1
|
Su Z, Niu C, Zhou S, Xu G, Zhu P, Fu Q, Zhang Y, Ming Z. Structural basis of chorismate isomerization by Arabidopsis ISOCHORISMATE SYNTHASE1. PLANT PHYSIOLOGY 2024; 196:773-787. [PMID: 38701037 DOI: 10.1093/plphys/kiae260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024]
Abstract
Salicylic acid (SA) plays a crucial role in plant defense against biotrophic and semibiotrophic pathogens. In Arabidopsis (Arabidopsis thaliana), isochorismate synthase 1 (AtICS1) is a key enzyme for the pathogen-induced biosynthesis of SA via catalytic conversion of chorismate into isochorismate, an essential precursor for SA synthesis. Despite the extensive knowledge of ICS1-related menaquinone, siderophore, and tryptophan (MST) enzymes in bacteria, the structural mechanisms for substrate binding and catalysis in plant isochorismate synthase (ICS) enzymes are unknown. This study reveals that plant ICS enzymes catalyze the isomerization of chorismate through a magnesium-dependent mechanism, with AtICS1 exhibiting the most substantial catalytic activity. Additionally, we present high-resolution crystal structures of apo AtICS1 and its complex with chorismate, offering detailed insights into the mechanisms of substrate recognition and catalysis. Importantly, our investigation indicates the existence of a potential substrate entrance channel and a gating mechanism regulating substrate into the catalytic site. Structural comparisons of AtICS1 with MST enzymes suggest a shared structural framework with conserved gating and catalytic mechanisms. This work provides valuable insights into the structural and regulatory mechanisms governing substrate delivery and catalysis in AtICS1, as well as other plant ICS enzymes.
Collapse
Affiliation(s)
- Zihui Su
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530004, P. R. China
| | - Chengqun Niu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530004, P. R. China
| | - Sicong Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530004, P. R. China
| | - Guolyu Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530004, P. R. China
| | - Pingchuan Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530004, P. R. China
| | - Qiang Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530004, P. R. China
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Zhenhua Ming
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning 530004, P. R. China
| |
Collapse
|
2
|
Kuai P, Lin N, Ye M, Ye M, Chen L, Chen S, Zu H, Hu L, Gatehouse AMR, Lou Y. Identification and knockout of a herbivore susceptibility gene enhances planthopper resistance and increases rice yield. NATURE FOOD 2024; 5:846-859. [PMID: 39251763 DOI: 10.1038/s43016-024-01044-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 08/13/2024] [Indexed: 09/11/2024]
Abstract
Brown planthoppers (Nilaparvata lugens) and white-backed planthoppers (Sogatella furcifera) are among the most destructive pests on rice. However, plant susceptibility genes have not yet been exploited for crop protection. Here we identified a leucine-rich repeat protein, OsLRR2, from susceptible rice varieties that facilitates infestation by brown planthopper N. lugens. Field trials showed that knockout of OsLRR2 significantly reduced BPH infestation and enhanced natural biological control by attracting natural enemies. Yield of a susceptible variety was increased by 18% in insecticide-treated plots that eliminated planthoppers and by 25% in untreated plots. These findings underscore the pivotal role of OsLRR2, offering a promising pathway for pest population suppression and rice yield increase.
Collapse
Affiliation(s)
- Peng Kuai
- State Key Laboratory of Rice Breeding and Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Na Lin
- State Key Laboratory of Rice Breeding and Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Miaofen Ye
- State Key Laboratory of Rice Breeding and Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Meng Ye
- State Key Laboratory of Rice Breeding and Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Lin Chen
- State Key Laboratory of Rice Breeding and Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Shuting Chen
- State Key Laboratory of Rice Breeding and Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Hongyue Zu
- State Key Laboratory of Rice Breeding and Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Lingfei Hu
- State Key Laboratory of Rice Breeding and Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | | | - Yonggen Lou
- State Key Laboratory of Rice Breeding and Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.
- Hainan Institute, Zhejiang University, Sanya, China.
| |
Collapse
|
3
|
Liang B, Bai Y, Zang C, Pei X, Xie J, Lin Y, Liu X, Ahsan T, Liang C. Overexpression of the First Peanut-Susceptible Gene, AhS5H1 or AhS5H2, Enhanced Susceptibility to Pst DC3000 in Arabidopsis. Int J Mol Sci 2023; 24:14210. [PMID: 37762513 PMCID: PMC10531710 DOI: 10.3390/ijms241814210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Salicylic acid (SA) serves as a pivotal plant hormone involved in regulating plant defense mechanisms against biotic stresses, but the extent of its biological significance in relation to peanut resistance is currently lacking. This study elucidated the involvement of salicylic acid (SA) in conferring broad-spectrum disease resistance in peanuts through the experimental approach of inoculating SA-treated leaves. In several other plants, the salicylate hydroxylase genes are the typical susceptible genes (S genes). Here, we characterized two SA hydroxylase genes (AhS5H1 and AhS5H2) as the first S genes in peanut. Recombinant AhS5H proteins catalyzed SA in vitro, and showed SA 5-ydroxylase (S5H) activity. Overexpression of AhS5H1 or AhS5H2 decreased SA content and increased 2,5-DHBA levels in Arabidopsis, suggesting that both enzymes had a similar role in planta. Moreover, overexpression of each AhS5H gene increased susceptibility to Pst DC3000. Analysis of the transcript levels of defense-related genes indicated that the expression of AhS5H genes, AhNPR1 and AhPR10 was simultaneously induced by chitin. Overexpression of each AhS5H in Arabidopsis abolished the induction of AtPR1 or AtPR2 upon chitin treatment. Eventually, AhS5H2 expression levels were highly correlated with SA content in different tissues of peanut. Hence, the expression of AhS5H1 and AhS5H2 was tissue-specific.
Collapse
Affiliation(s)
- Bingbing Liang
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China; (B.L.)
| | - Yuanjun Bai
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China; (B.L.)
- Institute of Rice Research, Liaoning Academy of Agricultural Sciences, Shenyang 110101, China
| | - Chaoqun Zang
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China; (B.L.)
| | - Xue Pei
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China; (B.L.)
| | - Jinhui Xie
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China; (B.L.)
| | - Ying Lin
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China; (B.L.)
| | - Xiaozhou Liu
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China; (B.L.)
| | - Taswar Ahsan
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China; (B.L.)
| | - Chunhao Liang
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China; (B.L.)
| |
Collapse
|
4
|
Meher J, Sarkar A, Sarma BK. Binding of stress-responsive OsWRKY proteins through WRKYGQK heptapeptide residue with the promoter region of two rice blast disease resistance genes Pi2 and Pi54 is important for development of blast resistance. 3 Biotech 2023; 13:294. [PMID: 37560615 PMCID: PMC10407006 DOI: 10.1007/s13205-023-03711-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/21/2023] [Indexed: 08/11/2023] Open
Abstract
Molecular docking was done to investigate the interactions between five differentially expressed rice WRKY proteins when challenged with the rice blast disease caused by Magnaporthe oryzae and drought stresses applied either individually or overlapped, with the promoter region of two blast resistance genes (Pi2 and Pi54). Molecular docking was performed using the HDOCK server. Initially, the homology models for each of the five rice WRKY proteins were prepared using I-TASSER server, and then the secondary structure as well as the DNA-binding pockets were predicted using PSIPRED and BindUP servers, respectively. The molecular docking study revealed a differential binding pattern of the rice WRKYs with the two blast resistance genes. The WRKY proteins (OsWRKY88 and OsWRKY102), whose transcript levels decrease when drought and blast stresses are overlapped, interact with the two resistance genes mostly involving the residues of the zinc finger structure. On the other hand, the WRKY proteins (OsWRKY53-1 and OsWRKY113), whose transcript levels did not reduce significantly when challenged by drought and blast overlapped condition compared to individual treatment of blast, interact mostly involving the residues of the conserved WRKYGQK heptapeptide sequence. Interestingly, the protein OsWRKY74 whose transcript levels are unaffected in both individual and overlapped stresses, interacts with both the blast resistance genes involving few residues of both WRKYGQK heptapeptide and the zinc finger structure. The findings thus indicate that the interaction of OsWRKY proteins involving the conserved WRKYGQK heptapeptide sequence with the blast resistance genes Pi2 and Pi54 is important to mitigate the blast challenge in rice even during overlapping challenges of drought. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03711-y.
