1
|
Zhang X, Zhang Y, Wang L, Wu G, Pan C. Three novel simple sequence repeats (SSRs) identified by MALDI-TOF-MS method were associated with backfat in pig. Anim Biotechnol 2023; 34:1014-1021. [PMID: 35048796 DOI: 10.1080/10495398.2021.2009845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Backfat trait is an important economic trait and highly heritable, but difficult to evaluate. Thus, it is of great significance to explore optimal backfat thickness of pigs by using marker-assisted selection (MAS) to speed up its breeding process and improve economic efficiency. This study aimed to investigate the relationship between genetic variations (e.g., SSRs) and backfat of Qinghai Bamei pigs using MALDI-TOF Mass Spectrometry (MALDI-TOF-MS). Herein, five alternative SSR loci (namely V1, V2, V3, V4 and V5) were selected for subsequent detection. The results suggested that 3 (141-, 143- and 145-), 3 (128-, 130- and 132-), 2 (160- and 162-), 2 (136- and 139-) and 3 (170-, 184- and 192-) alleles of V1, V2, V3, V4 and V5 were found, respectively. Subsequent analysis showed that there was linkage equilibrium among five SSRs and Hap19 (13.1%) (141-/132-/160-/139-/192-) had the highest haplotype frequency. Among these five SSR loci, V1, V2 and V3 loci were significantly associated to the backfat of Qinghai Bamei sows. These findings enriched the study of SSRs in Qinghai Bamei pigs, and (AC)n (Chr15:85485851-85485995), (AC)n (Chr10:52724583-52724713) and (TG)n (Chr4:90732644-90732802) could be utilized as the candidate locus for MAS in pig industry.HIGHLIGHTSFive novel SSR loci was identified in pigs through MALDI-TOF MS.V1, V2 and V3 loci was were significantly associated to the backfat of pigs.
Collapse
Affiliation(s)
- Xuelian Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yanghai Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
- Meat Science and Muscle Biology Laboratory, Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Lei Wang
- College of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Guofang Wu
- College of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Chuanying Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
2
|
Wu G, Shen W, Xue X, Wang L, Ma Y, Zhou J. A novel (ATC) n microsatellite locus is associated with litter size in an indigenous Chinese pig. Vet Med Sci 2021; 7:1332-1338. [PMID: 33955708 PMCID: PMC8294369 DOI: 10.1002/vms3.371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/25/2020] [Accepted: 09/16/2020] [Indexed: 12/17/2022] Open
Abstract
Simple sequence repeats (SSRs) are an important part of the genome and have become powerful auxiliary DNA markers in animal breeding using marker-assisted selection (MAS). Based on previous sequencing data of Qinghai Bamei pigs, a total of three novel candidate SSR loci were analysed in this study. Time-of-flight mass spectrometry (TOF-MS) was used for SSR genotyping, and association analyses between SSRs and the litter size of Qinghai Bamei sows was also performed. The results of genotyping showed that the (ATC)n -P1, (AC)n -P2 and (AC)n -P3 loci had 2, 3 and 18 genotypes, respectively; 2, 3 and 8 alleles were also identified at these loci. Except for the (AC)n -P2 locus, the polymorphism information content (PIC) values of other loci were greater than 0.25. Association analyses indicated that only the (ATC)n -P1 locus was significantly associated with the litter size of Qinghai Bamei sows (p = .047). Compared to 189-/189- genotype, individuals with the 189-/195- genotype had the senior litter size, which was 9.04 ± 0.21. Our results enrich the data on SSRs in Qinghai Bamei pigs and indicate that (ATC)n -P1 is a candidate locus for MAS in the pig industry.
