1
|
Liang B, Zhang EH, Ye Z, Storts H, Jin W, Zheng X, Hylton H, Zaleski O, Xing X, Miles W, Wang JJ. SIX4 Controls Anti-PD-1 Efficacy by Regulating STING Expression. CANCER RESEARCH COMMUNICATIONS 2023; 3:2412-2419. [PMID: 37888903 PMCID: PMC10680432 DOI: 10.1158/2767-9764.crc-23-0265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/20/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023]
Abstract
The cGAS/STING cytosolic DNA-sensing pathway plays a significant role in antitumor immunity. Expression of STING is tightly regulated and commonly reduced or defective in many types of cancer. We have identified SIX4 as a significant regulator of STING expression in colon cancer cells. We showed that knockout of SIX4 decreased STING expression at the mRNA and protein levels while ectopic expression of SIX4 increased STING expression. Depletion of SIX4 led to attenuated STING activation and downstream signaling. Reexpression of SIX4 or ectopic expression of STING in SIX4 knockout cells reversed the effect. Ectopic expression of SIX4 enhanced DMXAA and cGAMP-induced STING activation and downstream signaling. Importantly, decrease of SIX4 expression substantially decreased tumor infiltration of CD8+ T cells and reduced the efficacy of PD-1 antibodies to diminish tumor growth in immune competent mice in vivo. Finally, analysis of The Cancer Genome Atlas colon cancer dataset indicated that tumors with high SIX4 expression were significantly enriched in the Inflammatory Response pathway. SIX4 expression also correlated with expression of multiple IFN-stimulated genes, inflammatory cytokines, and CD8A. Taken together, our results implicate that SIX4 is a principal regulator of STING expression in colon cancer cells, providing an additional mechanism and genetic marker to predict effective immune checkpoint blockade therapy responses. SIGNIFICANCE Our studies demonstrate that SIX4 is an important regulator of STING expression, providing a genetic marker or a therapeutic target to predict or enhance immune checkpoint blockade therapy responses in colon cancer.
Collapse
Affiliation(s)
- Beiyuan Liang
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio
| | - Evan H. Zhang
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio
| | - Zhen Ye
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio
| | - Hayden Storts
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio
| | - Wei Jin
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio
| | - Xinru Zheng
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio
| | - Hannah Hylton
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio
| | - Olivia Zaleski
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio
| | - Xuanxuan Xing
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio
| | - Wayne Miles
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio
| | - Jing J. Wang
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio
- Pelotonia Institute for Immuno-Oncology, James Comprehensive Cancer Center, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
2
|
Zhang Z, Zhou H, Ouyang X, Dong Y, Sarapultsev A, Luo S, Hu D. Multifaceted functions of STING in human health and disease: from molecular mechanism to targeted strategy. Signal Transduct Target Ther 2022; 7:394. [PMID: 36550103 PMCID: PMC9780328 DOI: 10.1038/s41392-022-01252-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/25/2022] [Accepted: 11/09/2022] [Indexed: 12/24/2022] Open
Abstract
Since the discovery of Stimulator of Interferon Genes (STING) as an important pivot for cytosolic DNA sensation and interferon (IFN) induction, intensive efforts have been endeavored to clarify the molecular mechanism of its activation, its physiological function as a ubiquitously expressed protein, and to explore its potential as a therapeutic target in a wide range of immune-related diseases. With its orthodox ligand 2'3'-cyclic GMP-AMP (2'3'-cGAMP) and the upstream sensor 2'3'-cGAMP synthase (cGAS) to be found, STING acquires its central functionality in the best-studied signaling cascade, namely the cGAS-STING-IFN pathway. However, recently updated research through structural research, genetic screening, and biochemical assay greatly extends the current knowledge of STING biology. A second ligand pocket was recently discovered in the transmembrane domain for a synthetic agonist. On its downstream outputs, accumulating studies sketch primordial and multifaceted roles of STING beyond its cytokine-inducing function, such as autophagy, cell death, metabolic modulation, endoplasmic reticulum (ER) stress, and RNA virus restriction. Furthermore, with the expansion of the STING interactome, the details of STING trafficking also get clearer. After retrospecting the brief history of viral interference and the milestone events since the discovery of STING, we present a vivid panorama of STING biology taking into account the details of the biochemical assay and structural information, especially its versatile outputs and functions beyond IFN induction. We also summarize the roles of STING in the pathogenesis of various diseases and highlight the development of small-molecular compounds targeting STING for disease treatment in combination with the latest research. Finally, we discuss the open questions imperative to answer.