Collapse
Affiliation(s)
- Jhumishree Meher
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005 India
| | - Ankita Sarkar
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005 India
| | - Birinchi Kumar Sarma
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005 India
| |
Collapse
|
5
|
Wang S, Han S, Zhou X, Zhao C, Guo L, Zhang J, Liu F, Huo Q, Zhao W, Guo Z, Chen X. Phosphorylation and ubiquitination of OsWRKY31 are integral to OsMKK10-2-mediated defense responses in rice. THE PLANT CELL 2023; 35:2391-2412. [PMID: 36869655 DOI: 10.1093/plcell/koad064] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 05/30/2023]
Abstract
Mitogen-activated protein kinase (MPK) cascades play vital roles in plant innate immunity, growth, and development. Here, we report that the rice (Oryza sativa) transcription factor gene OsWRKY31 is a key component in a MPK signaling pathway involved in plant disease resistance in rice. We found that the activation of OsMKK10-2 enhances resistance against the rice blast pathogen Magnaporthe oryzae and suppresses growth through an increase in jasmonic acid and salicylic acid accumulation and a decrease of indole-3-acetic acid levels. Knockout of OsWRKY31 compromises the defense responses mediated by OsMKK10-2. OsMKK10-2 and OsWRKY31 physically interact, and OsWRKY31 is phosphorylated by OsMPK3, OsMPK4, and OsMPK6. Phosphomimetic OsWRKY31 has elevated DNA-binding activity and confers enhanced resistance to M. oryzae. In addition, OsWRKY31 stability is regulated by phosphorylation and ubiquitination via RING-finger E3 ubiquitin ligases interacting with WRKY 1 (OsREIW1). Taken together, our findings indicate that modification of OsWRKY31 by phosphorylation and ubiquitination functions in the OsMKK10-2-mediated defense signaling pathway.
Collapse
Affiliation(s)
- Shuai Wang
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Shuying Han
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Xiangui Zhou
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Changjiang Zhao
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Lina Guo
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Junqi Zhang
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Fei Liu
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Qixin Huo
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Wensheng Zhao
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Zejian Guo
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Xujun Chen
- Key Laboratory of Pest Monitoring and Green Management, MOA, Joint Laboratory for International Cooperation in Crop Molecular Breeding, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
6
|
Li H, Li Z, Zhao Z. Egg-Associated Germs Induce Salicylate Defenses but Not Render Plant Against a Global Invasive Fruit Fly Effectively. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37021960 DOI: 10.1021/acs.jafc.3c00427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Germs associated with insect eggs can profoundly mediate interactions between host plants and herbivores, with the potential to coordinate plant physiological reactions with cascading effects on insect fitness. An experimental system was established including the oriental fruit fly (OFF, Bactrocera dorsalis) and tomato to examine the functions of egg-associated germs in mediating plant-herbivore interactions. OFF feeding resulted in significantly increased tannins, flavonoids, amino acids, and salicylic acid in the host tomato. These defensive responses of tomato were induced by the egg-associated germs, including Lactococcus sp., Brevundimonas sp., and Vagococcus sp. Tannins and flavonoids had no significant feedback effects on the pupal weight of OFF, while pupal biomass was significantly decreased by tannins and flavonoids in the germ-free treatment. Metabolome analysis showed that OFF mainly induced metabolic changes in carboxylic acid derivatives. Phenylalanine significantly induced downstream metabolic changes associated with phenylpropanoid accumulation. Finally, we conclude that the effects of egg-associated germs played an important role in facilitating OFF population adaptation and growth by mediating plant defenses, which provides a new paradigm for exploring the interaction of plant-pest and implementing effective pest biocontrol.
Collapse
Affiliation(s)
- Hao Li
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, China
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Zhihong Li
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, China
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Zihua Zhao
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, China
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| |
Collapse
|
7
|
Wang L, Xu G, Li L, Ruan M, Bennion A, Wang GL, Li R, Qu S. The OsBDR1-MPK3 module negatively regulates blast resistance by suppressing the jasmonate signaling and terpenoid biosynthesis pathway. Proc Natl Acad Sci U S A 2023; 120:e2211102120. [PMID: 36952381 PMCID: PMC10068787 DOI: 10.1073/pnas.2211102120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 02/17/2023] [Indexed: 03/24/2023] Open
Abstract
Receptor-like kinases (RLKs) may initiate signaling pathways by perceiving and transmitting environmental signals to cellular machinery and play diverse roles in plant development and stress responses. The rice genome encodes more than one thousand RLKs, but only a small number have been characterized as receptors for phytohormones, polypeptides, elicitors, and effectors. Here, we screened the function of 11 RLKs in rice resistance to the blast fungus Magnaporthe oryzae (M. oryzae) and identified a negative regulator named BDR1 (Blast Disease Resistance 1). The expression of BDR1 was rapidly increased under M. oryzae infection, while silencing or knockout of BDR1 significantly enhanced M. oryzae resistance in two rice varieties. Protein interaction and kinase activity assays indicated that BDR1 directly interacted with and phosphorylated mitogen-activated kinase 3 (MPK3). Knockout of BDR1 compromised M. oryzae-induced MPK3 phosphorylation levels. Moreover, transcriptome analysis revealed that M. oryzae-elicited jasmonate (JA) signaling and terpenoid biosynthesis pathway were negatively regulated by BDR1 and MPK3. Mutation of JA biosynthetic (allene oxide cyclase (AOC)/signaling (MYC2) genes decreased rice resistance to M. oryzae. Besides diterpenoid, the monoterpene linalool and the sesquiterpene caryophyllene were identified as unique defensive compounds against M. oryzae, and their biosynthesis genes (TPS3 and TPS29) were transcriptionally regulated by JA signaling and suppressed by BDR1 and MPK3. These findings demonstrate the existence of a BDR1-MPK3 cascade that negatively mediates rice blast resistance by affecting JA-related defense responses.
Collapse
Affiliation(s)
- Lanlan Wang
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, 310021Hangzhou, China
| | - Guojuan Xu
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, 310021Hangzhou, China
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193Beijing, China
| | - Lihua Li
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, 310021Hangzhou, China
| | - Meiying Ruan
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences,310021Hangzhou, China
| | - Anne Bennion
- SynMikro Center for Synthetic Microbiology, Philipps University Marburg, 35032Marburg, Germany
| | - Guo-Liang Wang
- Department of Plant Pathology, Ohio State University, 43210Columbus, OH
| | - Ran Li
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 310058Hangzhou, China
| | - Shaohong Qu
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, 310021Hangzhou, China
| |
Collapse
|
8
|
Wang Y, Liu K, Zhou Y, Chen Y, Jin C, Hu Y. Integrated Analysis of microRNA and RNA-Seq Reveals Phenolic Acid Secretion Metabolism in Continuous Cropping of Polygonatum odoratum. PLANTS (BASEL, SWITZERLAND) 2023; 12:943. [PMID: 36840290 PMCID: PMC9962977 DOI: 10.3390/plants12040943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/08/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Polygonatum odoratum (Mill.) Druce is an essential Chinese herb, but continuous cropping (CC) often results in a serious root rot disease, reducing the yield and quality. Phenolic acids, released through plant root exudation, are typical autotoxic substances that easily cause root rot in CC. To better understand the phenolic acid biosynthesis of P. odoratum roots in response to CC, this study performed a combined microRNA (miRNA)-seq and RNA-seq analysis. The phenolic acid contents of the first cropping (FC) soil and CC soil were determined by HPLC analysis. The results showed that CC soils contained significantly higher levels of p-coumaric acid, phenylacetate, and caffeic acid than FC soil, except for cinnamic acid and sinapic acid. Transcriptome identification and miRNA sequencing revealed 15,788 differentially expressed genes (DEGs) and 142 differentially expressed miRNAs (DEMs) in roots from FC and CC plants. Among them, 28 DEGs and eight DEMs were involved in phenolic acid biosynthesis. Meanwhile, comparative transcriptome and microRNA-seq analysis demonstrated that eight miRNAs corresponding to five target DEGs related to phenolic acid synthesis were screened. Among them, ath-miR172a, ath-miR172c, novel_130, sbi-miR172f, and tcc-miR172d contributed to phenylalanine synthesis. Osa-miR528-5p and mtr-miR2673a were key miRNAs that regulate syringyl lignin biosynthesis. Nta-miR156f was closely related to the shikimate pathway. These results indicated that the key DEGs and DEMs involved in phenolic acid anabolism might play vital roles in phenolic acid secretion from roots of P. odoratum under the CC system. As a result of the study, we may have a better understanding of phenolic acid biosynthesis during CC of roots of P. odoratum.
