1
|
Chen X, Zhang Z, Huang H, Deng Y, Xu Z, Chen S, Zhou R, Song J. The involvement of endogenous melatonin in LPS-induced M1-like macrophages and its underlying synthesis mechanism regulated by IRF3. Exp Cell Res 2024; 443:114314. [PMID: 39481795 DOI: 10.1016/j.yexcr.2024.114314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Melatonin (MLT) has been shown to induce polarization of macrophages towards M2-like phenotype and inhibit polarization of macrophages towards M1-like phenotype through exogenous administration, which affects the development of many macrophage polarization-related diseases, such as infectious diseases, cardiovascular diseases, bone diseases, and tumors. However, whether endogenous melatonin has similar influences on macrophage polarization as exogenous melatonin is still under investigation. This study revealed that the process of lipopolysaccharide (LPS) inducing macrophages to polarize towards M1-like phenotype was accompanied by an increase in endogenous MLT secretion. To explore the role of increased endogenous MLT in the polarization process of macrophages, whether similar to the function of exogenous MLT in inhibiting polarization of macrophages towards M1-like phenotype, we established LPS-induced MLT deficiency models in vitro to investigate the effects of endogenous MLT on the secretion of cytokines, co-stimulatory molecules, ROS, and phagocytic function in LPS-induced M1-like macrophages. Additionally, we aimed to elucidate the mechanism by which LPS affects the secretion of endogenous MLT by macrophages. Our results confirm that LPS induces transcription of Aanat through the TLR4/TRIF pathway, consequently facilitating the secretion of MLT by macrophages. In this way, IRF3 is the main transcription factor that regulates Aanat transcription. Endogenous MLT plays a role in inhibiting the polarization of macrophages towards M1 phenotype and delaying cell apoptosis during LPS-induced polarization towards M1 phenotype. This phenomenon may be a form of self-protection that occurs when macrophages engulf pathogens while avoiding oxidative stress and apoptosis caused by LPS. This conclusion clarifies the role of endogenous MLT in the clearance of pathogens by macrophages, providing a theoretical basis for understanding its role in innate immunity.
Collapse
Affiliation(s)
- Xuzheng Chen
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Zhiguang Zhang
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Haobo Huang
- Department of Blood Transfusion, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yujie Deng
- Department of Medical Oncology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Zhenguo Xu
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Siyan Chen
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Ruixiang Zhou
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China.
| | - Jun Song
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China.
| |
Collapse
|
2
|
Sérgio Galina Spilla C, Luiza Decanini Miranda de Souza A, Maria Guissoni Campos L, da Silveira Cruz-Machado S, Pinato L. LPS-induced inflammation in rats during pregnancy reduces maternal melatonin and impairs neurochemistry and behavior of adult male offspring. Brain Res 2024; 1824:148692. [PMID: 38036237 DOI: 10.1016/j.brainres.2023.148692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
Inflammation during pregnancy can induce neurodevelopmental changes that affect the neurological health of offspring. Elevated levels of circulating inflammatory cytokines have been shown to decrease nocturnal melatonin synthesis by the pineal gland, potentially impacting fetal development. This study aimed to assess the effects of LPS-induced inflammation on melatonin concentrations in the plasma of pregnant female rats and explore resulting neurochemical and behavioral changes in their offspring. Our findings revealed that pregnant rats injected with LPS experienced decreased nocturnal melatonin levels in their plasma, with an increase in diurnal melatonin content. The offspring exhibited reduced performance in tests evaluating motor coordination and spatial memory compared to control subjects. Immunohistochemical analysis indicated a decline in calbindin immunoreactivity in Purkinje cells in the cerebellum. Additionally, the hippocampus displayed an increase in IBA-1 and calretinin expression, coupled with a reduction in parvalbumin expression in the offspring of the LPS group. Collectively, this study provides compelling evidence that an inflammatory state can lead to a reduction in melatonin synthesis in pregnant females, potentially impacting the neurodevelopment of offspring, including neuronal, glial, motor, and cognitive aspects. Subsequent studies will further elucidate the mechanisms underlying inflammation-induced maternal melatonin reduction and its impact on offspring neurodevelopment.
Collapse
Affiliation(s)
| | | | | | | | - Luciana Pinato
- Department of Speech, Language and Hearing Sciences, São Paulo State University (UNESP), Marília, São Paulo 17525-900, Brazil.
| |
Collapse
|
3
|
Córdoba-Moreno MO, Santos GC, Muxel SM, Dos Santos-Silva D, Quiles CL, Sousa KDS, Markus RP, Fernandes PACM. IL-10-induced STAT3/NF-κB crosstalk modulates pineal and extra-pineal melatonin synthesis. J Pineal Res 2024; 76:e12923. [PMID: 37990784 DOI: 10.1111/jpi.12923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/11/2023] [Accepted: 10/30/2023] [Indexed: 11/23/2023]
Abstract
Immune-pineal axis activation is part of the assembly of immune responses. Proinflammatory cytokines inhibit the pineal synthesis of melatonin while inducing it in macrophages by mechanisms dependent on nuclear factor-κB (NF-κB) activation. Cytokines activating the Janus kinase/signal transducer and activator of transcription (STAT) pathways, such as interferon-gamma (IFN-γ) and interleukin-10 (IL-10), modulate melatonin synthesis in the pineal, bone marrow (BM), and spleen. The stimulatory effect of IFN-γ upon the pineal gland depends on STAT1/NF-κB interaction, but the mechanisms controlling IL-10 effects on melatonin synthesis remain unclear. Here, we evaluated the role of STAT3 and NF-κB activation by IL-10 upon the melatonin synthesis of rats' pineal gland, BM, spleen, and peritoneal cells. The results show that IL-10-induced interaction of (p)STAT3 with specific NF-κB dimmers leads to different cell effects. IL-10 increases the pineal's acetylserotonin O-methyltransferase (ASMT), N-acetylserotonin, and melatonin content via nuclear translocation of NF-κB/STAT3. In BM, the nuclear translocation of STAT3/p65-NF-κB complexes increases ASMT expression and melatonin content. Increased pSTAT3/p65-NF-κB nuclear translocation in the spleen enhances phosphorylated serotonin N-acetyltransferase ((p)SNAT) expression and melatonin content. Conversely, in peritoneal cells, IL-10 leads to NF-κB p50/p50 inhibitory dimmer nuclear translocation, decreasing (p)SNAT expression and melatonin content. In conclusion, IL-10's effects on melatonin production depend on the NF-κB subunits interacting with (p)STAT3. Thus, variations of IL-10 levels and downstream pathways during immune responses might be critical regulatory factors adjusting pineal and extra-pineal synthesis of melatonin.
