the peripheral blood of preterm neonates with BPD. In alveolar epithelial cells, hyperoxia promoted the expression of HIF-1α and CD146, which reinforced each other. In a mouse model of BPD, by exposing pups to 65% hyperoxia, HIF-1α and CD146 were increased in the pulmonary tissues. Mechanistically, CD146 hindered the migration of alveolar epithelial cells; in contrast, movement was significantly enhanced in CD146-knockout alveolar epithelial cells. As expected, CD146-knockout ameliorated alveolarization and improved BPD disease severity. Taken together, our findings imply that the CD146-HIF-1α axis contributes to alveolarization and that CD146 may be a novel candidate in BPD therapy.
Collapse
Affiliation(s)
- Rui Jin
- grid.452511.6Department of Neonatal Medical Center, Children’s Hospital of Nanjing Medical University, Nanjing, China ,Department of Neonatal Medical Center, Lianyungang Maternal and Child Health Hospital, Lianyungang, China
| | - Qianqian Gao
- grid.452511.6Department of Neonatal Medical Center, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Chunyu Yin
- grid.452511.6Department of Neonatal Medical Center, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Mengjia Zou
- grid.452511.6Department of Neonatal Medical Center, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Keyu Lu
- grid.452511.6Department of Neonatal Medical Center, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Liu
- grid.89957.3a0000 0000 9255 8984Jiangsu Province Engineering Research Center of Antibody Drug, Nanjing Medical University, Nanjing, China ,grid.89957.3a0000 0000 9255 8984NHC Key Laboratory of Antibody Technique, Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Yuting Zhu
- Department of Neonatology, The Affiliated Wuxi Children’s Hospital of Nanjing Medical University, Wuxi, China
| | - Mingshun Zhang
- Jiangsu Province Engineering Research Center of Antibody Drug, Nanjing Medical University, Nanjing, China. .,NHC Key Laboratory of Antibody Technique, Department of Immunology, Nanjing Medical University, Nanjing, China.
| | - Rui Cheng
- Department of Neonatal Medical Center, Children's Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
2
|
Ensor CM, AlSiraj Y, Shoemaker R, Sturgill J, Keshavamurthy S, Gordon EM, Dong BE, Waters C, Cassis LA. SARS-CoV-2 Spike Protein Regulation of Angiotensin Converting Enzyme 2 and Tissue Renin-Angiotensin Systems: Influence of Biologic Sex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.09.14.460275. [PMID: 34545369 PMCID: PMC8452098 DOI: 10.1101/2021.09.14.460275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Angiotensin converting enzyme 2 (ACE2) is an enzyme that limits activity of the renin-angiotensin system (RAS) and also serves as a receptor for the SARS-CoV-2 Spike (S) protein. Binding of S protein to ACE2 causes internalization which activates local RAS. ACE2 is on the X chromosome and its expression is regulated by sex hormones. In this study, we defined ACE2 mRNA abundance and examined effects of S protein on ACE2 activity and/or angiotensin II (AngII) levels in pivotal tissues (lung, adipose) from male and female mice. In lung, ACE2 mRNA abundance was reduced following gonadectomy (GDX) of male and female mice and was higher in XX than XY mice of the Four Core Genotypes (FCG). Reductions in lung ACE2 mRNA abundance by GDX occurred in XX, but not XY FCG female mice. Lung mRNA abundance of ADAM17 and TMPRSS2, enzymes that shed cell surface ACE2 and facilitate viral cell entry, was reduced by GDX in male but not female mice. For comparison, adipose ACE2 mRNA abundance was higher in female than male mice and higher in XX than XY FCG mice. Adipose ADAM17 mRNA abundance was increased by GDX of male and female mice. S protein reduced ACE2 activity in alveolar type II epithelial cells and 3T3-L1 adipocytes. Administration of S protein to male and female mice increased lung AngII levels and decreased adipose ACE2 activity in male but not female mice. These results demonstrate that sex differences in ACE2 expression levels may impact local RAS following S protein exposures.