Collapse
Affiliation(s)
- Yan Wang
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha 410082, China
| | - Kaitai Liu
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Yunyun Zhou
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Yong Chen
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Chenzhong Jin
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Yihong Hu
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| |
Collapse
|
9
|
Contribution of a WRKY Transcription Factor, ShWRKY81, to Powdery Mildew Resistance in Wild Tomato. Int J Mol Sci 2023; 24:ijms24032583. [PMID: 36768909 PMCID: PMC9917159 DOI: 10.3390/ijms24032583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 01/31/2023] Open
Abstract
Tomato powdery mildew, caused by Oidium neolycopersici, is a destructive fungal disease that damages almost all of the aerial parts of tomato, causing devastating losses in tomato production worldwide. WRKY transcription factors are key regulators of plant immunity, but the roles of ShWRKYs in wild tomato Solanum habrochaites LA1777 against O. neolycopersici still remain to be uncovered. Here, we show that ShWRKY81 is an important WRKY transcription factor from wild tomato Solanum habrochaites LA1777, contributing to plant resistance against O. neolycopersici. ShWRKY81 was isolated and identified to positively modulate tomato resistance against On-Lz. The transient overexpression of the ShWRKY81-GFP (green fluorescent protein) fusion protein in Nicotiana benthamiana cells revealed that ShWRKY81 was localized in the nucleus. ShWRKY81 responded differentially to abiotic and biotic stimuli, with ShWRKY81 mRNA accumulation in LA1777 seedlings upon On-Lz infection. The virus-induced gene silencing of ShWRKY81 led to host susceptibility to On-Lz in LA1777, and a loss of H2O2 formation and hypersensitive response (HR) induction. Furthermore, the transcripts of ShWRKY81 were induced by salicylic acid (SA), and ShWRKY81-silenced LA1777 seedlings displayed decreased levels of the defense hormone SA and SA-dependent PRs gene expression upon On-Lz infection. Together, these results demonstrate that ShWRKY81 acts as a positive player in tomato powdery mildew resistance.
Collapse
|
10
|
Khan N, Zhang Y, Wang J, Li Y, Chen X, Yang L, Zhang J, Li C, Li L, Ur Rehman S, Reynolds MP, Zhang L, Zhang X, Mao X, Jing R. TaGSNE, a WRKY transcription factor, overcomes the trade-off between grain size and grain number in common wheat and is associated with root development. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6678-6696. [PMID: 35906966 DOI: 10.1093/jxb/erac327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 07/26/2022] [Indexed: 05/28/2023]
Abstract
Wheat is one of the world's major staple food crops, and breeding for improvement of grain yield is a priority under the scenarios of climate change and population growth. WRKY transcription factors are multifaceted regulators in plant growth, development, and responses to environmental stimuli. In this study, we identify the WRKY gene TaGSNE (Grain Size and Number Enhancer) in common wheat, and find that it has relatively high expression in leaves and roots, and is induced by multiple abiotic stresses. Eleven single-nucleotide polymorphisms were identified in TaGSNE, forming two haplotypes in multiple germplasm collections, named as TaGSNE-Hap-1 and TaGSNE-Hap-2. In a range of different environments, TaGSNE-Hap-2 was significantly associated with increases in thousand-grain weight (TGW; 3.0%) and spikelet number per spike (4.1%), as well as with deeper roots (10.1%) and increased root dry weight (8.3%) at the mid-grain-filling stage, and these were confirmed in backcross introgression populations. Furthermore, transgenic rice lines overexpressing TaGSNE had larger panicles, more grains, increased grain size, and increased grain yield relative to the wild-type control. Analysis of geographic and temporal distributions revealed that TaGSNE-Hap-2 is positively selected in China and Pakistan, and TaGSNE-Hap-1 in Europe. Our findings demonstrate that TaGSNE overcomes the trade-off between TGW/grain size and grain number, leading us to conclude that these elite haplotypes and their functional markers could be utilized in marker-assisted selection for breeding high-yielding varieties.
Collapse
Affiliation(s)
- Nadia Khan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Genetics, University of Karachi, Pakistan
| | - Yanfei Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
| | - Jingyi Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuying Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xin Chen
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lili Yang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chaonan Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Long Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shoaib Ur Rehman
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Plant Breeding and Biotechnology, Muhammad Nawaz Shareef University of Agriculture, Multan 60000, Pakistan
| | | | - Lichao Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xueyong Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinguo Mao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruilian Jing
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
11
|
Mei S, Zhang G, Jiang J, Lu J, Zhang F. Combining Genome-Wide Association Study and Gene-Based Haplotype Analysis to Identify Candidate Genes for Alkali Tolerance at the Germination Stage in Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:887239. [PMID: 35463411 PMCID: PMC9033254 DOI: 10.3389/fpls.2022.887239] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/22/2022] [Indexed: 06/01/2023]
Abstract
Salinity-alkalinity stress is one of the main abiotic factors limiting rice production worldwide. With the widespread use of rice direct seeding technology, it has become increasingly important to improve the tolerance to salinity-alkalinity of rice varieties at the germination stage. Although we have a more comprehensive understanding of salt tolerance in rice, the genetic basis of alkali tolerance in rice is still poorly understood. In this study, we measured seven germination-related traits under alkali stress and control conditions using 428 diverse rice accessions. The alkali tolerance levels of rice germplasms varied considerably during germination. Xian/indica accessions had generally higher tolerance to alkali stress than Geng/japonica accessions at the germination stage. Using genome-wide association analysis, 90 loci were identified as significantly associated with alkali tolerance. Eight genes (LOC_Os01g12000, LOC_Os03g60240, LOC_Os03g08960, LOC_Os04g41410, LOC_Os09g25060, LOC_Os11g35350, LOC_Os12g09350, and LOC_Os12g13300) were selected as important candidate genes for alkali tolerance based on the gene functional annotation and gene-CDS-haplotype analysis. According to the expression levels of LOC_Os09g25060 (OsWRKY76), it is likely to play a negative regulatory role in alkali tolerance during rice germination. An effective strategy for improving rice alkali tolerance may be to pyramid alkali-tolerant haplotypes of multiple candidate genes to obtain the optimal haplotype combination. Our findings may provide valuable genetic information and expand the use of alkali tolerance germplasm resources in rice molecular breeding to improve the alkali tolerance at the germination stage.