Collapse
Affiliation(s)
| | | | - Sandra M Muxel
- Department of Physiology, University of São Paulo, São Paulo, São Paulo, Brazil
| | | | - Caroline L Quiles
- Department of Physiology, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Kassiano D S Sousa
- Department of Physiology, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Regina P Markus
- Department of Physiology, University of São Paulo, São Paulo, São Paulo, Brazil
| | | |
Collapse
|
4
|
Shawky HA, Abdel Hafez SMN, Hasan NAK, Elbassuoni E, Abdelbaky FAF, AboBakr AHS. Changes in Rat Adrenal Cortex and Pineal Gland in Inverted Light-Dark Cycle: A Biochemical, Histological, and Immunohistochemical Study. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:2037-2052. [PMID: 37738357 DOI: 10.1093/micmic/ozad101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 08/13/2023] [Accepted: 08/25/2023] [Indexed: 09/24/2023]
Abstract
Poor sleep standards are common in everyday life; it is frequently linked to a rise in stress levels. The adrenal gland interacts physiologically with the pineal gland in the stress response. Pineal gland is a small endocrine organ that modulates sleep patterns. This work aimed to evaluate the inverted light-dark cycle rhythm on the histological changes within the adrenal cortex and pineal gland in adult male albino rats. Twenty adult male albino rats were equally divided into two groups: For the first control group, animals were kept on daylight-darkness for 12-12 h. The second group was kept under an inverted 12- to 12-h light-darkness cycle for 4 weeks. Adrenal sections were subjected to biochemical, histological, and immunohistochemical study. Inverted light-dark cycle group recorded a significant elevation of plasma corticosterone, tissue malondialdehyde, tumor necrosis factor-α, and interleukin-1β (IL-1β) associated with a significant reduction of catalase and superoxide dismutase. Adrenal cortex showed biochemical and histological changes. Pineal glands also showed loss of lobular architecture. A significant upregulation in activated inducible nitric oxide synthase (iNOS) and B-cell lymphoma-associated X (Bax) immunohistochemical expression was recorded in adrenal cortex associating with downregulation in B-cell lymphoma 2 (Bcl-2). It could be concluded that subchronic inverted light-dark cycle exerted direct effects on adrenal cortex and the pineal glands.
Collapse
Affiliation(s)
- Heba A Shawky
- Anatomy and Embryology Department, Faculty of Medicine, Minia University, Minia Governorate, Minia City, Cairo-Aswan Agricultural Road, El-Minia 61511, Egypt
| | - Sara Mohamed Naguib Abdel Hafez
- Histology Department, Faculty of Medicine, Minia University, Minia Governorate, Minia City, Cairo-Aswan Agricultural Road, El-Minia 61511, Egypt
| | - Nabil Abdel Kader Hasan
- Anatomy and Embryology Department, Faculty of Medicine, Minia University, Minia Governorate, Minia City, Cairo-Aswan Agricultural Road, El-Minia 61511, Egypt
| | - Eman Elbassuoni
- Physiology Department, Faculty of Medicine, Minia University, Minia Governorate, Minia City, Cairo-Aswan Agricultural Road, El-Minia 61511, Egypt
| | - Fatma Alzhraa Fouad Abdelbaky
- Anatomy and Embryology Department, Faculty of Medicine, Minia University, Minia Governorate, Minia City, Cairo-Aswan Agricultural Road, El-Minia 61511, Egypt
| | - Abdel Hamid Sayed AboBakr
- Anatomy and Embryology Department, Faculty of Medicine, Minia University, Minia Governorate, Minia City, Cairo-Aswan Agricultural Road, El-Minia 61511, Egypt
| |
Collapse
|
5
|
Li W, Wang Z, Cao J, Dong Y, Chen Y. Melatonin improves the homeostasis of mice gut microbiota rhythm caused by sleep restriction. Microbes Infect 2023; 25:105121. [PMID: 36804006 DOI: 10.1016/j.micinf.2023.105121] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/02/2023] [Accepted: 02/14/2023] [Indexed: 02/21/2023]
Abstract
Insufficient sleep is regarded as a disruptor of circadian rhythm, and it also contributes to the occurrence of intestinal diseases. The physiological functions of the gut depend on the normal circadian rhythm of the intestinal microbiota. However, how lack of sleep affects intestinal circadian homeostasis is unclear. Therefore, we subjected mice to sleep restriction and found that chronic sleep loss disrupts the pattern of colonic microbial communities and reduces the proportion of gut microbiota with a circadian rhythm, with concomitant changes in the peak phase of the KEGG pathway. We then found that exogenous melatonin supplementation restored the proportion of gut microbiota with a circadian rhythm and increased the KEGG pathway with a circadian rhythm. And we screened for possible circadian oscillation families, Muribaculaceae and Lachnospiraceae, that are sensitive to sleep restriction and can be rescued by melatonin. Our results suggest that sleep restriction disrupts the circadian rhythm of the colonic microbiota. In contrast, melatonin ameliorates disturbances in the circadian rhythm homeostasis of the gut microbiota due to sleep restriction.
Collapse
Affiliation(s)
- Weitian Li
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Zixu Wang
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Jing Cao
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yulan Dong
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yaoxing Chen
- College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China; Department of Nutrition and Health, China Agricultural University, Haidian, Beijing 100193, China.
| |
Collapse
|
6
|
Melatonin-mediated FKBP4 downregulation protects against stress-induced neuronal mitochondria dysfunctions by blocking nuclear translocation of GR. Cell Death Dis 2023; 14:146. [PMID: 36810730 PMCID: PMC9943853 DOI: 10.1038/s41419-023-05676-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/23/2023]
Abstract
The physiological crosstalk between glucocorticoid and melatonin maintains neuronal homeostasis in regulating circadian rhythms. However, the stress-inducing level of glucocorticoid triggers mitochondrial dysfunction including defective mitophagy by increasing the activity of glucocorticoid receptors (GRs), leading to neuronal cell death. Melatonin then suppresses glucocorticoid-induced stress-responsive neurodegeneration; however, the regulatory mechanism of melatonin, i.e., associated proteins involved in GR activity, has not been elucidated. Therefore, we investigated how melatonin regulates chaperone proteins related to GR trafficking into the nucleus to suppress glucocorticoid action. In this study, the effects of glucocorticoid on suppressing NIX-mediated mitophagy, followed by mitochondrial dysfunction, neuronal cell apoptosis, and cognitive deficits were reversed by melatonin treatment by inhibiting the nuclear translocation of GRs in both SH-SY5Y cells and mouse hippocampal tissue. Moreover, melatonin selectively suppressed the expression of FKBP prolyl isomerase 4 (FKBP4), which is a co-chaperone protein that works with dynein, to reduce the nuclear translocation of GRs among the chaperone proteins and nuclear trafficking proteins. In both cells and hippocampal tissue, melatonin upregulated melatonin receptor 1 (MT1) bound to Gαq, which triggered the phosphorylation of ERK1. The activated ERK then enhanced DNA methyltransferase 1 (DNMT1)-mediated hypermethylation of FKBP52 promoter, reducing GR-mediated mitochondrial dysfunction and cell apoptosis, the effects of which were reversed by knocking down DNMT1. Taken together, melatonin has a protective effect against glucocorticoid-induced defective mitophagy and neurodegeneration by enhancing DNMT1-mediated FKBP4 downregulation that reduced the nuclear translocation of GRs.
