1
|
Speltri G, Porto F, Boschi A, Uccelli L, Martini P. Recent Advances in Preclinical Studies of the Theranostic Agent [ 64Cu]CuCl 2. Molecules 2024; 29:4085. [PMID: 39274933 PMCID: PMC11397388 DOI: 10.3390/molecules29174085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/09/2024] [Accepted: 08/28/2024] [Indexed: 09/16/2024] Open
Abstract
64Cu is gaining recognition not only for its diagnostic capabilities in nuclear medical imaging but also for its therapeutic and theranostic potential. The simultaneous β- and Auger emissions of 64Cu can be utilized to induce a therapeutic effect on cancerous lesions. The finding of the exceptional biodistribution characteristics of the radionuclide 64Cu, when administered as basic copper ions, has highlighted its potential therapeutic application in cancer treatment. Preclinical and clinical research on the effectiveness of [64Cu]CuCl2 as a theranostic radiopharmaceutical has commenced only in the past decade. Current clinical studies are increasingly demonstrating the high specificity and uptake of [64Cu]Cu2+ by malignant tissues during early cancer progression, indicating its potential for early cancer diagnosis across various organs. This short review aims to present the latest preclinical studies involving [64Cu]CuCl2, offering valuable insights for researchers planning new in vitro and in vivo studies to explore the theranostic potential of [64Cu]Cu2+.
Collapse
Affiliation(s)
- Giorgia Speltri
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, 44121 Ferrara, Italy
| | - Francesca Porto
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Alessandra Boschi
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, 44121 Ferrara, Italy
| | - Licia Uccelli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Petra Martini
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
2
|
Shinada M, Takahashi M, Igarashi C, Matsumoto H, Hihara F, Tachibana T, Oikawa M, Suzuki H, Zhang MR, Higashi T, Kurihara H, Yoshii Y, Doi Y. 64Cu 2+ Complexes of Tripodal Amine Ligands' In Vivo Tumor and Liver Uptakes and Intracellular Cu Distribution in the Extrahepatic Bile Duct Carcinoma Cell Line TFK-1: A Basic Comparative Study. Pharmaceuticals (Basel) 2024; 17:820. [PMID: 39065671 PMCID: PMC11280065 DOI: 10.3390/ph17070820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Copper (Cu) is a critical element for cancer cell proliferation and considerably accumulates in the nucleus. 64Cu2+ is an anticancer radiopharmaceutical that targets the copper requirement of cancer cells. However, intravenously injected 64Cu2+ ions primarily accumulate in the liver. Ligand complexation of 64Cu2+ may be a promising method for increasing tumor delivery by reducing liver uptake. In this study, we used three tripodal amine ligands [tris(2-aminoethyl)amine (Tren), diethylenetriamine (Dien), and tris(2-pyridylmethyl)amine (TPMA)] to enclose 64Cu2+ ions and compared their in vivo tumor and liver uptakes using a tumor-bearing xenograft mouse model of the extrahepatic bile duct carcinoma cell line TFK-1. We examined intracellular Cu distribution using microparticle-induced X-ray emission (micro-PIXE) analysis of these compounds. 64Cu2+-Tren and 64Cu2+-Dien showed higher tumor uptake than 64Cu2+-TPMA and 64Cu2+ ions in TFK-1 tumors. Among the three 64Cu2+ complexes and 64Cu2+ ions, liver uptake was inversely correlated with tumor uptake. Micro-PIXE analysis showed that in vitro cellular uptake was similar to in vivo tumor uptake, and nuclear delivery was the highest for 64Cu2+-Tren. Conclusively, an inverse correlation between tumor and liver uptake was observed using three 64Cu2+ complexes of tripodal amine ligands and 64Cu2+ ions. These results provide useful information for the future development of anticancer 64Cu radiopharmaceuticals.
Collapse
Affiliation(s)
- Mitsuhiro Shinada
- Faculty of Science, Toho University, Funabashi 274-8510, Japan; (M.T.); (T.T.); (Y.D.)