Collapse
Affiliation(s)
- Song Mei
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guogen Zhang
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Jing Jiang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jingbing Lu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fan Zhang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agronomy, Anhui Agricultural University, Hefei, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China
| |
Collapse
|
12
|
Wang L, Liu H, Yin Z, Li Y, Lu C, Wang Q, Ding X. A Novel Guanine Elicitor Stimulates Immunity in Arabidopsis and Rice by Ethylene and Jasmonic Acid Signaling Pathways. FRONTIERS IN PLANT SCIENCE 2022; 13:841228. [PMID: 35251109 PMCID: PMC8893958 DOI: 10.3389/fpls.2022.841228] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 06/01/2023]
Abstract
Rice sheath blight (ShB) caused by Rhizoctonia solani is one of the most destructive diseases in rice. Fungicides are widely used to control ShB in agriculture. However, decades of excessive traditional fungicide use have led to environmental pollution and increased pathogen resistance. Generally, plant elicitors are regarded as environmentally friendly biological pesticides that enhance plant disease resistance by triggering plant immunity. Previously, we identified that the plant immune inducer ZhiNengCong (ZNC), a crude extract of the endophyte, has high activity and a strong ability to protect plants against pathogens. Here, we further found that guanine, which had a significant effect on inducing plant resistance to pathogens, might be an active component of ZNC. In our study, guanine activated bursts of reactive oxygen species, callose deposition and mitogen-activated protein kinase phosphorylation. Moreover, guanine-induced plant resistance to pathogens depends on ethylene and jasmonic acid but is independent of the salicylic acid signaling pathway. Most importantly, guanine functions as a new plant elicitor with broad-spectrum resistance to activate plant immunity, providing an efficient and environmentally friendly biological elicitor for bacterial and fungal disease biocontrol.
Collapse
Affiliation(s)
- Lulu Wang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Haoqi Liu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Ziyi Yin
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Yang Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Chongchong Lu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Qingbin Wang
- Shandong Pengbo Biotechnology Co., Ltd., Tai’an, China
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
13
|
Function of hydroxycinnamoyl transferases for the biosynthesis of phenolamides in rice resistance to Magnaporthe oryzae. J Genet Genomics 2022; 49:776-786. [DOI: 10.1016/j.jgg.2022.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 01/05/2023]
|
14
|
Liang B, Wang H, Yang C, Wang L, Qi L, Guo Z, Chen X. Salicylic Acid Is Required for Broad-Spectrum Disease Resistance in Rice. Int J Mol Sci 2022; 23:ijms23031354. [PMID: 35163275 PMCID: PMC8836234 DOI: 10.3390/ijms23031354] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 02/04/2023] Open
Abstract
Rice plants contain high basal levels of salicylic acid (SA), but some of their functions remain elusive. To elucidate the importance of SA homeostasis in rice immunity, we characterized four rice SA hydroxylase genes (OsSAHs) and verified their roles in SA metabolism and disease resistance. Recombinant OsSAH proteins catalyzed SA in vitro, while OsSAH3 protein showed only SA 5-hydroxylase (SA5H) activity, which was remarkably higher than that of other OsSAHs that presented both SA3H and SA5H activities. Amino acid substitutions revealed that three amino acids in the binding pocket affected SAH enzyme activity and/or specificity. Knockout OsSAH2 and OsSAH3 (sahKO) genes conferred enhanced resistance to both hemibiotrophic and necrotrophic pathogens, whereas overexpression of each OsSAH gene increased susceptibility to the pathogens. sahKO mutants showed increased SA and jasmonate levels compared to those of the wild type and OsSAH-overexpressing plants. Analysis of the OsSAH3 promoter indicated that its induction was mainly restricted around Magnaporthe oryzae infection sites. Taken together, our findings indicate that SA plays a vital role in immune signaling. Moreover, fine-tuning SA homeostasis through suppression of SA metabolism is an effective approach in studying broad-spectrum disease resistance in rice.
Collapse
|
15
|
Im JH, Choi C, Park SR, Hwang DJ. The OsWRKY6 transcriptional cascade functions in basal defense and Xa1-mediated defense of rice against Xanthomonas oryzae pv. oryzae. PLANTA 2022; 255:47. [PMID: 35076864 DOI: 10.1007/s00425-022-03830-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
The rice protein OsWRKY6 directly activates OsWRKY45 and OsWRKY47 expression, and also activates OsPR1a and OsPR1b through the two OsWRKYs, and this transcriptional module participates in Xa1-mediated defense against the pathogen Xanthomonas oryzae pv. oryzae. Biotic stress, the pathogen Xanthomonas oryzae pv. oryzae (Xoo) in particular, negatively impacts worldwide productivity and yield in the staple crop rice (Oryza sativa). OsWRKY transcription factors are involved in various biotic stress responses in rice, and OsWRKY6 specifically acts as an important defense regulator against Xoo. However, the relationship between OsWRKY6 and other OsWRKYs, as well as its role in resistance (R) gene-mediated defense, have yet to be studied in depth. Here, we characterized a transcriptional cascade triggered by OsWRKY6 that regulated defense against Xoo infection mediated by the NBS-LRR protein Xa1. OsWRKY45 and OsWRKY47 were identified as direct transcriptional targets of OsWRKY6, and their two gene products reciprocally activated their two genes. Furthermore, OsWRKY6 activated OsPR1a and OsPR1b via the OsWRKY45 and OsWRKY47. Two OsWRKY6 RNAi knockdown lines showed significantly reduced defense even against an incompatible Xoo infection, and the expression of OsWRKY6 was not regulated by OsWRKY51 and OsWRKY88. This study reveals that a novel downstream transcriptional pathway activated by OsWRKY6 is involved in Xa1-mediated defense against Xoo.
Collapse
Affiliation(s)
- Jong Hee Im
- National Institute of Agricultural Science, Rural Development Administration, Jeonju, 54874, Republic of Korea
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | - Changhyun Choi
- National Institute of Agricultural Science, Rural Development Administration, Jeonju, 54874, Republic of Korea
- National Institute of Crop Science, Rural Development Administration, 180 Hyeoksin-ro, Wanju-gun, 55365, Republic of Korea
| | - Sang Ryeol Park
- National Institute of Agricultural Science, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Duk-Ju Hwang
- National Institute of Agricultural Science, Rural Development Administration, Jeonju, 54874, Republic of Korea.
- Mediprogen Inc.1447, Pyungchang-gun, 25354, Republic of Korea.
| |
Collapse
|
16
|
Han H, Zou J, Zhou J, Zeng M, Zheng D, Yuan X, Xi D. The small GTPase NtRHO1 negatively regulates tobacco defense response to tobacco mosaic virus by interacting with NtWRKY50. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:366-381. [PMID: 34487168 DOI: 10.1093/jxb/erab408] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Small GTPases play critical roles in the regulation of plant growth and development. However, the mechanism of action of small GTPases in plant response to virus infection remains largely unknown. Here, the gene encoding a Rho-type GTPase, NtRHO1, was identified as one of the genes up-regulated after tobacco mosaic virus (TMV) infection. Subcellular localization of NtRHO1 showed that it was located in the cytoplasm, plasma membrane, and nucleus. Transient overexpression of NtRHO1 in Nicotiana benthamiana accelerated TMV reproduction and led to the production of reactive oxygen species. By contrast, silencing of NtRHO1 reduced the sensitivity of N. benthamiana to TMV-GFP. Further exploration revealed a direct interaction between NtRHO1 and NtWRKY50, a positive regulator of the N. benthamiana response to virus infection. Yeast one-hybrid and electrophoretic mobility shift assays showed that this regulation was related to the capacity of NtWRKY50 to bind to the WK-box of the PR1 promoter, which was weakened by the interaction between NtRHO1 and NtWRKY50. Thus, our results indicate that the small GTPase NtRHO1 plays a negative role in tobacco response to TMV infection by interacting with transcription factor NtWRKY50, resulting in reduced plant immunity.