Collapse
Affiliation(s)
- Zili Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Haifeng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Xiaohu Ouyang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Yalan Dong
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Alexey Sarapultsev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049, Ekaterinburg, Russia
| | - Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, 430022, Wuhan, China.
- Clinical Research Center of Cancer Immunotherapy, 430022, Hubei, Wuhan, China.
| |
Collapse
|
3
|
Ding M, Li Q, Tan X, Zhang L, Tan J, Zheng L. Comprehensive pan-cancer analysis reveals the prognostic value and immunological role of SPIB. Aging (Albany NY) 2022; 14:6338-6357. [PMID: 35969172 PMCID: PMC9417235 DOI: 10.18632/aging.204225] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/30/2022] [Indexed: 11/25/2022]
Abstract
It is well-established that SPIB is essential for the survival of mature B cells, playing a key role in diffuse large B-cell lymphoma, colorectal cancer, and lung cancer. However, no study has hitherto conducted a systematic pan-cancer analysis on SPIB. Herein, we analyzed the differential expression of SPIB in pan-cancer using The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases and found that SPIB was significantly upregulated in most cancers. In addition, SPIB was positively or negatively associated with prognosis in different cancers. We found that SPIB was significantly associated with tumor immune infiltration and immune checkpoint genes in more than 35 tumors by TIMER database analysis. In addition, SPIB was negatively correlated with Tumor mutational burden (TMB) and Microsatellite instability (MSI) in most tumors. Finally, GO/KEGG enrichment analysis revealed the possible involvement of SPIB in NF-kappa B and B-cell receptor signaling pathways. In conclusion, our comprehensive pan-cancer analysis of SPIB reveals its important role in tumor immunity, suggesting it has huge prospects for clinical application in cancer therapy.
Collapse
Affiliation(s)
- Meng Ding
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| | - Qiufang Li
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| | - Xiao Tan
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| | - Liangyua Zhang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| | - Jun Tan
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| | - Lan Zheng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| |
Collapse
|
4
|
Ge X, Wang Y, Xie H, Li R, Zhang F, Zhao B, Du J. 1,25(OH) 2 D 3 blocks IFNβ production through regulating STING in epithelial layer of oral lichen planus. J Cell Mol Med 2022; 26:3751-3759. [PMID: 35644988 PMCID: PMC9258715 DOI: 10.1111/jcmm.17409] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 12/03/2022] Open
Abstract
Stimulator of interferon genes (STING) is reported to exert vital functions in inflammatory responses and autoimmune diseases. Nevertheless, the status and roles of STING in oral lichen planus (OLP) remain elusive. Here, we state that STING and its downstream cytokine interferon‐β (IFNβ) expression is boosted in the oral keratinocytes from patients suffering OLP in comparison with those from healthy participants. Mechanistically, transcription factor GATA‐binding protein 1 (GATA1) which is highly increased in diseased samples specifically interacts with its element in the promoter of STING to enhance STING transcripts. 1,25(OH)2D3, the active form of vitamin D, is capable of restricting STING and IFNβ increases in oral keratinocyte models resembling OLP in vitro. Moreover, there is a negative correlation between vitamin D receptor (VDR) and STING or IFNβ in human samples. Using plasmids and small interfering RNA transfection technologies, we find 1,25(OH)2D3 regulates STING and IFNβ through a mechanism controlled by the hypoxia‐inducible factor‐1α (HIF‐1α)‐GATA1 axis. Collectively, our findings unveil that 1,25(OH)2D3 lowers STING and IFNβ overexpression in the context of OLP.