Collapse
|
7
|
Mendez N, Halabi D, Salazar-Petres ER, Vergara K, Corvalan F, Richter HG, Bastidas C, Bascur P, Ehrenfeld P, Seron-Ferre M, Torres-Farfan C. Maternal melatonin treatment rescues endocrine, inflammatory, and transcriptional deregulation in the adult rat female offspring from gestational chronodisruption. Front Neurosci 2022; 16:1039977. [PMID: 36507347 PMCID: PMC9727156 DOI: 10.3389/fnins.2022.1039977] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/31/2022] [Indexed: 11/24/2022] Open
Abstract
Introduction Gestational chronodisruption impact maternal circadian rhythms, inhibiting the nocturnal increase of melatonin, a critical hormone that contributes to maternal changes adaptation, entrains circadian rhythms, and prepares the fetus for birth and successful health in adulthood. In rats, we know that gestational chronodisruption by maternal chronic photoperiod shifting (CPS) impaired maternal melatonin levels and resulted in long-term metabolic and cardiovascular effects in adult male offspring. Here, we investigated the consequences of CPS on mother and adult female offspring and explored the effects of melatonin maternal supplementation. Also, we tested whether maternal melatonin administration during gestational chronodisruption rescues maternal circadian rhythms, pregnancy outcomes, and transcriptional functions in adult female offspring. Methods Female rats raised and maintained in photoperiod 12:12 light: dark were mated and separated into three groups: (a) Control photoperiod 12:12 (LD); (b) CPS photoperiod; and (c) CPS+Mel mothers supplemented with melatonin in the drinking water throughout gestation. In the mother, we evaluated maternal circadian rhythms by telemetry and pregnancy outcomes, in the long-term, we study adult female offspring by evaluating endocrine and inflammatory markers and the mRNA expression of functional genes involved in adrenal, cardiac, and renal function. Results In the mothers, CPS disrupted circadian rhythms of locomotor activity, body temperature, and heart rate and increased gestational length by almost 12-h and birth weight by 12%, all of which were rescued by maternal melatonin administration. In the female offspring, we found blunted day/night differences in circulating levels of melatonin and corticosterone, abnormal patterns of pro-inflammatory cytokines Interleukin-1a (IL1a), Interleukin-6 (IL6), and Interleukin-10 (IL10); and differential expression in 18 out of 24 adrenal, cardiac, and renal mRNAs evaluated. Conclusion Maternal melatonin contributed to maintaining the maternal circadian rhythms in mothers exposed to CPS, and the re-establishing the expression of 60% of the altered mRNAs to control levels in the female offspring. Although we did not analyze the effects on kidney, adrenal, and heart physiology, our results reinforce the idea that altered maternal circadian rhythms, resulting from exposure to light at night, should be a mechanism involved in the programming of Non-Communicable Diseases.
Collapse
Affiliation(s)
- Natalia Mendez
- Laboratorio de Cronobiología del Desarrollo, Facultad de Medicina, Instituto de Anatomía, Histología y Patología, Universidad Austral de Chile, Valdivia, Chile
| | - Diego Halabi
- School of Dentistry, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Esteban Roberto Salazar-Petres
- Laboratorio de Cronobiología del Desarrollo, Facultad de Medicina, Instituto de Anatomía, Histología y Patología, Universidad Austral de Chile, Valdivia, Chile
| | - Karina Vergara
- Laboratorio de Cronobiología del Desarrollo, Facultad de Medicina, Instituto de Anatomía, Histología y Patología, Universidad Austral de Chile, Valdivia, Chile
| | - Fernando Corvalan
- Laboratorio de Cronobiología del Desarrollo, Facultad de Medicina, Instituto de Anatomía, Histología y Patología, Universidad Austral de Chile, Valdivia, Chile
| | - Hans G. Richter
- Laboratorio de Cronobiología del Desarrollo, Facultad de Medicina, Instituto de Anatomía, Histología y Patología, Universidad Austral de Chile, Valdivia, Chile
| | - Carla Bastidas
- Laboratorio de Cronobiología del Desarrollo, Facultad de Medicina, Instituto de Anatomía, Histología y Patología, Universidad Austral de Chile, Valdivia, Chile
| | - Pía Bascur
- Laboratorio de Cronobiología del Desarrollo, Facultad de Medicina, Instituto de Anatomía, Histología y Patología, Universidad Austral de Chile, Valdivia, Chile
| | - Pamela Ehrenfeld
- Laboratorio de Cronobiología del Desarrollo, Facultad de Medicina, Instituto de Anatomía, Histología y Patología, Universidad Austral de Chile, Valdivia, Chile,Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Maria Seron-Ferre
- Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Claudia Torres-Farfan
- Laboratorio de Cronobiología del Desarrollo, Facultad de Medicina, Instituto de Anatomía, Histología y Patología, Universidad Austral de Chile, Valdivia, Chile,Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile,*Correspondence: Claudia Torres-Farfan,
| |
Collapse
|
8
|
Daiber A, Frenis K, Kuntic M, Li H, Wolf E, Kilgallen AB, Lecour S, Van Laake LW, Schulz R, Hahad O, Münzel T. Redox Regulatory Changes of Circadian Rhythm by the Environmental Risk Factors Traffic Noise and Air Pollution. Antioxid Redox Signal 2022; 37:679-703. [PMID: 35088601 PMCID: PMC9618394 DOI: 10.1089/ars.2021.0272] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/31/2021] [Indexed: 12/13/2022]
Abstract
Significance: Risk factors in the environment such as air pollution and traffic noise contribute to the development of chronic noncommunicable diseases. Recent Advances: Epidemiological data suggest that air pollution and traffic noise are associated with a higher risk for cardiovascular, metabolic, and mental disease, including hypertension, heart failure, myocardial infarction, diabetes, arrhythmia, stroke, neurodegeneration, depression, and anxiety disorders, mainly by activation of stress hormone signaling, inflammation, and oxidative stress. Critical Issues: We here provide an in-depth review on the impact of the environmental risk factors air pollution and traffic noise exposure (components of the external exposome) on cardiovascular health, with special emphasis on the role of environmentally triggered oxidative stress and dysregulation of the circadian clock. Also, a general introduction on the contribution of circadian rhythms to cardiovascular health and disease as well as a detailed mechanistic discussion of redox regulatory pathways of the circadian clock system is provided. Future Directions: Finally, we discuss the potential of preventive strategies or "chrono" therapy for cardioprotection. Antioxid. Redox Signal. 37, 679-703.
Collapse
Affiliation(s)
- Andreas Daiber
- Molecular Cardiology, Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Katie Frenis
- Molecular Cardiology, Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Marin Kuntic
- Molecular Cardiology, Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Huige Li
- Department of Pharmacology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Eva Wolf
- Structural Chronobiology, Institute of Molecular Physiology, Johannes Gutenberg University, Mainz, Germany
- Institute of Molecular Biology, Mainz, Germany
| | - Aoife B. Kilgallen
- Division Heart and Lungs, Regenerative Medicine Centre, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Sandrine Lecour
- Hatter Institute for Cardiovascular Research in Africa, University of Cape Town, Cape Town, South Africa
| | - Linda W. Van Laake
- Division Heart and Lungs, Regenerative Medicine Centre, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Rainer Schulz
- Institute for Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Omar Hahad
- Molecular Cardiology, Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Thomas Münzel
- Molecular Cardiology, Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| |
Collapse
|
9
|
Bazhanova ED. Desynchronosis: Types, Main Mechanisms, Role in the Pathogenesis of Epilepsy and Other Diseases: A Literature Review. Life (Basel) 2022; 12:1218. [PMID: 36013397 PMCID: PMC9410012 DOI: 10.3390/life12081218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/31/2022] [Accepted: 08/09/2022] [Indexed: 11/21/2022] Open
Abstract
Circadian information is stored in mammalian tissues by an autonomous network of transcriptional feedback loops that have evolved to optimally regulate tissue-specific functions. Currently, stable circadian rhythms of the expression of clock genes (Bmal1/Per2/Cry1, etc.), hormones, and metabolic genes (Glut4/leptin, etc.) have been demonstrated. Desynchronoses are disorders of the body's biorhythms, where the direction and degree of shift of various indicators of the oscillatory process are disturbed. Desynchronosis can be caused by natural conditions or man-made causes. The disruption of circadian rhythms is a risk factor for the appearance of physiological and behavioral disorders and the development of diseases, including epilepsy, and metabolic and oncological diseases. Evidence suggests that seizure activity in the epilepsy phenotype is associated with circadian dysfunction. Interactions between epilepsy and circadian rhythms may be mediated through melatonin, sleep-wake cycles, and clock genes. The correction of circadian dysfunction can lead to a decrease in seizure activity and vice versa. Currently, attempts are being made to pharmacologically correct desynchronosis and related psycho-emotional disorders, as well as combined somatic pathology. On the other hand, the normalization of the light regimen, the regulation of sleep-wake times, and phototherapy as additions to standard treatment can speed up the recovery of patients with various diseases.