Collapse
Affiliation(s)
- Hongyan Han
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Jialing Zou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Jingya Zhou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Mengyuan Zeng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Dongchao Zheng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Xuefeng Yuan
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Shandong Province Key Laboratory of Agricultural Microbiology, Tai'an, Shandong, China
| | - Dehui Xi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
17
|
Fang H, Shen S, Wang D, Zhang F, Zhang C, Wang Z, Zhou Q, Wang R, Tao H, He F, Yang C, Peng M, Jing X, Hao Z, Liu X, Luo J, Wang GL, Ning Y. A monocot-specific hydroxycinnamoylputrescine gene cluster contributes to immunity and cell death in rice. Sci Bull (Beijing) 2021; 66:2381-2393. [PMID: 36654124 DOI: 10.1016/j.scib.2021.06.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/29/2021] [Accepted: 06/07/2021] [Indexed: 02/03/2023]
Abstract
Phenolamides (PAs), a diverse group of specialized metabolites, including hydroxycinnamoylputrescine (HP), hydroxycinnamoylagmatine, and hydroxycinnamoyltryptamine, are important in plant resistance to biotic stress. However, the genes involved in the biosynthesis and modulation of PAs have not been fully elucidated. This study identified an HP biosynthetic gene cluster in rice (Oryza sativa) comprising one gene (OsODC) encoding a decarboxylase and two tandem-duplicated genes (OsPHT3 and OsPHT4) encoding putrescine hydroxycinnamoyl acyltransferases coexpressed in different tissues. OsODC catalyzes the conversion of ornithine to putrescine, which is used in HP biosynthesis involving OsPHT3 and OsPHT4. OsPHT3 or OsPHT4 overexpression causes HP accumulation and cell death and putrescine hydroxycinnamoyl acyltransferases (PHT) activity-dependent resistance against the fungal pathogen Magnaporthe oryzae. OsODC overexpression plants also confer enhanced resistance to M. oryzae. Notably, the basic leucine zipper transcription factor APIP5, a negative regulator of cell death, directly binds to the OsPHT4 promoter, repressing its transcription. Moreover, APIP5 suppression induces OsPHT4 expression and HP accumulation. Comparative genomic analysis revealed that the HP biosynthetic gene cluster is conserved in monocots. These results characterized a previously unidentified monocot-specific gene cluster that is involved in HP biosynthesis and contributes to defense and cell death in rice.
Collapse
Affiliation(s)
- Hong Fang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Shuangqian Shen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Dan Wang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Fan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chongyang Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zixuan Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Qianqian Zhou
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Ruyi Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hui Tao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Feng He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chenkun Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Meng Peng
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Xinyu Jing
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Zeyun Hao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xionglun Liu
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Jie Luo
- College of Tropical Crops, Hainan University, Haikou 572208, China.
| | - Guo-Liang Wang
- Department of Plant Pathology, The Ohio State University, Columbus OH 43210, USA.
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
18
|
Wang H, Bi Y, Gao Y, Yan Y, Yuan X, Xiong X, Wang J, Liang J, Li D, Song F. A Pathogen-Inducible Rice NAC Transcription Factor ONAC096 Contributes to Immunity Against Magnaprothe oryzae and Xanthomonas oryzae pv. oryzae by Direct Binding to the Promoters of OsRap2.6, OsWRKY62, and OsPAL1. FRONTIERS IN PLANT SCIENCE 2021; 12:802758. [PMID: 34956298 PMCID: PMC8702954 DOI: 10.3389/fpls.2021.802758] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
The rice NAC transcriptional factor family harbors 151 members, and some of them play important roles in rice immunity. Here, we report the function and molecular mechanism of a pathogen-inducible NAC transcription factor, ONAC096, in rice immunity against Magnaprothe oryzae and Xanthomonas oryzae pv. oryzae. Expression of ONAC096 was induced by M. oryzae and by abscisic acid and methyl jasmonate. ONAC096 had the DNA binding ability to NAC recognition sequence and was found to be a nucleus-localized transcriptional activator whose activity depended on its C-terminal. CRISPR/Cas9-mediated knockout of ONAC096 attenuated rice immunity against M. oryzae and X. oryzae pv. oryzae as well as suppressed chitin- and flg22-induced reactive oxygen species burst and expression of PTI marker genes OsWRKY45 and OsPAL4; by contrast, overexpression of ONAC096 enhanced rice immunity against these two pathogens and strengthened chitin- or flg22-induced PTI. RNA-seq transcriptomic profiling and qRT-PCR analysis identified a small set of defense and signaling genes that are putatively regulated by ONAC096, and further biochemical analysis validated that ONAC096 could directly bind to the promoters of OsRap2.6, OsWRKY62, and OsPAL1, three known defense and signaling genes that regulate rice immunity. ONAC096 interacts with ONAC066, which is a positive regulator of rice immunity. These results demonstrate that ONAC096 positively contributes to rice immunity against M. oryzae and X. oryzae pv. oryzae through direct binding to the promoters of downstream target genes including OsRap2.6, OsWRKY62, and OsPAL1.
Collapse
Affiliation(s)
- Hui Wang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yan Bi
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yizhou Gao
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yuqing Yan
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xi Yuan
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, China
| | - Xiaohui Xiong
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Jiajing Wang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Jiayu Liang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Dayong Li
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Fengming Song
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
19
|
Non-Targeted Metabolite Profiling Reveals Host Metabolomic Reprogramming during the Interaction of Black Pepper with Phytophthora capsici. Int J Mol Sci 2021; 22:ijms222111433. [PMID: 34768864 PMCID: PMC8583951 DOI: 10.3390/ijms222111433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/28/2021] [Accepted: 10/06/2021] [Indexed: 01/04/2023] Open
Abstract
Phytophthora capsici is one of the most destructive pathogens causing quick wilt (foot rot) disease in black pepper (Piper nigrum L.) to which no effective resistance has been defined. To better understand the P. nigrum-P. capsici pathosystem, we employed metabolomic approaches based on flow-infusion electrospray-high-resolution mass spectrometry. Changes in the leaf metabolome were assessed in infected and systemic tissues at 24 and 48 hpi. Principal Component Analysis of the derived data indicated that the infected leaves showed a rapid metabolic response by 24 hpi whereas the systemic leaves took 48 hpi to respond to the infection. The major sources of variations between infected leaf and systemic leaf were identified, and enrichment pathway analysis indicated, major shifts in amino acid, tricarboxylic acid cycle, nucleotide and vitamin B6 metabolism upon infection. Moreover, the individual metabolites involved in defensive phytohormone signalling were identified. RT-qPCR analysis of key salicylate and jasmonate biosynthetic genes indicated a transient reduction of expression at 24 hpi but this increased subsequently. Exogenous application of jasmonate and salicylate reduced P. capsici disease symptoms, but this effect was suppressed with the co-application of abscisic acid. The results are consistent with abscisic acid reprogramming, salicylate and jasmonate defences in infected leaves to facilitate the formation of disease. The augmentation of salicylate and jasmonate defences could represent an approach through which quick wilt disease could be controlled in black pepper.
Collapse
|
20
|
Yuan X, Wang H, Bi Y, Yan Y, Gao Y, Xiong X, Wang J, Li D, Song F. ONAC066, A Stress-Responsive NAC Transcription Activator, Positively Contributes to Rice Immunity Against Magnaprothe oryzae Through Modulating Expression of OsWRKY62 and Three Cytochrome P450 Genes. FRONTIERS IN PLANT SCIENCE 2021; 12:749186. [PMID: 34567053 PMCID: PMC8458891 DOI: 10.3389/fpls.2021.749186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
NAC transcriptional factors constitute a large family in rice and some of them have been demonstrated to play crucial roles in rice immunity. The present study investigated the function and mechanism of ONAC066 in rice immunity. ONAC066 shows transcription activator activity that depends on its C-terminal region in rice cells. ONAC066-OE plants exhibited enhanced resistance while ONAC066-Ri and onac066-1 plants showed attenuated resistance to Magnaporthe oryzae. A total of 81 genes were found to be up-regulated in ONAC066-OE plants, and 26 of them were predicted to be induced by M. oryzae. Four OsWRKY genes, including OsWRKY45 and OsWRKY62, were up-regulated in ONAC066-OE plants but down-regulated in ONAC066-Ri plants. ONAC066 bound to NAC core-binding site in OsWRKY62 promoter and activated OsWRKY62 expression, indicating that OsWRKY62 is a ONAC066 target. A set of cytochrome P450 genes were found to be co-expressed with ONAC066 and 5 of them were up-regulated in ONAC066-OE plants but down-regulated in ONAC066-Ri plants. ONAC066 bound to promoters of cytochrome P450 genes LOC_Os02g30110, LOC_Os06g37300, and LOC_Os02g36150 and activated their transcription, indicating that these three cytochrome P450 genes are ONAC066 targets. These results suggest that ONAC066, as a transcription activator, positively contributes to rice immunity through modulating the expression of OsWRKY62 and a set of cytochrome P450 genes to activate defense response.