Collapse
Affiliation(s)
- Guofang Wu
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China.,State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Wenjuan Shen
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Xingxing Xue
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Lei Wang
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China.,State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Yuhong Ma
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Jiping Zhou
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| |
Collapse
|
3
|
Wu Z, Gong H, Zhang M, Tong X, Ai H, Xiao S, Perez-Enciso M, Yang B, Huang L. A worldwide map of swine short tandem repeats and their associations with evolutionary and environmental adaptations. Genet Sel Evol 2021; 53:39. [PMID: 33892623 PMCID: PMC8063339 DOI: 10.1186/s12711-021-00631-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 04/09/2021] [Indexed: 11/10/2022] Open
Abstract
Background Short tandem repeats (STRs) are genetic markers with a greater mutation rate than single nucleotide polymorphisms (SNPs) and are widely used in genetic studies and forensics. However, most studies in pigs have focused only on SNPs or on a limited number of STRs. Results This study screened 394 deep-sequenced genomes from 22 domesticated pig breeds/populations worldwide, wild boars from both Europe and Asia, and numerous outgroup Suidaes, and identified a set of 878,967 polymorphic STRs (pSTRs), which represents the largest repository of pSTRs in pigs to date. We found multiple lines of evidence that pSTRs in coding regions were affected by purifying selection. The enrichment of trinucleotide pSTRs in coding sequences (CDS), 5′UTR and H3K4me3 regions suggests that trinucleotide STRs serve as important components in the exons and promoters of the corresponding genes. We demonstrated that, compared to SNPs, pSTRs provide comparable or even greater accuracy in determining the breed identity of individuals. We identified pSTRs that showed significant population differentiation between domestic pigs and wild boars in Asia and Europe. We also observed that some pSTRs were significantly associated with environmental variables, such as average annual temperature or altitude of the originating sites of Chinese indigenous breeds, among which we identified loss-of-function and/or expanded STRs overlapping with genes such as AHR, LAS1L and PDK1. Finally, our results revealed that several pSTRs show stronger signals in domestic pig—wild boar differentiation or association with the analysed environmental variables than the flanking SNPs within a 100-kb window. Conclusions This study provides a genome-wide high-density map of pSTRs in diverse pig populations based on genome sequencing data, enabling a more comprehensive characterization of their roles in evolutionary and environmental adaptation. Supplementary Information The online version contains supplementary material available at 10.1186/s12711-021-00631-4.
Collapse
Affiliation(s)
- Zhongzi Wu
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Huanfa Gong
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Mingpeng Zhang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Xinkai Tong
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Huashui Ai
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Shijun Xiao
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Miguel Perez-Enciso
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, Spain.,ICREA, Passeig de Lluís Companys 23, Barcelona, Spain
| | - Bin Yang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China.
| | - Lusheng Huang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China.
| |
Collapse
|
4
|
Zhang Y, Zhang X, Xue X, Shen W, Wang L, Ma Y, Zhou J, Wu G, Pan C. Identification of three new microsatellites and their effects on body measurement traits in pigs using time of flight-mass spectrometry (TOF-MS). Anim Biotechnol 2021; 33:1035-1044. [PMID: 33402031 DOI: 10.1080/10495398.2020.1865389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The body status of livestock affects their physiological function and productive performances. Microsatellites, one of the most used DNA markers, have been found to be associated with pig productive traits. However, their identifications and effects on body measurement traits of the Chinese Qinghai Bamei pig still uncovered. According to our previous sequencing data, in this study, three novel microsatellites were found in this breed. Using time of flight-mass spectrometry (TOF-MS) method, these microsatellites were further identified in a large Bamei pig population. TOF-MS spectra showed that there are three microsatellites loci, named P1, P2 and P3. These microsatellites were linkage equilibrium based on the values of D' and r2 tests. Association results demonstrated that P1 locus was associated with the body length, body height and chest width and the beneficial genotype was 150-/150-bp (p < 0.05); and P2 locus was associated with the body height (p < 0.05), and the 145-/145-bp, 145-/147-bp and 145-/149-bp were claimed as favorable genotypes and 145-bp allele was considered as the favorable allele. These findings suggested that P1 and P2 microsatellites might be considered as the candidate genetic markers to select pigs with superior body sizes, especially in local breed.