Collapse
Affiliation(s)
- Elena D. Bazhanova
- Laboratory of Comparative Biochemistry of Cell Function, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia; ; Tel.: +7-9119008134
- Laboratory of Morphology and Electron Microscopy, Golikov Research Center of Toxicology, 192019 St. Petersburg, Russia
- Laboratory of Apoptosis Studying, Astrakhan State University, 414040 Astrakhan, Russia
| |
Collapse
|
10
|
Giudice A, Aliberti SM, Barbieri A, Pentangelo P, Bisogno I, D'Arena G, Cianciola E, Caraglia M, Capunzo M. Potential Mechanisms by which Glucocorticoids Induce Breast Carcinogenesis through Nrf2 Inhibition. FRONT BIOSCI-LANDMRK 2022; 27:223. [PMID: 35866405 DOI: 10.31083/j.fbl2707223] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/20/2022] [Accepted: 06/30/2022] [Indexed: 01/03/2025]
Abstract
Breast cancer is the most common malignancy among women worldwide. Several studies indicate that, in addition to established risk factors for breast cancer, other factors such as cortisol release related to psychological stress and drug treatment with high levels of glucocorticoids may also contribute significantly to the initiation of breast cancer. There are several possible mechanisms by which glucocorticoids might promote neoplastic transformation of breast tissue. Among these, the least known and studied is the inhibition of the nuclear erythroid factor 2-related (Nrf2)-antioxidant/electrophile response element (ARE/EpRE) pathway by high levels of glucocorticoids. Specifically, Nrf2 is a potent transcriptional activator that plays a central role in the basal and inducible expression of many cytoprotective genes that effectively protect mammalian cells from various forms of stress and reduce the propensity of tissues and organisms to develop disease or malignancy including breast cancer. Consequently, a loss of Nrf2 in response to high levels of gluco-corticoids may lead to a decrease in cellular defense against oxidative stress, which plays an important role in the initiation of human mammary carcinogenesis. In the present review, we provide a comprehensive overview of the current state of knowledge of the cellular mechanisms by which both glucocorticoid pharmacotherapy and endogenous GCs (cortisol in humans and corticosterone in rodents) may contribute to breast cancer development through inhibition of the Nrf2-ARE/EpRE pathway and the protective role of melatonin against glucocorticoid-induced apoptosis in the immune system.
Collapse
Affiliation(s)
- Aldo Giudice
- Animal Facility, Istituto Nazionale Tumori - "Fondazione G. Pascale" - IRCCS, 80131 Naples, Italy
| | - Silvana Mirella Aliberti
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Salerno, Italy
| | - Antonio Barbieri
- Animal Facility, Istituto Nazionale Tumori - "Fondazione G. Pascale" - IRCCS, 80131 Naples, Italy
| | - Paola Pentangelo
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Salerno, Italy
| | - Ilaria Bisogno
- Department of Radiological, Oncological and Anatomo-Pathological Science, University of Rome "Sapienza", 00161 Rome, Italy
| | - Giovanni D'Arena
- Hematology Service, San Luca Hospital, ASL Salerno, 84124 Salerno, Italy
| | - Emidio Cianciola
- Anesthesia and Intensive Care Unit, "Immacolata di Sapri" Hospital- ASL Salerno, 84073 Salerno, Italy
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Mario Capunzo
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Salerno, Italy
| |
Collapse
|
11
|
Titon SCM, Titon B, Muxel SM, de Figueiredo AC, Floreste FR, Lima AS, Gomes FR, Assis VR. Day vs. night variation in the LPS effects on toad's immunity and endocrine mediators. Comp Biochem Physiol A Mol Integr Physiol 2022; 267:111184. [PMID: 35259499 DOI: 10.1016/j.cbpa.2022.111184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/23/2022] [Accepted: 03/02/2022] [Indexed: 02/08/2023]
Abstract
The immune-endocrine interactions following an immune challenge have been demonstrated in amphibians. When considering immune challenges, the immune-endocrine implications can vary with the injection time (day or night), a pattern not explored in amphibians. We investigated the immune response following a lipopolysaccharide - LPS injection, measured as plasma bacterial killing ability - BKA, phagocytosis of blood cells - PP, and neutrophil to lymphocyte ratio - NLR, splenic proinflammatory cytokines mRNA (IL-1β and IL-6), and also endocrine mediators (corticosterone - CORT and melatonin - MEL plasma levels) in Rhinella icterica adult male toads injected at day (10 am) or night (10 pm). LPS induced increases in CORT, NLR, PP, and IL-1β mRNA compared with amphibian phosphate-buffer saline-injected individuals. For plasma CORT, the response was more pronounced during the night. While for the PP and IL-1β mRNA, the effect was more evident during the day. For NLR, the increase happened at both times, day and night, in the LPS-injected toads. Meanwhile, no changes were observed in BKA, IL-6 mRNA, and MEL levels. Overall, our results demonstrated an LPS-induced inflammatory response in R. icterica toads, characterized by higher PP, NLR, and IL-1β mRNA, followed by activation of the hypothalamic-pituitary-interrenal axis (higher CORT levels). The time in which the toads received the LPS injection affected the endocrine and immune mediators. The higher CORT and lower inflammatory response at night suggested a potential functional interaction between CORT and immune reactivity associated with the differences in night vs. day in R. icterica toads. These results highlight the relevance of investigating different injection times and mechanistic pathways to understand LPS-induced immunomodulation in anurans.
Collapse
Affiliation(s)
- Stefanny C M Titon
- Department of Physiology, Institute of Biosciences, Universidade de São Paulo, São Paulo, Rua do Matão - Travessa 14 - N 101, Cidade Universitária - CEP 05508-900, SP, Brazil.
| | - Braz Titon
- Department of Physiology, Institute of Biosciences, Universidade de São Paulo, São Paulo, Rua do Matão - Travessa 14 - N 101, Cidade Universitária - CEP 05508-900, SP, Brazil
| | - Sandra M Muxel
- Department of Physiology, Institute of Biosciences, Universidade de São Paulo, São Paulo, Rua do Matão - Travessa 14 - N 101, Cidade Universitária - CEP 05508-900, SP, Brazil
| | - Aymam C de Figueiredo
- Department of Physiology, Institute of Biosciences, Universidade de São Paulo, São Paulo, Rua do Matão - Travessa 14 - N 101, Cidade Universitária - CEP 05508-900, SP, Brazil
| | - Felipe R Floreste
- Department of Physiology, Institute of Biosciences, Universidade de São Paulo, São Paulo, Rua do Matão - Travessa 14 - N 101, Cidade Universitária - CEP 05508-900, SP, Brazil
| | - Alan S Lima
- Department of Physiology, Institute of Biosciences, Universidade de São Paulo, São Paulo, Rua do Matão - Travessa 14 - N 101, Cidade Universitária - CEP 05508-900, SP, Brazil
| | - Fernando R Gomes
- Department of Physiology, Institute of Biosciences, Universidade de São Paulo, São Paulo, Rua do Matão - Travessa 14 - N 101, Cidade Universitária - CEP 05508-900, SP, Brazil
| | - Vania R Assis
- Department of Physiology, Institute of Biosciences, Universidade de São Paulo, São Paulo, Rua do Matão - Travessa 14 - N 101, Cidade Universitária - CEP 05508-900, SP, Brazil
| |
Collapse
|
12
|
Markus RP, Sousa KS, da Silveira Cruz-Machado S, Fernandes PA, Ferreira ZS. Possible Role of Pineal and Extra-Pineal Melatonin in Surveillance, Immunity, and First-Line Defense. Int J Mol Sci 2021; 22:12143. [PMID: 34830026 PMCID: PMC8620487 DOI: 10.3390/ijms222212143] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/23/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023] Open
Abstract
Melatonin is a highly conserved molecule found in prokaryotes and eukaryotes that acts as the darkness hormone, translating environmental lighting to the whole body, and as a moderator of innate and acquired defense, migration, and cell proliferation processes. This review evaluates the importance of pineal activity in monitoring PAMPs and DAMPs and in mounting an inflammatory response or innate immune response. Activation of the immune-pineal axis, which coordinates the pro-and anti-inflammatory phases of an innate immune response, is described. PAMPs and DAMPs promote the immediate suppression of melatonin production by the pineal gland, which allows leukocyte migration. Monocyte-derived macrophages, important phagocytes of microbes, and cellular debris produce melatonin locally and thereby initiate the anti-inflammatory phase of the acute inflammatory response. The role of locally produced melatonin in organs that directly contact the external environment, such as the skin and the gastrointestinal and respiratory tracts, is also discussed. In this context, as resident macrophages are self-renewing cells, we explore evidence indicating that, besides avoiding overreaction of the immune system, extra-pineal melatonin has a fundamental role in the homeostasis of organs and tissues.