Collapse
Affiliation(s)
- Xi Yuan
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Hui Wang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yan Bi
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yuqing Yan
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yizhou Gao
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xiaohui Xiong
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Jiajing Wang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Dayong Li
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Fengming Song
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
21
|
Hu B, Zhou Y, Zhou Z, Sun B, Zhou F, Yin C, Ma W, Chen H, Lin Y. Repressed OsMESL expression triggers reactive oxygen species-mediated broad-spectrum disease resistance in rice. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1511-1522. [PMID: 33567155 PMCID: PMC8384603 DOI: 10.1111/pbi.13566] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 02/04/2021] [Indexed: 05/03/2023]
Abstract
A few reports have indicated that a single gene confers resistance to bacterial blight, sheath blight and rice blast. In this study, we identified a novel disease resistance mutant gene, methyl esterase-like (osmesl) in rice. Mutant rice with T-DNA insertion displayed significant resistance to bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo), sheath blight caused by Rhizoctonia solani and rice blast caused by Magnaporthe oryzae. Additionally, CRISPR-Cas9 knockout mutants and RNAi lines displayed resistance to these pathogens. Complementary T-DNA mutants demonstrated a phenotype similar to the wild type (WT), thereby indicating that osmesl confers resistance to pathogens. Protein interaction experiments revealed that OsMESL affects reactive oxygen species (ROS) accumulation by interacting with thioredoxin OsTrxm in rice. Moreover, qRT-PCR results showed significantly reduced mRNA levels of multiple ROS scavenging-related genes in osmesl mutants. Nitroblue tetrazolium staining showed that the pathogens cause ROS accumulation, and quantitative detection revealed significantly increased levels of H2 O2 in the leaves of osmesl mutants and RNAi lines after infection. The abundance of JA, a hormone associated with disease resistance, was significantly more in osmesl mutants than in WT plants. Overall, these results suggested that osmesl enhances disease resistance to Xoo, R. solani and M. oryzae by modulating the ROS balance.
Collapse
Affiliation(s)
- Bin Hu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina
| | - Yong Zhou
- College of Bioscience and BioengineeringJiangxi Agricultural UniversityNanchangChina
| | - Zaihui Zhou
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina
| | - Bo Sun
- Wuhan Towin Biotechnology Company LimitedWuhanChina
| | - Fei Zhou
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina
| | - Changxi Yin
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina
| | - Weihua Ma
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina
| | - Hao Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan)Huazhong Agricultural UniversityWuhanChina
| |
Collapse
|
22
|
In silico identification of conserved miRNAs in the genome of fibre biogenesis crop Corchorus capsularis. Heliyon 2021; 7:e06705. [PMID: 33869875 PMCID: PMC8045047 DOI: 10.1016/j.heliyon.2021.e06705] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/02/2021] [Accepted: 03/31/2021] [Indexed: 11/24/2022] Open
Abstract
Corchorus capsularis, commonly known as jute occupies the leading position in the production of natural fibre alongside lower environmental threat. Small noncoding ~21 to 24 nucleotides long microRNAs play significant roles in regulating the gene expression as well as different functions in cellular growth and development. Here, the study adopted a comprehensive in silico approach to identify and characterize the conserved miRNAs in the genome of C. capsularis including functional annotation of specific gene targets. Expressed Sequence Tags (ESTs) based homology search of 3350 known miRNAs of dicotyledons were allowed against 763 non-redundant ESTs of jute genome, resulted in the prediction of 5 potential miRNA candidates belonging five different miRNA families (miR1536, miR9567-3p, miR4391, miR11300, and miR8689). The putative miRNAs were composed of 18 nucleotides having a range of -0.49 to -1.56 MFEI values and 55%–61% of (A + U) content in their pre-miRNAs. A total of 1052 gene targets of putative miRNAs were identified and their functions were extensively analyzed. Most of the gene targets were involved in plant growth, cell cycle regulation, organelle synthesis, developmental process and environmental responses. Five gene targets, namely, NAC Domain Containing Protein, WRKY DNA binding protein, 3-dehydroquinate synthase, S-adenosyl-L-Met–dependent methyl transferase and Vascular-related NAC-Domain were found to be involved in the lignin biosynthesis, phenylpropanoid pathways and secondary wall formation. The present study might accelerate the more miRNA discovery, strengthening the complete understanding of miRNAs association in the cellular basis of lignin biosynthesis towards the production of high standard jute products.
Collapse
|
23
|
Vo KTX, Rahman MM, Rahman MM, Trinh KTT, Kim ST, Jeon JS. Proteomics and Metabolomics Studies on the Biotic Stress Responses of Rice: an Update. RICE (NEW YORK, N.Y.) 2021; 14:30. [PMID: 33721115 PMCID: PMC7960847 DOI: 10.1186/s12284-021-00461-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/28/2021] [Indexed: 05/19/2023]
Abstract
Biotic stresses represent a serious threat to rice production to meet global food demand and thus pose a major challenge for scientists, who need to understand the intricate defense mechanisms. Proteomics and metabolomics studies have found global changes in proteins and metabolites during defense responses of rice exposed to biotic stressors, and also reported the production of specific secondary metabolites (SMs) in some cultivars that may vary depending on the type of biotic stress and the time at which the stress is imposed. The most common changes were seen in photosynthesis which is modified differently by rice plants to conserve energy, disrupt food supply for biotic stress agent, and initiate defense mechanisms or by biotic stressors to facilitate invasion and acquire nutrients, depending on their feeding style. Studies also provide evidence for the correlation between reactive oxygen species (ROS) and photorespiration and photosynthesis which can broaden our understanding on the balance of ROS production and scavenging in rice-pathogen interaction. Variation in the generation of phytohormones is also a key response exploited by rice and pathogens for their own benefit. Proteomics and metabolomics studies in resistant and susceptible rice cultivars upon pathogen attack have helped to identify the proteins and metabolites related to specific defense mechanisms, where choosing of an appropriate method to identify characterized or novel proteins and metabolites is essential, considering the outcomes of host-pathogen interactions. Despites the limitation in identifying the whole repertoire of responsive metabolites, some studies have shed light on functions of resistant-specific SMs. Lastly, we illustrate the potent metabolites responsible for resistance to different biotic stressors to provide valuable targets for further investigation and application.
Collapse
Affiliation(s)
- Kieu Thi Xuan Vo
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 17104 South Korea
| | - Md Mizanor Rahman
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 17104 South Korea
| | - Md Mustafizur Rahman
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 17104 South Korea
| | - Kieu Thi Thuy Trinh
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 17104 South Korea
| | - Sun Tae Kim
- Department of Plant Bioscience, Pusan National University, Miryang, 50463 South Korea
| | - Jong-Seong Jeon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 17104 South Korea
| |
Collapse
|
24
|
Wang Y, Huang L, Du F, Wang J, Zhao X, Li Z, Wang W, Xu J, Fu B. Comparative transcriptome and metabolome profiling reveal molecular mechanisms underlying OsDRAP1-mediated salt tolerance in rice. Sci Rep 2021; 11:5166. [PMID: 33664392 PMCID: PMC7933422 DOI: 10.1038/s41598-021-84638-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 02/18/2021] [Indexed: 11/09/2022] Open
Abstract
Integration of transcriptomics and metabolomics data can provide detailed information for better understanding the molecular mechanisms underlying salt tolerance in rice. In the present study, we report a comprehensive analysis of the transcriptome and metabolome of rice overexpressing the OsDRAP1 gene, which encodes an ERF transcription factor and was previously identified to be conferring drought tolerance. Phenotypic analysis showed that OsDRAP1 overexpression (OE) improved salt tolerance by increasing the survival rate under salt stress. OsDRAP1 affected the physiological indices such as superoxide dismutase (SOD), catalase (CAT) and malondialdehyde (MDA) to enhance redox homeostasis and membrane stability in response to salt stress. Higher basal expression of OsDRAP1 resulted in differential expression of genes that potentially function in intrinsic salt tolerance. A core set of genes with distinct functions in transcriptional regulation, organelle gene expression and ion transport were substantially up-regulated in the OE line in response to salt stress, implying their important role in OsDRAP1-mediated salt tolerance. Correspondingly, metabolome profiling detected a number of differentially metabolites in the OE line relative to the wild type under salt stress. These metabolites, including amino acids (proline, valine), organic acids (glyceric acid, phosphoenolpyruvic acid and ascorbic acid) and many secondary metabolites, accumulated to higher levels in the OE line, demonstrating their role in salt tolerance. Integration of transcriptome and metabolome analysis highlights the crucial role of amino acids and carbohydrate metabolism pathways in OsDRAP1-mediated salt tolerance.