Collapse
Affiliation(s)
- Charles M Ensor
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536
| | - Yasir AlSiraj
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536
| | - Robin Shoemaker
- Department of Dietetics and Human Nutrition, College of Food, Agriculture and the Environment, University of Kentucky, Lexington, KY 40536
| | - Jamie Sturgill
- Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY 40536
| | - Suresh Keshavamurthy
- Division of Cardiothoracic Surgery, Department of Surgery, College of Medicine, University of Kentucky, Lexington, KY 40536
| | - Elizabeth M Gordon
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536
| | - Brittany E Dong
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536
| | - Christopher Waters
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536
| | - Lisa A Cassis
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536
| |
Collapse
|
3
|
Nanodiamonds inhibit scratch-wound repair in lung epithelial cell monolayers by blocking cell migration and inhibiting cell proliferation. Toxicol Lett 2021; 341:83-93. [PMID: 33508333 DOI: 10.1016/j.toxlet.2021.01.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/11/2021] [Accepted: 01/20/2021] [Indexed: 12/29/2022]
Abstract
Proliferation and migration of lung epithelial cells following the injury to the epithelial lining of alveoli and airways in the lung are pivotal for remodeling and repair of the wound to restore normal lung function. In the present study, we examined the modulatory effect of carboxylated nanodiamonds (cNDs) on the cell division, migration, and adhesion of epithelial cells in the well-established in vitro model of wound repair and cell migration. Flow cytometry and confocal microscopy results indicated that both LA4 and A549 cells effectively internalized fluorescent carboxylated nanodiamonds (cFNDs) and the internalized nanodiamonds were essentially localized in the cytoplasmic region. Treatment with cNDs blocked the division and migration of cells to fill the scratch wound. Live cell imaging and time-lapse videography of the wound healing process indicated a significant inhibition of cell proliferation activity in cND-treated cells and blocked the wound repair process. Trans-well cell-migration assay results further support the inhibitory effect of cNDs on the cell migration process. Western blotting and immunofluorescence staining indicated that the crucial proteins involved in epithelial-mesenchymal transition (EMT) and cell migration i.e. β-catenin, Vimentin, NM-myosin, and Focal Adhesion Kinase (FAK) were downregulated after treatment with cNDs, while the expression of E-cadherin and Claudin-1, major cell adhesion markers remained unaltered. Taken together, our results indicate that the decline in cell proliferation activity, downregulation in the expression of various crucial protein like β-Catenin, NM-myosin, FAK, and Vimentin involved in the cell migration and unaltered expression of cell adhesion molecules E-cadherin and Claudin-1, may be the factors that contribute to the cND-mediated inhibition of EMT during the wound repair process in the monolayers of lung epithelial cells.
Collapse
|
4
|
CXCR4 + cells are increased in lung tissue of patients with idiopathic pulmonary fibrosis. Respir Res 2020; 21:221. [PMID: 32843095 PMCID: PMC7449054 DOI: 10.1186/s12931-020-01467-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/23/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND CXCR4, a transmembrane-receptor located on epithelial cells that is activated by CXCL12, may have a role in IPF via migration of CXCR4+ fibrocytes to the lung. However, its expression has not been fully characterised in idiopathic pulmonary fibrosis (IPF) or other fibrotic interstitial lung diseases (ILDs). CXCL12 is constitutively expressed in the bone marrow, and levels of CXCR4 regulate control of this signalling pathway. The aim of this study was to profile the expression of CXCR4 in lung tissue and peripheral circulation of patients with IPF and other fibrotic ILDs. METHODS Expression of CXCR4 on peripheral blood mononuclear cells (PBMCs) was examined by flow cytometry in 20 patients with IPF and 10 age-matched non-disease control (NDC) donors. Levels of CXCL12 in human plasma were measured by ELISA. Expression of CXCR4, CXCL12, CD45, and e-cadherin was assessed in IPF (n = 10), other fibrotic ILD (n = 8) and NDC (n = 10) lung tissue by multiplex immunohistochemistry (OPAL) and slides were scanned using a Vectra 3 scanner. Cells were quantified with computer automated histological analysis software (HALO). RESULTS In blood, the number of CXCR4+ cells was lower but the level of CXCL12 was higher in patients with IPF compared to NDC donors. Elevated CXCR4 expression was detected in lung tissue from patients with IPF and other fibrotic ILDs compared to NDC. There were higher levels of CXCR4+/e-cadherin+/CXCL12+ (epithelial) cells in IPF lung tissue compared to NDC, but there was no difference in the numbers of CXCR4+/CD45+/CXCL12+ (myeloid) cells between the two groups. CONCLUSIONS This report demonstrates that CXCR4 is overexpressed not only in IPF but also in other ILDs and expression is particularly prominent within both honeycomb cysts and distal airway epithelium. This observation supports the hypothesis that CXCR4 may drive tissue fibrosis through binding its specific ligand CXCL12. Although CXCR4 expressing cells could be either of epithelial or myeloid origin it appears that the former is more prominent in IPF lung tissue. Further characterization of the cells of the honeycomb cyst may lead to a better understanding of the fibrogenic processes in IPF and other end-stage fibrotic ILDs.