Collapse
Affiliation(s)
- Regina P. Markus
- Laboratory Chronopharmacology, Department Physiology, Institute Bioscience, University of São Paulo, São Paulo 05508-090, Brazil; (K.S.S.); (P.A.F.); (Z.S.F.)
| | - Kassiano S. Sousa
- Laboratory Chronopharmacology, Department Physiology, Institute Bioscience, University of São Paulo, São Paulo 05508-090, Brazil; (K.S.S.); (P.A.F.); (Z.S.F.)
| | - Sanseray da Silveira Cruz-Machado
- Laboratory of Molecular, Endocrine and Reproductive Pharmacology, Department of Pharmacology, Escola Paulista de Medicina, UNIFESP, São Paulo 04044-020, Brazil;
| | - Pedro A. Fernandes
- Laboratory Chronopharmacology, Department Physiology, Institute Bioscience, University of São Paulo, São Paulo 05508-090, Brazil; (K.S.S.); (P.A.F.); (Z.S.F.)
| | - Zulma S. Ferreira
- Laboratory Chronopharmacology, Department Physiology, Institute Bioscience, University of São Paulo, São Paulo 05508-090, Brazil; (K.S.S.); (P.A.F.); (Z.S.F.)
| |
Collapse
|
13
|
Ferreira LF, Garcia Neto PG, Titon SCM, Titon B, Muxel SM, Gomes FR, Assis VR. Lipopolysaccharide Regulates Pro- and Anti-Inflammatory Cytokines, Corticosterone, and Melatonin in Toads. Integr Org Biol 2021; 3:obab025. [PMID: 34589667 PMCID: PMC8475549 DOI: 10.1093/iob/obab025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/23/2021] [Accepted: 08/26/2021] [Indexed: 01/29/2023] Open
Abstract
Glucocorticoids and melatonin (MEL) show integrated and complex immunomodulatory effects, mostly described for endotherms, yet underexplored in amphibians. In this context, the RT-qPCR of molecules mediating inflammatory processes in amphibians is a valuable tool to explore the relationships among molecular biology, endocrine mediators, and immune response in these animals. In this study, toads (Rhinella diptycha) received an intraperitoneal saline injection or lipopolysaccharide (LPS; 2 mg/kg). Six hours post-injection, we analyzed plasma corticosterone (CORT) and MEL levels and pro- and anti-inflammatory molecules (IL-1β, IL-6, IL-10, IFN-γ, and C1s). We found increased CORT and decreased MEL levels in response to LPS. Also, IL-1β, IL-6, and IL-10 were upregulated in LPS-injected toads compared with saline-injected toads. Overall, our results demonstrate an LPS-induced inflammatory response with endocrine and immune modulation in R. diptycha toads, exhibiting expected patterns for an inflammatory stimulus within this time frame (6 h post-injection). Toads were responsive to LPS by secreting different cytokines, such as proinflammatory cytokines IL-1β and IL-6, related to immune cell attraction to inflammatory sites and the anti-inflammatory cytokine IL-10, which limits the rate of leukocyte infiltration, inflammation, and downregulates the expression of proinflammatory cytokines. Increased circulating CORT levels are probably associated with the activation of the hypothalamus-pituitary-interrenal axis by the LPS and the endocrine actions of IL-6. Furthermore, decreased circulating MEL levels are likely due to inhibited MEL secretion by the pineal gland by inflammatory stimuli, indicating the activation/existence of the immune-pineal axis in amphibians.
Collapse
Affiliation(s)
- L F Ferreira
- Faculdade de Filosofia, Ciências e Letras do Centro Universitário Fundação Santo André, Avenida Príncipe de Gales, 821, Santo André, SP 09060-650, Brasil
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 101, São Paulo, SP 05508-090, Brasil
| | - P G Garcia Neto
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 101, São Paulo, SP 05508-090, Brasil
| | - S C M Titon
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 101, São Paulo, SP 05508-090, Brasil
| | - B Titon
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 101, São Paulo, SP 05508-090, Brasil
| | - S M Muxel
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 101, São Paulo, SP 05508-090, Brasil
| | - F R Gomes
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 101, São Paulo, SP 05508-090, Brasil
| | - V R Assis
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 101, São Paulo, SP 05508-090, Brasil
| |
Collapse
|
14
|
da Silveira Cruz-Machado S, Guissoni Campos LM, Fadini CC, Anderson G, Markus RP, Pinato L. Disrupted nocturnal melatonin in autism: Association with tumor necrosis factor and sleep disturbances. J Pineal Res 2021; 70:e12715. [PMID: 33421193 DOI: 10.1111/jpi.12715] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022]
Abstract
Sleep disturbances, abnormal melatonin secretion, and increased inflammation are aspects of autism spectrum disorder (ASD) pathophysiology. The present study evaluated the daily urinary 6-sulfatoxymelatonin (aMT6s) excretion profile and the salivary levels of tumor necrosis factor (TNF) and interleukin-6 (IL-6) in 20 controls and 20 ASD participants, as well as correlating these measures with sleep disturbances. Although 60% of ASD participants showed a significant night-time rise in aMT6s excretion, this rise was significantly attenuated, compared to controls (P < .05). The remaining 40% of ASD individuals showed no significant increase in nocturnal aMT6s. ASD individuals showed higher nocturnal levels of saliva TNF, but not IL-6. Dysfunction in the initiation and maintenance of sleep, as indicated by the Sleep Disturbance Scale for Children, correlated with night-time aMT6s excretion (r = -.28, P < .05). Dysfunction in sleep breathing was inversely correlated with aMT6s (r = -.31, P < .05) and positively associated with TNF level (r = .42, P < .01). Overall such data indicate immune-pineal axis activation, with elevated TNF but not IL-6 levels associated with disrupted pineal melatonin release and sleep dysfunction in ASD. It is proposed that circadian dysregulation in ASD is intimately linked to heightened immune-inflammatory activity. Such two-way interactions of the immune-pineal axis may underpin many aspects of ASD pathophysiology, including sleep disturbances, as well as cognitive and behavioral alterations.