Collapse
Affiliation(s)
- Yinxiao Wang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12#, Beijing, 100081, China
| | - Liyu Huang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12#, Beijing, 100081, China.,School of Agriculture, Yunnan University, Kunming, Yunnan, China.,Research Center for Perennial Rice Engineering and Technology of Yunnan, School of Agriculture, Yunnan University, Kunming, 650091, Yunnan, China
| | - Fengping Du
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12#, Beijing, 100081, China
| | - Juan Wang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12#, Beijing, 100081, China
| | - Xiuqin Zhao
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12#, Beijing, 100081, China
| | - Zhikang Li
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12#, Beijing, 100081, China.,School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Wensheng Wang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12#, Beijing, 100081, China. .,School of Agronomy, Anhui Agricultural University, Hefei, China.
| | - Jianlong Xu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12#, Beijing, 100081, China.
| | - Binying Fu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12#, Beijing, 100081, China.
| |
Collapse
|
25
|
Jiang Y, Zheng W, Li J, Liu P, Zhong K, Jin P, Xu M, Yang J, Chen J. NbWRKY40 Positively Regulates the Response of Nicotiana benthamiana to Tomato Mosaic Virus via Salicylic Acid Signaling. FRONTIERS IN PLANT SCIENCE 2020; 11:603518. [PMID: 33552099 PMCID: PMC7857026 DOI: 10.3389/fpls.2020.603518] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/01/2020] [Indexed: 05/05/2023]
Abstract
WRKY transcription factors play important roles in plants, including responses to stress; however, our understanding of the function of WRKY genes in plant responses to viral infection remains limited. In this study, we investigate the role of NbWRKY40 in Nicotiana benthamiana resistance to tomato mosaic virus (ToMV). NbWRKY40 is significantly downregulated by ToMV infection, and subcellular localization analysis indicates that NbWRKY40 is targeted to the nucleus. In addition, NbWRKY40 activates W-box-dependent transcription in plants and shows transcriptional activation in yeast cells. Overexpressing NbWRKY40 (OEWRKY40) inhibits ToMV infection, whereas NbWRKY40 silencing confers susceptibility. The level of salicylic acid (SA) is significantly higher in OEWRKY40 plants compared with that of wild-type plants. In addition, transcript levels of the SA-biosynthesis gene (ICS1) and SA-signaling genes (PR1b and PR2) are dramatically higher in OEWRKY40 plants than in the control but lower in NbWRKY40-silenced plants than in the control. Furthermore, electrophoretic mobility shift assays show that NbWRKY40 can bind the W-box element of ICS1. Callose staining reveals that the plasmodesmata is decreased in OEWRKY40 plants but increased in NbWRKY40-silenced plants. Exogenous application of SA also reduces viral accumulation in NbWRKY40-silenced plants infected with ToMV. RT-qPCR indicates that NbWRKY40 does not affect the replication of ToMV in protoplasts. Collectively, our findings suggest that NbWRKY40 likely regulates anti-ToMV resistance by regulating the expression of SA, resulting in the deposition of callose at the neck of plasmodesmata, which inhibits viral movement.
Collapse
Affiliation(s)
- Yaoyao Jiang
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Weiran Zheng
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Jing Li
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Peng Liu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Kaili Zhong
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Peng Jin
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Miaoze Xu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jian Yang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jianping Chen
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, China
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- *Correspondence: Jianping Chen,
| |
Collapse
|
26
|
Chen X, Li C, Wang H, Guo Z. WRKY transcription factors: evolution, binding, and action. PHYTOPATHOLOGY RESEARCH 2019; 1:13. [PMID: 0 DOI: 10.1186/s42483-019-0022-x] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/28/2019] [Indexed: 05/25/2023]
|
27
|
Zhu G, Liang E, Lan X, Li Q, Qian J, Tao H, Zhang M, Xiao N, Zuo S, Chen J, Gao Y. ZmPGIP3 Gene Encodes a Polygalacturonase-Inhibiting Protein that Enhances Resistance to Sheath Blight in Rice. PHYTOPATHOLOGY 2019; 109:1732-1740. [PMID: 31479403 DOI: 10.1094/phyto-01-19-0008-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Plant polygalacturonase-inhibiting protein (PGIP) is a structural protein that can specifically recognize and bind to fungal polygalacturonase (PG). PGIP plays an important role in plant antifungal activity. In this study, a maize PGIP gene, namely ZmPGIP3, was cloned and characterized. Agarose diffusion assay suggested that ZmPGIP3 could inhibit the activity of PG. ZmPGIP3 expression was significantly induced by wounding, Rhizoctonia solani infection, jasmonate, and salicylic acid. ZmPGIP3 might be related to disease resistance. The gene encoding ZmPGIP3 was posed under the control of the ubiquitin promoter and constitutively expressed in transgenic rice. In an R. solani infection assay, ZmPGIP3 transgenic rice was more resistant to sheath blight than the wild-type rice regardless of the inoculated plant part (leaves or sheaths). Digital gene expression analysis indicated that the expression of some rice PGIP genes significantly increased in ZmPGIP3 transgenic rice, suggesting that ZmPGIP3 might activate the expression of some rice PGIP genes to resist sheath blight. Our investigation of the agronomic traits of ZmPGIP3 transgenic rice showed that ZmPGIP3 overexpression in rice did not show any detrimental phenotypic or agronomic effect. ZmPGIP3 is a promising candidate gene in the transgenic breeding for sheath blight resistance and crop improvement.
Collapse
Affiliation(s)
- Guang Zhu
- Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Enxing Liang
- Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Xiang Lan
- Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Qian Li
- Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Jingjie Qian
- Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Haixia Tao
- Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Mengjiao Zhang
- Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Ning Xiao
- Lixiahe Region Agricultural Scientific Research Institute of Jiangsu, Yangzhou 225009, Jiangsu, China
| | - Shimin Zuo
- Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Jianmin Chen
- Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Yong Gao
- Jiangsu Key Laboratories of Crop Genetics and Physiology and Plant Functional Genomics of the Ministry of Education, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
28
|
Chen X, Chen H, Yuan JS, Köllner TG, Chen Y, Guo Y, Zhuang X, Chen X, Zhang Y, Fu J, Nebenführ A, Guo Z, Chen F. The rice terpene synthase gene OsTPS19 functions as an (S)-limonene synthase in planta, and its overexpression leads to enhanced resistance to the blast fungus Magnaporthe oryzae. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1778-1787. [PMID: 29509987 PMCID: PMC6131416 DOI: 10.1111/pbi.12914] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 02/11/2018] [Accepted: 02/24/2018] [Indexed: 05/07/2023]
Abstract
Rice blast disease, caused by the fungus Magnaporthe oryzae, is the most devastating disease of rice. In our ongoing characterization of the defence mechanisms of rice plants against M. oryzae, a terpene synthase gene OsTPS19 was identified as a candidate defence gene. Here, we report the functional characterization of OsTPS19, which is up-regulated by M. oryzae infection. Overexpression of OsTPS19 in rice plants enhanced resistance against M. oryzae, while OsTPS19 RNAi lines were more susceptible to the pathogen. Metabolic analysis revealed that the production of a monoterpene (S)-limonene was increased and decreased in OsTPS19 overexpression and RNAi lines, respectively, suggesting that OsTPS19 functions as a limonene synthase in planta. This notion was further supported by in vitro enzyme assays with recombinant OsTPS19, in which OsTPS19 had both sesquiterpene activity and monoterpene synthase activity, with limonene as a major product. Furthermore, in a subcellular localization experiment, OsTPS19 was localized in plastids. OsTPS19 has a highly homologous paralog, OsTPS20, which likely resulted from a recent gene duplication event. We found that the variation in OsTPS19 and OsTPS20 enzyme activities was determined by a single amino acid in the active site cavity. The expression of OsTPS20 was not affected by M. oryzae infection. This indicates functional divergence of OsTPS19 and OsTPS20. Lastly, (S)-limonene inhibited the germination of M. oryzae spores in vitro. OsTPS19 was determined to function as an (S)-limonene synthase in rice and plays a role in defence against M. oryzae, at least partly, by inhibiting spore germination.