Collapse
|
5
|
Enhancement of FAK alleviates ventilator-induced alveolar epithelial cell injury. Sci Rep 2020; 10:419. [PMID: 31942012 PMCID: PMC6962166 DOI: 10.1038/s41598-019-57350-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 12/16/2019] [Indexed: 01/19/2023] Open
Abstract
Mechanical ventilation induces lung injury by damaging alveolar epithelial cells (AECs), but the pathogenesis remains unknown. Focal adhesion kinase (FAK) is a cytoplasmic protein tyrosine kinase that is involved in cell growth and intracellular signal transduction pathways. This study explored the potential role of FAK in AECs during lung injury induced by mechanical ventilation. High-volume mechanical ventilation (HMV) was used to create a mouse lung injury model, which was validated by analysis of lung weight, bronchoalveolar lavage fluid and histological investigation. The expression of FAK and Akt in AECs were evaluated. In addition, recombinant FAK was administered to mice via the tail vein, and then the extent of lung injury was assessed. Mouse AECs were cultured in vitro, and FAK expression in cells under stretch was investigated. The effects of FAK on cell proliferation, migration and apoptosis were investigated. The results showed that HMV decreased FAK expression in AECs of mice, while FAK supplementation attenuated lung injury, reduced protein levels/cell counts in the bronchoalveolar lavage fluid and decreased histological lung injury and oedema. The protective effect of FAK promoted AEC proliferation and migration and prevented cells from undergoing apoptosis, which restored the integrity of the alveoli through Akt pathway. Therefore, the decrease in FAK expression by HMV is essential for injury to epithelial cells and the disruption of alveolar integrity. FAK supplementation can reduce AEC injury associated with HMV.
Collapse
|
6
|
Wu X, van Dijk EM, Ng-Blichfeldt JP, Bos IST, Ciminieri C, Königshoff M, Kistemaker LEM, Gosens R. Mesenchymal WNT-5A/5B Signaling Represses Lung Alveolar Epithelial Progenitors. Cells 2019; 8:cells8101147. [PMID: 31557955 PMCID: PMC6829372 DOI: 10.3390/cells8101147] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/17/2019] [Accepted: 09/25/2019] [Indexed: 01/23/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) represents a worldwide concern with high morbidity and mortality, and is believed to be associated with accelerated ageing of the lung. Alveolar abnormalities leading to emphysema are a key characteristic of COPD. Pulmonary alveolar epithelial type 2 cells (AT2) produce surfactant and function as progenitors for type 1 cells. Increasing evidence shows elevated WNT-5A/B expression in ageing and in COPD that may contribute to the disease process. However, supportive roles for WNT-5A/B in lung regeneration were also reported in different studies. Thus, we explored the role of WNT-5A/B on alveolar epithelial progenitors (AEPs) in more detail. We established a Precision-Cut-Lung Slices (PCLS) model and a lung organoid model by co-culturing epithelial cells (EpCAM+/CD45-/CD31-) with fibroblasts in matrigel in vitro to study the impact of WNT-5A and WNT-5B. Our results show that WNT-5A and WNT-5B repress the growth of epithelial progenitors with WNT-5B preferentially restraining the growth and differentiation of alveolar epithelial progenitors. We provide evidence that both WNT-5A and WNT-5B negatively regulate the canonical WNT signaling pathway in alveolar epithelium. Taken together, these findings reveal the functional impact of WNT-5A/5B signaling on alveolar epithelial progenitors in the lung, which may contribute to defective alveolar repair in COPD.
Collapse
Affiliation(s)
- Xinhui Wu
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands.
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands.
| | - Eline M van Dijk
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands.
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands.
| | - John-Poul Ng-Blichfeldt
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands.
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands.
| | - I Sophie T Bos
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands.
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands.
| | - Chiara Ciminieri
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands.
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands.
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, CO 80045 Aurora, USA.
| | - Melanie Königshoff
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, CO 80045 Aurora, USA.
| | - Loes E M Kistemaker
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands.
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands.
- Aquilo BV, 9713 AV Groningen, The Netherlands.
| | - Reinoud Gosens
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands.
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands.
| |
Collapse
|
7
|
Patrussi L, Capitani N, Baldari CT. Abnormalities in chemokine receptor recycling in chronic lymphocytic leukemia. Cell Mol Life Sci 2019; 76:3249-3261. [PMID: 30830241 PMCID: PMC11105227 DOI: 10.1007/s00018-019-03058-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/12/2019] [Accepted: 02/28/2019] [Indexed: 12/16/2022]
Abstract
In addition to their modulation through de novo expression and degradation, surface levels of chemokine receptors are tuned by their ligand-dependent recycling to the plasma membrane, which ensures that engaged receptors become rapidly available for further rounds of signaling. Dysregulation of this process contributes to the pathogenesis of chronic lymphocytic leukemia (CLL) by enhancing surface expression of chemokine receptors, thereby favoring leukemic cell accumulation in the protective niche of lymphoid organs. In this review, we summarize our current understanding of the process of chemokine receptor recycling, focusing on the impact of its dysregulation in CLL.
Collapse
Affiliation(s)
- Laura Patrussi
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy.
| | - Nagaja Capitani
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Cosima T Baldari
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| |
Collapse
|