Collapse
Affiliation(s)
- Xuejun Ge
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China.,Department of Endodontics, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
| | - Yaxian Wang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China.,Department of Endodontics, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
| | - Hanting Xie
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China.,Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ran Li
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
| | - Fang Zhang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China.,Department of Oral Medicine, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
| | - Bin Zhao
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China
| | - Jie Du
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China.,Department of Oral Medicine, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China.,Institute of Biomedical Research, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
5
|
Khan M, Harms JS, Liu Y, Eickhoff J, Tan JW, Hu T, Cai F, Guimaraes E, Oliveira SC, Dahl R, Cheng Y, Gutman D, Barber GN, Splitter GA, Smith JA. Brucella suppress STING expression via miR-24 to enhance infection. PLoS Pathog 2020; 16:e1009020. [PMID: 33108406 PMCID: PMC7647118 DOI: 10.1371/journal.ppat.1009020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 11/06/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022] Open
Abstract
Brucellosis, caused by a number of Brucella species, remains the most prevalent zoonotic disease worldwide. Brucella establish chronic infections within host macrophages despite triggering cytosolic innate immune sensors, including Stimulator of Interferon Genes (STING), which potentially limit infection. In this study, STING was required for control of chronic Brucella infection in vivo. However, early during infection, Brucella down-regulated STING mRNA and protein. Down-regulation occurred post-transcriptionally, required live bacteria, the Brucella type IV secretion system, and was independent of host IRE1-RNase activity. STING suppression occurred in MyD88-/- macrophages and was not induced by Toll-like receptor agonists or purified Brucella lipopolysaccharide (LPS). Rather, Brucella induced a STING-targeting microRNA, miR-24-2, in a type IV secretion system-dependent manner. Furthermore, STING downregulation was inhibited by miR-24 anti-miRs and in Mirn23a locus-deficient macrophages. Failure to suppress STING expression in Mirn23a-/- macrophages correlated with diminished Brucella replication, and was rescued by exogenous miR-24. Mirn23a-/- mice were also more resistant to splenic colonization one week post infection. Anti-miR-24 potently suppressed replication in wild type, but much less in STING-/- macrophages, suggesting most of the impact of miR-24 induction on replication occurred via STING suppression. In summary, Brucella sabotages cytosolic surveillance by miR-24-dependent suppression of STING expression; post-STING activation “damage control” via targeted STING destruction may enable establishment of chronic infection. Cytosolic pattern recognition receptors, such as the nucleotide-activated STING molecule, play a critical role in the innate immune system by detecting the presence of intracellular invaders. Brucella bacterial species establish chronic infections in macrophages despite initially activating STING. STING participates in the control of Brucella infection, as mice or cells lacking STING show a higher burden of Brucella infection. However, we have found that early following infection, Brucella upregulates a microRNA, miR-24, that targets the STING messenger RNA, resulting in lower STING levels. Dead bacteria or bacteria lacking a functional type IV secretion system were defective at upregulating miR-24 and STING suppression, suggesting an active bacteria-driven process. Failure to upregulate miR-24 and suppress STING greatly compromised the capacity of Brucella to replicate inside macrophages and in mice. Thus, although Brucella initially activate STING during infection, the ensuing STING downregulation serves as a “damage control” mechanism, enabling intracellular infection. Viruses have long been known to target immune sensors such as STING. Our results indicate that intracellular bacterial pathogens also directly target innate immune receptors to enhance their infectious success.