Collapse
Affiliation(s)
- Sanseray da Silveira Cruz-Machado
- Laboratory of Chronopharmacology, Department of Physiology, Institute of Biosciences, University of São Paulo (USP), São Paulo, Brazil
| | | | - Cintia Cristina Fadini
- Department of Speech, Language and Hearing Sciences, São Paulo State University (UNESP), Marilia, Brazil
| | | | - Regina P Markus
- Laboratory of Chronopharmacology, Department of Physiology, Institute of Biosciences, University of São Paulo (USP), São Paulo, Brazil
| | - Luciana Pinato
- Department of Speech, Language and Hearing Sciences, São Paulo State University (UNESP), Marilia, Brazil
| |
Collapse
|
15
|
Jaikumar G, Slabbekoorn H, Sireeni J, Schaaf M, Tudorache C. The role of the Glucocorticoid Receptor in the Regulation of Diel Rhythmicity. Physiol Behav 2020; 223:112991. [DOI: 10.1016/j.physbeh.2020.112991] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/12/2020] [Accepted: 05/27/2020] [Indexed: 01/05/2023]
|
16
|
Light and Circadian Signaling Pathway in Pregnancy: Programming of Adult Health and Disease. Int J Mol Sci 2020; 21:ijms21062232. [PMID: 32210175 PMCID: PMC7139376 DOI: 10.3390/ijms21062232] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/22/2020] [Accepted: 03/22/2020] [Indexed: 12/12/2022] Open
Abstract
Light is a crucial environmental signal that affects elements of human health, including the entrainment of circadian rhythms. A suboptimal environment during pregnancy can increase the risk of offspring developing a wide range of chronic diseases in later life. Circadian rhythm disruption in pregnant women may have deleterious consequences for their progeny. In the modern world, maternal chronodisruption can be caused by shift work, jet travel across time zones, mistimed eating, and excessive artificial light exposure at night. However, the impact of maternal chronodisruption on the developmental programming of various chronic diseases remains largely unknown. In this review, we outline the impact of light, the circadian clock, and circadian signaling pathways in pregnancy and fetal development. Additionally, we show how to induce maternal chronodisruption in animal models, examine emerging research demonstrating long-term negative implications for offspring health following maternal chronodisruption, and summarize current evidence related to light and circadian signaling pathway targeted therapies in pregnancy to prevent the development of chronic diseases in offspring.
Collapse
|
17
|
Ma N, Zhang J, Reiter RJ, Ma X. Melatonin mediates mucosal immune cells, microbial metabolism, and rhythm crosstalk: A therapeutic target to reduce intestinal inflammation. Med Res Rev 2020; 40:606-632. [PMID: 31420885 DOI: 10.1002/med.21628] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 07/22/2019] [Accepted: 07/26/2019] [Indexed: 12/12/2022]
Abstract
Nowadays, melatonin, previously considered only as a pharmaceutical product for rhythm regulation and sleep aiding, has shown its potential as a co-adjuvant treatment in intestinal diseases, however, its mechanism is still not very clear. A firm connection between melatonin at a physiologically relevant concentration and the gut microbiota and inflammation has recently established. Herein, we summarize their crosstalk and focus on four novelties. First, how melatonin is synthesized and degraded in the gut and exerts potentially diverse phenotypic effects through its diverse metabolites. Second, how melatonin mediates the activation and proliferation of intestinal mucosal immune cells with paracrine and autocrine properties. By modulating T/B cells, mast cells, macrophages and dendritic cells, melatonin immunomodulatory involved in regulating T-cell differentiation, intervening T/B cell interaction and attenuating the production of pro-inflammatory factors, achieving its antioxidant action via specific receptors. Third, how melatonin exerts antimicrobial action and modulates microbial components, such as lipopolysaccharide, amyloid-β peptides via nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) or signal transducers and activators of transcription (STAT1) pathway to modulate intestinal immune function in immune-pineal axis. The last, how melatonin mediates the effect of intestinal bacterial activity signals on the body rhythm system through the NF-κB pathway and influences the mucosal epithelium oscillation via clock gene expression. These processes are achieved at mitochondrial and nuclear levels to control the host immune cell development. Considering unclear mechanisms and undiscovered actions of melatonin in gut-microbiome-immune axis, it's time to reveal them and provide new insight for the outlook of melatonin as a potential therapeutic target in the treatment and management of intestinal diseases.
Collapse
Affiliation(s)
- Ning Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jie Zhang
- Animal Husbandry and Veterinary Department, Beijing Vocational College of Agriculture, Beijing, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Department of Internal Medicine and Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
18
|
Pinato L, Galina Spilla CS, Markus RP, da Silveira Cruz-Machado S. Dysregulation of Circadian Rhythms in Autism Spectrum Disorders. Curr Pharm Des 2020; 25:4379-4393. [DOI: 10.2174/1381612825666191102170450] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 10/31/2019] [Indexed: 12/12/2022]
Abstract
Background:
The alterations in neurological and neuroendocrine functions observed in the autism
spectrum disorder (ASD) involves environmentally dependent dysregulation of neurodevelopment, in interaction
with multiple coding gene defects. Disturbed sleep-wake patterns, as well as abnormal melatonin and glucocorticoid
secretion, show the relevance of an underlying impairment of the circadian timing system to the behavioral
phenotype of ASD. Thus, understanding the mechanisms involved in the circadian dysregulation in ASD could
help to identify early biomarkers to improve the diagnosis and therapeutics as well as providing a significant
impact on the lifelong prognosis.
Objective:
In this review, we discuss the organization of the circadian timing system and explore the connection
between neuroanatomic, molecular, and neuroendocrine responses of ASD and its clinical manifestations. Here
we propose interconnections between circadian dysregulation, inflammatory baseline and behavioral changes in
ASD. Taking into account, the high relevancy of melatonin in orchestrating both circadian timing and the maintenance
of physiological immune quiescence, we raise the hypothesis that melatonin or analogs should be considered
as a pharmacological approach to suppress inflammation and circadian misalignment in ASD patients.
Strategy:
This review provides a comprehensive update on the state-of-art of studies related to inflammatory
states and ASD with a special focus on the relationship with melatonin and clock genes. The hypothesis raised
above was analyzed according to the published data.
Conclusion:
Current evidence supports the existence of associations between ASD to circadian dysregulation,
behavior problems, increased inflammatory levels of cytokines, sleep disorders, as well as reduced circadian
neuroendocrine responses. Indeed, major effects may be related to a low melatonin rhythm. We propose that
maintaining the proper rhythm of the circadian timing system may be helpful to improve the health and to cope
with several behavioral changes observed in ASD subjects.
Collapse
Affiliation(s)
- Luciana Pinato
- Department of Speech, Language and Hearing Sciences, São Paulo State University (UNESP), 17525-900, Marilia, SP, Brazil
| | - Caio Sergio Galina Spilla
- Department of Speech, Language and Hearing Sciences, São Paulo State University (UNESP), 17525-900, Marilia, SP, Brazil
| | - Regina Pekelmann Markus
- Laboratory of Chronopharmacology, Department of Physiology, Institute of Biosciences, University of São Paulo (USP), 05508-090, São Paulo, SP, Brazil
| | - Sanseray da Silveira Cruz-Machado
- Laboratory of Chronopharmacology, Department of Physiology, Institute of Biosciences, University of São Paulo (USP), 05508-090, São Paulo, SP, Brazil
| |
Collapse
|
19
|
Barbosa Lima LE, Muxel SM, Kinker GS, Carvalho-Sousa CE, da Silveira Cruz-Machado S, Markus RP, Fernandes PACM. STAT1-NFκB crosstalk triggered by interferon gamma regulates noradrenaline-induced pineal hormonal production. J Pineal Res 2019; 67:e12599. [PMID: 31356684 DOI: 10.1111/jpi.12599] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/03/2019] [Accepted: 07/08/2019] [Indexed: 12/16/2022]
Abstract
Melatonin production by pineal glands is modulated by several immune signals. The nuclear translocation of nuclear factor kappa-B (NFκB) homodimers, lacking transactivation domains, once induced by lipopolysaccharide (LPS) or tumor necrosis factor (TNF), inhibits the expression of Aanat gene and the synthesis of noradrenaline (NA)-induced melatonin. Interferon gamma (IFN-γ), on the other hand, increases melatonin synthesis. Furthermore, this cytokine activates the signal transducer as well as the activator of transcription 1 (STAT1) pathway, which was never evaluated as a melatonin synthesis modulator before. Reports demonstrated that IFN-γ might also activate NFκB. The present study evaluated the role of STAT1-NFκB crosstalk triggered by IFN-γ regarding the regulation of NA-induced pineal glands' hormonal production. Moreover, IFN-γ treatment increased NA-induced Aanat transcription, in addition to the synthesis of N-acetylserotonin (NAS) and melatonin. These effects were associated with STAT1 nuclear translocation, confirmed by the co-immunoprecipitation of STAT1 and Aanat promoter. Pharmacological STAT1 enhancement augmented NA-induced Aanat transcription as well as NAS and melatonin production. Additionally, IFN-γ induced the nuclear translocation of RelA-NFκB subunits. The blockade of this pathway prevented IFN-γ effects on the pineal function. The present data show that STAT1 and NFκB crosstalk controls melatonin production through a synergistic mechanism, disclosing a new integrative mechanism regarding pineal hormonal activity control.