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (C.I.); (H.M.); (F.H.); (M.O.); (H.S.); (M.-R.Z.); (T.H.)
- Department of Diagnostic Radiology, Kanagawa Cancer Center, Kanagawa 241-8515, Japan;
| | - Masashi Takahashi
- Faculty of Science, Toho University, Funabashi 274-8510, Japan; (M.T.); (T.T.); (Y.D.)
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (C.I.); (H.M.); (F.H.); (M.O.); (H.S.); (M.-R.Z.); (T.H.)
| | - Chika Igarashi
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (C.I.); (H.M.); (F.H.); (M.O.); (H.S.); (M.-R.Z.); (T.H.)
- Department of Diagnostic Radiology, Kanagawa Cancer Center, Kanagawa 241-8515, Japan;
| | - Hiroki Matsumoto
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (C.I.); (H.M.); (F.H.); (M.O.); (H.S.); (M.-R.Z.); (T.H.)
- Department of Diagnostic Radiology, Kanagawa Cancer Center, Kanagawa 241-8515, Japan;
| | - Fukiko Hihara
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (C.I.); (H.M.); (F.H.); (M.O.); (H.S.); (M.-R.Z.); (T.H.)
| | - Tomoko Tachibana
- Faculty of Science, Toho University, Funabashi 274-8510, Japan; (M.T.); (T.T.); (Y.D.)
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (C.I.); (H.M.); (F.H.); (M.O.); (H.S.); (M.-R.Z.); (T.H.)
| | - Masakazu Oikawa
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (C.I.); (H.M.); (F.H.); (M.O.); (H.S.); (M.-R.Z.); (T.H.)
| | - Hisashi Suzuki
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (C.I.); (H.M.); (F.H.); (M.O.); (H.S.); (M.-R.Z.); (T.H.)
| | - Ming-Rong Zhang
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (C.I.); (H.M.); (F.H.); (M.O.); (H.S.); (M.-R.Z.); (T.H.)
| | - Tatsuya Higashi
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (C.I.); (H.M.); (F.H.); (M.O.); (H.S.); (M.-R.Z.); (T.H.)
| | - Hiroaki Kurihara
- Department of Diagnostic Radiology, Kanagawa Cancer Center, Kanagawa 241-8515, Japan;
| | - Yukie Yoshii
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (C.I.); (H.M.); (F.H.); (M.O.); (H.S.); (M.-R.Z.); (T.H.)
- Department of Diagnostic Radiology, Kanagawa Cancer Center, Kanagawa 241-8515, Japan;
| | - Yoshihiro Doi
- Faculty of Science, Toho University, Funabashi 274-8510, Japan; (M.T.); (T.T.); (Y.D.)