Collapse
Affiliation(s)
- Yanghai Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China.,Meat Science and Muscle Biology Laboratory, Department of Animal Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Xuelian Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xingxing Xue
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Wenjuan Shen
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Lei Wang
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China.,State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Yuhong Ma
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Jiping Zhou
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Guofang Wu
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China.,State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Chuanying Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
5
|
Wang H, Fu Y, Gu P, Zhang Y, Tu W, Chao Z, Wu H, Cao J, Zhou X, Liu B, Michal JJ, Fan C, Tan Y. Genome-Wide Characterization and Comparative Analyses of Simple Sequence Repeats among Four Miniature Pig Breeds. Animals (Basel) 2020; 10:ani10101792. [PMID: 33023098 PMCID: PMC7600727 DOI: 10.3390/ani10101792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/15/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Simple sequence repeats (SSRs) are present at high densities in regulatory elements, suggesting that they may affect gene function and phenotypic traits. Therefore, SSRs can be exploited in marker-assisted selection. In addition, they can be widely used as molecular markers to study genetic diversity, population structure, and evolution. While SSRs have been widely studied in many mammalian species, very little research has focused on genome-wide SSRs of miniature pigs, a small but special group of pigs that express the dwarf phenotype. Based on the SSR-enriched library building and sequencing, about 30,000 novel polymorphic SSRs for four miniature pig breeds were mapped to the Duroc pig reference genome. The four miniature pig breeds had different numbers and types of SSRs and distributions of repeat units. There were 2518 polymorphic SSRs in the intron or exon regions that were common to all four breeds and functional analyses revealed 17 genes that were associated with body size and other genes that were associated with growth and development. In conclusion, the SSRs detected in the miniature pigs in this study may provide useful genetic markers for the selection of farm animals and the polymorphic SSRs provide valuable insights into the determination of mature body size, as well as the immunity, growth and development of animals. Abstract Simple sequence repeats (SSRs) are commonly used as molecular markers in research on genetic diversity and discrimination among taxa or breeds because polymorphisms in these regions contribute to gene function and phenotypically important traits. In this study, we investigated genome-wide characteristics, repeat units, and polymorphisms of SSRs using sequencing data from SSR-enriched libraries created from Wuzhishan (WZS), Bama (BM), inbred Luchuan (LC) and Zangxiang (ZX) miniature pig breeds. The numbers and types of SSRs, distributions of repeat units and polymorphic SSRs varied among the four breeds. Compared to the Duroc pig reference genome, 2518 polymorphic SSRs were unique and common to all four breeds and functional annotation revealed that they may affect the coding and regulatory regions of genes. Several examples, such as FGF23, MYF6, IGF1R, and LEPROT, are associated with growth and development in pigs. Three of the polymorphic SSRs were selected to confirm the polymorphism and the corresponding alleles through fluorescence polymerase chain reaction (PCR) and capillary electrophoresis. Together, this study provides useful insights into the discovery, characteristics and distribution of SSRs in four pig breeds. The polymorphic SSRs, especially those common and unique to all four pig breeds, might affect associated genes and play important roles in growth and development.
Collapse
Affiliation(s)
- Hongyang Wang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (H.W.); (Y.Z.); (W.T.); (H.W.); (J.C.)
- Shanghai Engineering Research Center of Breeding Pig, Shanghai 201302, China
| | - Yang Fu
- Research Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China;
| | - Peng Gu
- Institute of Comparative Medicine & Laboratory Animal Management Center, Southern Medical University, Guangzhou 510515, China;
| | - Yingying Zhang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (H.W.); (Y.Z.); (W.T.); (H.W.); (J.C.)
- Shanghai Engineering Research Center of Breeding Pig, Shanghai 201302, China
| | - Weilong Tu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (H.W.); (Y.Z.); (W.T.); (H.W.); (J.C.)
- Shanghai Engineering Research Center of Breeding Pig, Shanghai 201302, China
| | - Zhe Chao
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou 571100, China;
| | - Huali Wu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (H.W.); (Y.Z.); (W.T.); (H.W.); (J.C.)
- Shanghai Engineering Research Center of Breeding Pig, Shanghai 201302, China
| | - Jianguo Cao
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (H.W.); (Y.Z.); (W.T.); (H.W.); (J.C.)
- Shanghai Engineering Research Center of Breeding Pig, Shanghai 201302, China
| | - Xiang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (B.L.)
| | - Bang Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (B.L.)
| | - Jennifer J. Michal
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA;
| | - Chun Fan
- Shanghai Laboratory Animal Research Center, Shanghai 201203, China;
| | - Yongsong Tan
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (H.W.); (Y.Z.); (W.T.); (H.W.); (J.C.)