Collapse
Affiliation(s)
- Mike Khan
- Cellular and Molecular Pathology Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jerome S. Harms
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Yiping Liu
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jens Eickhoff
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jin Wen Tan
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Tony Hu
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Fengwei Cai
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Erika Guimaraes
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte-Minas Gerais, Brazil
- Programa de Pós-Graduação em Genética, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sergio Costa Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte-Minas Gerais, Brazil
| | - Richard Dahl
- Department of Microbiology and Immunology, Indiana University School of Medicine, South Bend, Indiana, United States of America
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Yong Cheng
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Delia Gutman
- Department of Cell Biology, University of Miami, Miami, Florida, United States of America
| | - Glen N. Barber
- Department of Cell Biology, University of Miami, Miami, Florida, United States of America
| | - Gary A. Splitter
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Judith A. Smith
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
6
|
Cao Z, Gao W, Gu T, Huo W, Zhang Y, Zhang Y, Xu Q, Chen G. The specificity protein 3 ( SP3) gene in ducks ( Anas platyrhynchos): cloning, characterization and expression during viral infection. Anim Biotechnol 2020; 32:676-682. [PMID: 32180490 DOI: 10.1080/10495398.2020.1740240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Specificity Protein 3 (SP3) is a newly identified regulator of tumor growth and invasiveness in humans. In this study, we identified and characterized the function of duck SP3 (duSP3). The full-length cDNA sequence of the duSP3 gene was cloned via rapid amplification of cDNA ends. It contained 2468 nucleotides, including a 111 base pair (bp) 5'-untranslated region (UTR), 215 bp 3'-UTR, and 2142 bp open reading frame (ORF), which encoded a 713 amino acid (AA) strongly conserved with Avian SP3. Tissue specificity analysis demonstrated that duSP3 was constitutively expressed in the eight tissues tested: liver, spleen, lung, heart, kidney, thymus, breast, and leg; and low expression levels were observed in all tissues, except the spleen and thymus. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis revealed that duSP3 expression rapidly increased in vitro after stimulation with both the hepatitis virus (DHV-1) and polyriboinosinic polyribocytidylic acid (poly(I:C)). However, the expression under these treatments varied in kidney and liver tissues; in the liver, duSP3 increased significantly at 36 h after the DHV-1 treatment and peaked at 72 h after poly(I:C) stimulation. These results suggested that SP3 may play a positive role in immune responses against viral infections in ducks.
Collapse
Affiliation(s)
- Zhengfeng Cao
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, Jiangsu, P. R. China
| | - Wen Gao
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, Jiangsu, P. R. China
| | - Tiantian Gu
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, Jiangsu, P. R. China
| | - Weiran Huo
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, Jiangsu, P. R. China
| | - Yang Zhang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, Jiangsu, P. R. China
| | - Yu Zhang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, Jiangsu, P. R. China
| | - Qi Xu
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, Jiangsu, P. R. China
| | - Guohong Chen
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, Jiangsu, P. R. China
| |
Collapse
|
7
|
Sun X, Xie Z, Hu B, Zhang B, Ma Y, Pan X, Huang H, Wang J, Zhao X, Jie Z, Shi P, Chen Z. The Nrf2 activator RTA-408 attenuates osteoclastogenesis by inhibiting STING dependent NF-κb signaling. Redox Biol 2020; 28:101309. [PMID: 31487581 PMCID: PMC6728880 DOI: 10.1016/j.redox.2019.101309] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 11/30/2022] Open
Abstract
The dysregulation of ROS production and osteoclastogenesis is involved in the progress of osteoporosis. To identify novel and effective targets to treat this disease, it is important to explore the underlying mechanisms. In our study, we firstly tested the effect of the Nrf2 activator RTA-408, a novel synthetic triterpenoid under clinical investigation for many diseases, on osteoclastogenesis. We found that it could inhibit osteoclast differentiation and bone resorption in a time- and dose-dependent manner. Further, RTA-408 enhanced the expression and activity of Nrf2 and significantly suppressed RANKL-induced reactive oxygen species (ROS) production. Nrf2 regulates the STING expression and STING induces the production of IFN-β. Here, we found that RTA-408 could suppress STING expression, but that it does not affect Ifnb1 expression. RANKL-induced degradation of IκBα and the nuclear translocation of P65 was suppressed by RTA-408. Although this compound was not found to influence STING-IFN-β signaling, it suppressed the RANKL-induced K63-ubiquitination of STING via inhibiting the interaction between STING and the E3 ubiquitin ligase TRAF6. Further, adenovirus-mediated STING overexpression rescued the suppressive effect of RTA-408 on NF-κB signaling and osteoclastogenesis. In vivo experiments showed that this compound could effectively attenuate ovariectomy (OVX)-induced bone loss in C57BL/6 mice by inhibiting osteoclastogenesis. Collectively, we show that RTA-408 inhibits NF-κB signaling by suppressing the recruitment of TRAF6 to STING, in addition to attenuating osteoclastogenesis and OVX-induced bone loss in vivo, suggesting that it could be a promising candidate for treating osteoporosis in the future.