Collapse
Affiliation(s)
- Xujun Chen
- Key Laboratory of Plant PathologyDepartment of Plant PathologyChina Agricultural UniversityBeijingChina
| | - Hao Chen
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Joshua S. Yuan
- Department of Plant Pathology and MicrobiologyTexas A&M UniversityCollege StationTXUSA
| | | | - Yuying Chen
- Key Laboratory of Plant PathologyDepartment of Plant PathologyChina Agricultural UniversityBeijingChina
| | - Yufen Guo
- Key Laboratory of Plant PathologyDepartment of Plant PathologyChina Agricultural UniversityBeijingChina
| | - Xiaofeng Zhuang
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Xinlu Chen
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Yong‐jun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Jianyu Fu
- Tea Research InstituteChinese Academy of Agricultural SciencesHangzhouChina
| | - Andreas Nebenführ
- Department of Biochemistry and Cellular and Molecular BiologyUniversity of TennesseeKnoxvilleTNUSA
| | - Zejian Guo
- Key Laboratory of Plant PathologyDepartment of Plant PathologyChina Agricultural UniversityBeijingChina
| | - Feng Chen
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| |
Collapse
|
29
|
Analysis of the resistance mechanisms in sugarcane during Sporisorium scitamineum infection using RNA-seq and microscopy. PLoS One 2018; 13:e0197840. [PMID: 29795614 PMCID: PMC5993111 DOI: 10.1371/journal.pone.0197840] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/09/2018] [Indexed: 02/03/2023] Open
Abstract
Smut caused by biotrophic fungus Sporisorium scitamineum is a major disease of cultivated sugarcane that can cause considerable yield losses. It has been suggested in literature that there are at least two types of resistance mechanisms in sugarcane plants: an external resistance, due to chemical or physical barriers in the sugarcane bud, and an internal resistance governed by the interaction of plant and fungus within the plant tissue. Detailed molecular studies interrogating these two different resistance mechanisms in sugarcane are scarce. Here, we use light microscopy and global expression profiling with RNA-seq to investigate these mechanisms in sugarcane cultivar CP74-2005, a cultivar that possibly possesses both internal and external defence mechanisms. A total of 861 differentially expressed genes (DEGs) were identified in a comparison between infected and non-infected buds at 48 hours post-inoculation (hpi), with 457 (53%) genes successfully annotated using BLAST2GO software. This includes genes involved in the phenylpropanoid pathway, cell wall biosynthesis, plant hormone signal transduction and disease resistance genes. Finally, the expression of 13 DEGs with putative roles in S. scitamineum resistance were confirmed by quantitative real-time reverse transcription PCR (qRT-PCR) analysis, and the results were consistent with the RNA-seq data. These results highlight that the early sugarcane response to S. scitamineum infection is complex and many of the disease response genes are attenuated in sugarcane cultivar CP74-2005, while others, like genes involved in the phenylpropanoid pathway, are induced. This may point to the role of the different disease resistance mechanisms that operate in cultivars such as CP74-2005, whereby the early response is dominated by external mechanisms and then as the infection progresses, the internal mechanisms are switched on. Identification of genes underlying resistance in sugarcane will increase our knowledge of the sugarcane-S. scitamineum interaction and facilitate the introgression of new resistance genes into commercial sugarcane cultivars.
Collapse
|
30
|
Zhang T, Huang L, Wang Y, Wang W, Zhao X, Zhang S, Zhang J, Hu F, Fu B, Li Z. Differential transcriptome profiling of chilling stress response between shoots and rhizomes of Oryza longistaminata using RNA sequencing. PLoS One 2017; 12:e0188625. [PMID: 29190752 PMCID: PMC5708648 DOI: 10.1371/journal.pone.0188625] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 11/11/2017] [Indexed: 11/18/2022] Open
Abstract
Rice (Oryza sativa) is very sensitive to chilling stress at seedling and reproductive stages, whereas wild rice, O. longistaminata, tolerates non-freezing cold temperatures and has overwintering ability. Elucidating the molecular mechanisms of chilling tolerance (CT) in O. longistaminata should thus provide a basis for rice CT improvement through molecular breeding. In this study, high-throughput RNA sequencing was performed to profile global transcriptome alterations and crucial genes involved in response to long-term low temperature in O. longistaminata shoots and rhizomes subjected to 7 days of chilling stress. A total of 605 and 403 genes were respectively identified as up- and down-regulated in O. longistaminata under 7 days of chilling stress, with 354 and 371 differentially expressed genes (DEGs) found exclusively in shoots and rhizomes, respectively. GO enrichment and KEGG pathway analyses revealed that multiple transcriptional regulatory pathways were enriched in commonly induced genes in both tissues; in contrast, only the photosynthesis pathway was prevalent in genes uniquely induced in shoots, whereas several key metabolic pathways and the programmed cell death process were enriched in genes induced only in rhizomes. Further analysis of these tissue-specific DEGs showed that the CBF/DREB1 regulon and other transcription factors (TFs), including AP2/EREBPs, MYBs, and WRKYs, were synergistically involved in transcriptional regulation of chilling stress response in shoots. Different sets of TFs, such as OsERF922, OsNAC9, OsWRKY25, and WRKY74, and eight genes encoding antioxidant enzymes were exclusively activated in rhizomes under long-term low-temperature treatment. Furthermore, several cis-regulatory elements, including the ICE1-binding site, the GATA element for phytochrome regulation, and the W-box for WRKY binding, were highly abundant in both tissues, confirming the involvement of multiple regulatory genes and complex networks in the transcriptional regulation of CT in O. longistaminata. Finally, most chilling-induced genes with alternative splicing exclusive to shoots were associated with photosynthesis and regulation of gene expression, while those enriched in rhizomes were primarily related to stress signal transduction; this indicates that tissue-specific transcriptional and post-transcriptional regulation mechanisms synergistically contribute to O. longistaminata long-term CT. Our findings provide an overview of the complex regulatory networks of CT in O. longistaminata.
Collapse
Affiliation(s)
- Ting Zhang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liyu Huang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
- School of Agriculture, Yunnan University, Yunnan, China
- Research Center for Perennial Rice Engineering and Technology, Yunnan University, Yunnan, China
| | - Yinxiao Wang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wensheng Wang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiuqin Zhao
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shilai Zhang
- School of Agriculture, Yunnan University, Yunnan, China
- Research Center for Perennial Rice Engineering and Technology, Yunnan University, Yunnan, China
| | - Jing Zhang
- School of Agriculture, Yunnan University, Yunnan, China
- Research Center for Perennial Rice Engineering and Technology, Yunnan University, Yunnan, China
| | - Fengyi Hu
- School of Agriculture, Yunnan University, Yunnan, China
- Research Center for Perennial Rice Engineering and Technology, Yunnan University, Yunnan, China
| | - Binying Fu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
- Shenzhen Institute for Innovative Breeding, Chinese Academy of Agricultural Sciences, Shenzhen, China
- * E-mail:
| | - Zhikang Li
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
- Shenzhen Institute for Innovative Breeding, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|