Collapse
Affiliation(s)
| | - Sandra Marcia Muxel
- Department of Physiology, Institute of Bioscience, University of São Paulo, São Paulo, Brazil
| | - Gabriela S Kinker
- Department of Physiology, Institute of Bioscience, University of São Paulo, São Paulo, Brazil
| | | | | | - Regina P Markus
- Department of Physiology, Institute of Bioscience, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
20
|
Komegae EN, Fonseca MT, da Silveira Cruz-Machado S, Turato WM, Filgueiras LR, Markus RP, Steiner AA. Site-Specific Reprogramming of Macrophage Responsiveness to Bacterial Lipopolysaccharide in Obesity. Front Immunol 2019; 10:1496. [PMID: 31316525 PMCID: PMC6611339 DOI: 10.3389/fimmu.2019.01496] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/14/2019] [Indexed: 12/14/2022] Open
Abstract
The mechanisms by which obesity may alter immune responses to pathogens are poorly understood. The present study assessed whether the intrinsic responsiveness of resident macrophages to bacterial lipopolysaccharide (LPS) is reprogrammed in high-fat diet (HFD)-induced obesity. Macrophages from adipose tissue, lung alveoli, and the peritoneal cavity were extracted from obese rats on a HFD or from their lean counterparts, and subsequently studied in culture under identical conditions. CD45+/CD68+ cells (macrophages) were abundant in all cultures, and became the main producers of TNF-α upon LPS stimulation. But although all macrophage subpopulations responded to LPS with an M1-like profile of cytokine secretion, the TNF-α/IL-10 ratio was the lowest in adipose tissue macrophages, the highest in alveolar macrophages, and intermediary in peritoneal macrophages. What is more, diet exerted qualitatively distinct effects on the cytokine responses to LPS, with obesity switching adipose tissue macrophages to a more pro-inflammatory program and peritoneal macrophages to a less pro-inflammatory program, while not affecting alveolar macrophages. Such reprogramming was not associated with changes in the inflammasome-dependent secretion of IL-1β. The study further shows that the effects of diet on TNF-α/IL-10 ratios were linked to distinct patterns of NF-κB accumulation in the nucleus: while RelA was the NF-κB subunit most impacted by obesity in adipose tissue macrophages, cRel was the subunit affected in peritoneal macrophages. It is concluded that obesity causes dissimilar, site-specific changes in the responsiveness of resident macrophages to bacterial LPS. Such plasticity opens new avenues of investigation into the mechanisms linking obesity to pathogen-induced immune responses.
Collapse
Affiliation(s)
- Evilin N Komegae
- Neuroimmunology of Sepsis Laboratory, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Monique T Fonseca
- Neuroimmunology of Sepsis Laboratory, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Walter M Turato
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Luciano R Filgueiras
- Neuroimmunology of Sepsis Laboratory, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Regina P Markus
- Laboratory of Chronopharmacology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Alexandre A Steiner
- Neuroimmunology of Sepsis Laboratory, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
21
|
Zhao D, Yu Y, Shen Y, Liu Q, Zhao Z, Sharma R, Reiter RJ. Melatonin Synthesis and Function: Evolutionary History in Animals and Plants. Front Endocrinol (Lausanne) 2019; 10:249. [PMID: 31057485 PMCID: PMC6481276 DOI: 10.3389/fendo.2019.00249] [Citation(s) in RCA: 344] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/29/2019] [Indexed: 12/12/2022] Open
Abstract
Melatonin is an ancient molecule that can be traced back to the origin of life. Melatonin's initial function was likely that as a free radical scavenger. Melatonin presumably evolved in bacteria; it has been measured in both α-proteobacteria and in photosynthetic cyanobacteria. In early evolution, bacteria were phagocytosed by primitive eukaryotes for their nutrient value. According to the endosymbiotic theory, the ingested bacteria eventually developed a symbiotic association with their host eukaryotes. The ingested α-proteobacteria evolved into mitochondria while cyanobacteria became chloroplasts and both organelles retained their ability to produce melatonin. Since these organelles have persisted to the present day, all species that ever existed or currently exist may have or may continue to synthesize melatonin in their mitochondria (animals and plants) and chloroplasts (plants) where it functions as an antioxidant. Melatonin's other functions, including its multiple receptors, developed later in evolution. In present day animals, via receptor-mediated means, melatonin functions in the regulation of sleep, modulation of circadian rhythms, enhancement of immunity, as a multifunctional oncostatic agent, etc., while retaining its ability to reduce oxidative stress by processes that are, in part, receptor-independent. In plants, melatonin continues to function in reducing oxidative stress as well as in promoting seed germination and growth, improving stress resistance, stimulating the immune system and modulating circadian rhythms; a single melatonin receptor has been identified in land plants where it controls stomatal closure on leaves. The melatonin synthetic pathway varies somewhat between plants and animals. The amino acid, tryptophan, is the necessary precursor of melatonin in all taxa. In animals, tryptophan is initially hydroxylated to 5-hydroxytryptophan which is then decarboxylated with the formation of serotonin. Serotonin is either acetylated to N-acetylserotonin or it is methylated to form 5-methoxytryptamine; these products are either methylated or acetylated, respectively, to produce melatonin. In plants, tryptophan is first decarboxylated to tryptamine which is then hydroxylated to form serotonin.
Collapse
Affiliation(s)
- Dake Zhao
- Biocontrol Engineering Research Center of Plant Disease and Pest, Yunnan University, Kunming, China
- Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming, China
- School of Life Science, Yunnan University, Kunming, China
| | - Yang Yu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Yong Shen
- College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Qin Liu
- School of Landscape and Horticulture, Yunnan Vocational and Technical College of Agriculture, Kunming, China
| | - Zhiwei Zhao
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Ramaswamy Sharma
- Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio (UT Health), San Antonio, TX, United States
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio (UT Health), San Antonio, TX, United States
| |
Collapse
|
22
|
Ibañez Rodriguez MP, Galiana MD, Rásmussen JA, Freites CL, Noctor SC, Muñoz EM. Differential response of pineal microglia to surgical versus pharmacological stimuli. J Comp Neurol 2018; 526:2462-2481. [PMID: 30246867 DOI: 10.1002/cne.24505] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 12/17/2022]
Abstract
Microglial cells are one of the interstitial elements of the pineal gland (PG). We recently reported the pattern of microglia colonization and activation, and microglia-Pax6+ cell interactions during normal pineal ontogeny. Here, we describe the dynamics of microglia-Pax6+ cell associations and interactions after surgical or pharmacological manipulation. In adult rats, the superior cervical ganglia (SCG) were exposed, and either bilaterally excised (SCGx) or decentralized (SCGd). In the SCGx PGs, the density of Iba1+ microglia increased after surgery and returned to sham baseline levels 13 days later. Pineal microglia also responded to SCGd, a more subtle denervation. The number of clustered Iba1+ /PCNA+ /ED1+ microglia was higher 4 days after both surgeries compared to the sham-operated group. However, the number of Pax6+ /PCNA- cells and the percentage of Pax6+ cells contacted by and/or phagocytosed by microglia increased significantly only after SCGx. Separate groups of rats were treated with either bacterial lipopolysaccharides (LPS) or doxycycline (DOX) to activate or inhibit pineal microglia, respectively. Peripheral LPS administration caused an increase in the number of clustered Iba1+ /PCNA+ /ED1+ microglial cells, and in the percentage of Pax6+ cells associated with and/or engulfed by microglia. In the LPS-treated PGs, we also noted an increase in the number of PCNA+ cells that were Iba1- within the microglial cell clusters. The density of Pax6+ cells did not change after LPS treatment. DOX administration did not influence the parameters analyzed. These data suggest that pineal microglia are highly receptive cells capable of rapidly responding in a differential manner to surgical and pharmacological stimuli.