Collapse
Affiliation(s)
- Xuewu Sun
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Ziang Xie
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Bin Hu
- Department of Orthopedic Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Boya Zhang
- Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Yan Ma
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Xin Pan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Hai Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Jiying Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Xiangde Zhao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Zhiwei Jie
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Peihua Shi
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Hangzhou, China.
| | - Zhijun Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration, Regeneration Translational Research of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
8
|
Chowdhury IH, Narra HP, Sahni A, Khanipov K, Fofanov Y, Sahni SK. Enhancer Associated Long Non-coding RNA Transcription and Gene Regulation in Experimental Models of Rickettsial Infection. Front Immunol 2019; 9:3014. [PMID: 30687302 PMCID: PMC6333757 DOI: 10.3389/fimmu.2018.03014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 12/05/2018] [Indexed: 12/20/2022] Open
Abstract
Recent discovery that much of the mammalian genome does not encode protein-coding genes (PCGs) has brought widespread attention to long noncoding RNAs (lncRNAs) as a novel layer of biological regulation. Enhancer lnc (elnc) RNAs from the enhancer regions of the genome carry the capacity to regulate PCGs in cis or in trans. Spotted fever rickettsioses represent the consequence of host infection with Gram-negative, obligate intracellular bacteria in the Genus Rickettsia. Despite being implicated in the pathways of infection and inflammation, the roles of lncRNAs in host response to Rickettsia species have remained a mystery. We have profiled the expression of host lncRNAs during infection of susceptible mice with R. conorii as a model closely mimicking the pathogenesis of human spotted fever rickettsioses. RNA sequencing on the lungs of infected hosts yielded reads mapping to 74,964 non-coding RNAs, 206 and 277 of which were determined to be significantly up- and down-regulated, respectively, in comparison to uninfected controls. Following removal of short non-coding RNAs and ambiguous transcripts, remaining transcripts underwent in-depth analysis of mouse lung epigenetic signatures H3K4Me1 and H3K4Me3, active transcript markers (POLR2A, p300, CTCF), and DNaseI hypersensitivity sites to identify two potentially active and highly up-regulated elncRNAs NONMMUT013718 and NONMMUT024103. Using Hi-3C sequencing resource, we further determined that genomic loci of NONMMUT013718 and NONMMUT024103 might interact with and regulate the expression of nearby PCGs, namely Id2 (inhibitor of DNA binding 2) and Apol10b (apolipoprotein 10b), respectively. Heterologous reporter assays confirmed the activity of elncRNAs as the inducers of their predicted PCGs. In the lungs of infected mice, expression of both elncRNAs and their targets was significantly higher than mock-infected controls. Induced expression of NONMMUT013718/Id2 in murine macrophages and NONMMUT024103/Apol10b in endothelial cells was also clearly evident during R. conorii infection in vitro. Finally, shRNA mediated knock-down of NONMMUT013718 and NONMMUT024103 elncRNAs resulted in reduced expression of endogenous Id2 and Apl10b, demonstrating the regulatory roles of these elncRNAs on their target PCGs. Our results provide very first experimental evidence suggesting altered expression of pulmonary lncRNAs and elncRNA-mediated regulation of PCGs involved in immunity and during host interactions with pathogenic rickettsiae.
Collapse
Affiliation(s)
- Imran H Chowdhury
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Hema P Narra
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Abha Sahni
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States.,Institute for Human Infections and Immunity, University of Texas Medical Branch, University Boulevard, Galveston, TX, United States
| | - Kamil Khanipov
- Department of Pharmacology, University of Texas Medical Branch, University Boulevard, Galveston, TX, United States
| | - Yuriy Fofanov
- Department of Pharmacology, University of Texas Medical Branch, University Boulevard, Galveston, TX, United States
| | - Sanjeev K Sahni
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States.,Institute for Human Infections and Immunity, University of Texas Medical Branch, University Boulevard, Galveston, TX, United States
| |
Collapse
|