- Shanghai Engineering Research Center of Breeding Pig, Shanghai 201302, China
- Correspondence: ; Tel.: +86-021-34505325
| |
Collapse
|
6
|
Fan W, Xu L, Cheng H, Li M, Liu H, Jiang Y, Guo Y, Zhou Z, Hou S. Characterization of Duck ( Anas platyrhynchos) Short Tandem Repeat Variation by Population-Scale Genome Resequencing. Front Genet 2018; 9:520. [PMID: 30425731 PMCID: PMC6218588 DOI: 10.3389/fgene.2018.00520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/15/2018] [Indexed: 12/30/2022] Open
Abstract
Short tandem repeats (STRs) are usually associated with genetic diseases and gene regulatory functions, and are also important genetic markers for analysis of evolutionary, genetic diversity and forensic. However, for the majority of STRs in the duck genome, their population genetic properties and functional impacts remain poorly defined. Recent advent of next generation sequencing (NGS) has offered an opportunity for profiling large numbers of polymorphic STRs. Here, we reported a population-scale analysis of STR variation using genome resequencing in mallard and Pekin duck. Our analysis provided the first genome-wide duck STR reference including 198,022 STR loci with motif size of 2–6 base pairs. We observed a relatively uneven distribution of STRs in different genomic regions, which indicates that the occurrence of STRs in duck genome is not random, but undergoes a directional selection pressure. Using genome resequencing data of 23 mallard and 26 Pekin ducks, we successfully identified 89,891 polymorphic STR loci. Intensive analysis of this dataset suggested that shorter repeat motif, longer reference tract length, higher purity, and residing outside of a coding region are all associated with an increase in STR variability. STR genotypes were utilized for population genetic analysis, and the results showed that population structure and divergence patterns among population groups can be efficiently captured. In addition, comparison between Pekin duck and mallard identified 3,122 STRs with extremely divergent allele frequency, which overlapped with a set of genes related to nervous system, energy metabolism and behavior. The evolutionary analysis revealed that the genes containing divergent STRs may play important roles in phenotypic changes during duck domestication. The variation analysis of STRs in population scale provides valuable resource for future study of genetic diversity and genome evolution in duck.
Collapse
Affiliation(s)
- Wenlei Fan
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lingyang Xu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hong Cheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Ming Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Hehe Liu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yong Jiang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhengkui Zhou
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuisheng Hou
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
7
|
Liu SX, Hou W, Zhang XY, Peng CJ, Yue BS, Fan ZX, Li J. Identification and characterization of short tandem repeats in the Tibetan macaque genome based on resequencing data. Zool Res 2018; 39:291-300. [PMID: 29643326 PMCID: PMC5968858 DOI: 10.24272/j.issn.2095-8137.2018.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/04/2018] [Indexed: 01/17/2023] Open
Abstract
The Tibetan macaque, which is endemic to China, is currently listed as a Near Endangered primate species by the International Union for Conservation of Nature (IUCN). Short tandem repeats (STRs) refer to repetitive elements of genome sequence that range in length from 1-6 bp. They are found in many organisms and are widely applied in population genetic studies. To clarify the distribution characteristics of genome-wide STRs and understand their variation among Tibetan macaques, we conducted a genome-wide survey of STRs with next-generation sequencing of five macaque samples. A total of 1 077 790 perfect STRs were mined from our assembly, with an N50 of 4 966 bp. Mono-nucleotide repeats were the most abundant, followed by tetra- and di-nucleotide repeats. Analysis of GC content and repeats showed consistent results with other macaques. Furthermore, using STR analysis software (lobSTR), we found that the proportion of base pair deletions in the STRs was greater than that of insertions in the five Tibetan macaque individuals (P<0.05, t-test). We also found a greater number of homozygous STRs than heterozygous STRs (P<0.05, t-test), with the Emei and Jianyang Tibetan macaques showing more heterozygous loci than Huangshan Tibetan macaques. The proportion of insertions and mean variation of alleles in the Emei and Jianyang individuals were slightly higher than those in the Huangshan individuals, thus revealing differences in STR allele size between the two populations. The polymorphic STR loci identified based on the reference genome showed good amplification efficiency and could be used to study population genetics in Tibetan macaques. The neighbor-joining tree classified the five macaques into two different branches according to their geographical origin, indicating high genetic differentiation between the Huangshan and Sichuan populations. We elucidated the distribution characteristics of STRs in the Tibetan macaque genome and provided an effective method for screening polymorphic STRs. Our results also lay a foundation for future genetic variation studies of macaques.
Collapse
Affiliation(s)
- San-Xu Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu Sichuan 610065, China
| | - Wei Hou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu Sichuan 610065, China
| | - Xue-Yan Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu Sichuan 610065, China
| | - Chang-Jun Peng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu Sichuan 610065, China
| | - Bi-Song Yue
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu Sichuan 610065, China
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu Sichuan 610065, China
| | - Zhen-Xin Fan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu Sichuan 610065, China
| | - Jing Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu Sichuan 610065, China; E-mail:
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu Sichuan 610065, China
| |
Collapse
|