Collapse
Affiliation(s)
- María P Ibañez Rodriguez
- Institute of Histology and Embryology of Mendoza (IHEM), National University of Cuyo, National Scientific and Technical Research Council (CONICET), Mendoza, Argentina
| | - María D Galiana
- Institute of Histology and Embryology of Mendoza (IHEM), National University of Cuyo, National Scientific and Technical Research Council (CONICET), Mendoza, Argentina
| | - Jorge A Rásmussen
- Institute of Histology and Embryology of Mendoza (IHEM), National University of Cuyo, National Scientific and Technical Research Council (CONICET), Mendoza, Argentina
| | - Carlos L Freites
- Institute of Histology and Embryology of Mendoza (IHEM), National University of Cuyo, National Scientific and Technical Research Council (CONICET), Mendoza, Argentina
| | - Stephen C Noctor
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California, Davis, School of Medicine Sacramento, California
| | - Estela M Muñoz
- Institute of Histology and Embryology of Mendoza (IHEM), National University of Cuyo, National Scientific and Technical Research Council (CONICET), Mendoza, Argentina
| |
Collapse
|
23
|
Pires-Lapa MA, Carvalho-Sousa CE, Cecon E, Fernandes PA, Markus RP. β-Adrenoceptors Trigger Melatonin Synthesis in Phagocytes. Int J Mol Sci 2018; 19:ijms19082182. [PMID: 30049944 PMCID: PMC6121262 DOI: 10.3390/ijms19082182] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/12/2018] [Accepted: 07/16/2018] [Indexed: 12/15/2022] Open
Abstract
Melatonin (5-methoxy-N-acetylserotonin), the pineal hormone, is also synthesized by immune-competent cells. The pineal hormone signals darkness, while melatonin synthesized on demand by activated macrophages at any hour of the day acts locally, favoring regulatory/tolerant phenotypes. Activation of β-adrenoceptors in pinealocytes is the main route for triggering melatonin synthesis. However, despite the well-known role of β-adrenoceptors in the resolution macrophage phenotype (M2), and the relevance of macrophage synthesized melatonin in facilitating phagocytic activity, there is no information regarding whether activation of β-adrenoceptors would induce melatonin synthesis by monocytes. Here we show that catecholamines stimulate melatonin synthesis in bone marrow-derived dendritic cells and RAW 264.7 macrophages. Activation of β-adrenoceptors promotes the synthesis of melatonin by stimulating cyclic AMP/protein kinase A (PKA) pathway and by activating the nuclear translocation of NF-κB. Considering the great number of macrophages around sympathetic nerve terminals, and the relevance of this system for maintaining macrophages in stages compatible to low-grade inflammation, our data open the possibility that extra-pineal melatonin acts as an autocrine/paracrine signal in macrophages under resolution or tolerant phenotypes.
Collapse
Affiliation(s)
- Marco A Pires-Lapa
- Laboratory of Chronopharmacology, Deartment of Physiology, Institute of Bioscience, University of São Paulo, 05508-900 São Paulo, Brazil.
| | - Claudia E Carvalho-Sousa
- Laboratory of Chronopharmacology, Deartment of Physiology, Institute of Bioscience, University of São Paulo, 05508-900 São Paulo, Brazil.
| | - Erika Cecon
- Laboratory of Chronopharmacology, Deartment of Physiology, Institute of Bioscience, University of São Paulo, 05508-900 São Paulo, Brazil.
| | - Pedro A Fernandes
- Laboratory of Neuroimmunoendocrinology, Department of Physiology, Institute of Bioscience, University of São Paulo, 05508-900 São Paulo, Brazil.
| | - Regina P Markus
- Laboratory of Chronopharmacology, Deartment of Physiology, Institute of Bioscience, University of São Paulo, 05508-900 São Paulo, Brazil.
| |
Collapse
|
24
|
Markus RP, Fernandes PA, Kinker GS, da Silveira Cruz-Machado S, Marçola M. Immune-pineal axis - acute inflammatory responses coordinate melatonin synthesis by pinealocytes and phagocytes. Br J Pharmacol 2017; 175:3239-3250. [PMID: 29105727 DOI: 10.1111/bph.14083] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/21/2017] [Accepted: 09/20/2017] [Indexed: 12/12/2022] Open
Abstract
Melatonin is well known for its circadian production by the pineal gland, and there is a growing body of data showing that it is also produced by many other cells and organs, including immune cells. The chronobiotic role of pineal melatonin, as well as its protective effects in vitro and in vivo, have been extensively explored. However, the interaction between the chronobiotic and defence functions of endogenous melatonin has been little investigated. This review details the current knowledge regarding the coordinated shift in melatonin synthesis from the pineal gland (circadian and monitoring roles) to the regulation of acute immune responses via immune cell production and autocrine effects, producing systemic interactions termed the immune-pineal axis. An acute inflammatory response drives the transcription factor, NFκB, to switch melatonin synthesis from pinealocytes to macrophages/microglia and, upon acute inflammatory resolution, back to pinealocytes. The potential pathophysiological relevance of immune-pineal axis dysregulation is highlighted, with both research and clinical implications, across several medical conditions, including host/parasite interaction, neurodegenerative diseases and cancer. LINKED ARTICLES: This article is part of a themed section on Recent Developments in Research of Melatonin and its Potential Therapeutic Applications. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.16/issuetoc.
Collapse
Affiliation(s)
- Regina P Markus
- Laboratory of Chronopharmacology and Laboratory of Neuroimmunomodulation - Department of Physiology, Institute of Bioscience, University of São Paulo, São Paulo, Brazil
| | - Pedro A Fernandes
- Laboratory of Chronopharmacology and Laboratory of Neuroimmunomodulation - Department of Physiology, Institute of Bioscience, University of São Paulo, São Paulo, Brazil
| | - Gabriela S Kinker
- Laboratory of Chronopharmacology and Laboratory of Neuroimmunomodulation - Department of Physiology, Institute of Bioscience, University of São Paulo, São Paulo, Brazil
| | - Sanseray da Silveira Cruz-Machado
- Laboratory of Chronopharmacology and Laboratory of Neuroimmunomodulation - Department of Physiology, Institute of Bioscience, University of São Paulo, São Paulo, Brazil
| | - Marina Marçola
- Laboratory of Chronopharmacology and Laboratory of Neuroimmunomodulation - Department of Physiology, Institute of Bioscience, University of São Paulo, São Paulo, Brazil
| |
Collapse
|