| |
Collapse
|
3
|
Monsef A, Sheikhzadeh P, Steiner JR, Sadeghi F, Yazdani M, Ghafarian P. Optimizing scan time and bayesian penalized likelihood reconstruction algorithm in copper-64 PET/CT imaging: a phantom study. Biomed Phys Eng Express 2024; 10:045019. [PMID: 38608316 DOI: 10.1088/2057-1976/ad3e00] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/12/2024] [Indexed: 04/14/2024]
Abstract
Objectives: The aim of this study was to evaluate Cu-64 PET phantom image quality using Bayesian Penalized Likelihood (BPL) and Ordered Subset Expectation Maximum with point-spread function modeling (OSEM-PSF) reconstruction algorithms. In the BPL, the regularization parameterβwas varied to identify the optimum value for image quality. In the OSEM-PSF, the effect of acquisition time was evaluated to assess the feasibility of shortened scan duration.Methods: A NEMA IEC PET body phantom was filled with known activities of water soluble Cu-64. The phantom was imaged on a PET/CT scanner and was reconstructed using BPL and OSEM-PSF algorithms. For the BPL reconstruction, variousβvalues (150, 250, 350, 450, and 550) were evaluated. For the OSEM-PSF algorithm, reconstructions were performed using list-mode data intervals ranging from 7.5 to 240 s. Image quality was assessed by evaluating the signal to noise ratio (SNR), contrast to noise ratio (CNR), and background variability (BV).Results: The SNR and CNR were higher in images reconstructed with BPL compared to OSEM-PSF. Both the SNR and CNR increased with increasingβ, peaking atβ= 550. The CNR for allβ, sphere sizes and tumor-to-background ratios (TBRs) satisfied the Rose criterion for image detectability (CNR > 5). BPL reconstructed images withβ= 550 demonstrated the highest improvement in image quality. For OSEM-PSF reconstructed images with list-mode data duration ≥ 120 s, the noise level and CNR were not significantly different from the baseline 240 s list-mode data duration.Conclusions: BPL reconstruction improved Cu-64 PET phantom image quality by increasing SNR and CNR relative to OSEM-PSF reconstruction. Additionally, this study demonstrated scan time can be reduced from 240 to 120 s when using OSEM-PSF reconstruction while maintaining similar image quality. This study provides baseline data that may guide future studies aimed to improve clinical Cu-64 imaging.
Collapse
Affiliation(s)
- Abbas Monsef
- Department of Radiation Oncology, University of Minnesota Medical School, Minneapolis, United States of America
- Department of Radiology, University of Minnesota Medical School, Minneapolis, United States of America
| | - Peyman Sheikhzadeh
- Department of Nuclear Medicine, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Joseph R Steiner
- Department of Radiology, University of Minnesota Medical School, Minneapolis, United States of America
| | - Fatemeh Sadeghi
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Pardis Ghafarian
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
- PET/CT and Cyclotron Center, Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Pyo A, Yun M, Song B, Kwon SY, Min JJ, Kim DY. Synthesis and evaluation of 18F-labeled procainamide as a PET imaging agent for malignant melanoma. Bioorg Med Chem Lett 2023; 96:129528. [PMID: 37852422 DOI: 10.1016/j.bmcl.2023.129528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/14/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
Malignant melanoma has an aggressive nature and a high metastatic propensity resulting in the highest mortality rate of any skin cancer. In this study, we synthesized 18F-labeled procainamide (PCA) for detection of melanoma using positron emission tomography (PET), and evaluated its biological characteristics. The non-decay-corrected radiochemical yield of 18F-PCA was 10-15% and its in vitro stability was over 98% for 2 h. At 1 h, cellular uptake of 18F-PCA was 3.8-fold higher in a group with the presence of l-tyrosine than in a non-l-tyrosine-treated group. Furthermore, 18F-PCA permitted visualization of B16F10 (mouse melanoma) xenografts on microPET after intravenous injection, and was retained in the tumor for 60 min, with a high tumor-to-liver uptake ratio. 18F-PCA showed specific melanoma uptake in primary lesions with a high melanin targeting ability in small animal models. 18F-PCA may have potential as a PET imaging agent for direct melanoma detection.
Collapse
Affiliation(s)
- Ayoung Pyo
- College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Misun Yun
- Hygenic Safety-Material Research Group, Technology Innovation Research Division, World Institute of Kimchi, Gwangju, Republic of Korea
| | - Boreum Song
- College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Seong-Young Kwon
- Innovation Center for Molecular Probe Development, Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - Jung-Joon Min
- Innovation Center for Molecular Probe Development, Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea; CNCure Biotech, Hwasun, Republic of Korea
| | - Dong-Yeon Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju, Republic of Korea; CNCure Biotech, Hwasun, Republic of Korea.
| |
Collapse
|
5
|
Serban RM, Niculae D, Manda G, Neagoe I, Dobre M, Niculae DA, Temelie M, Mustăciosu C, Leonte RA, Chilug LE, Cornoiu MR, Cocioabă D, Stan M, Dinischiotu A. Modifications in cellular viability, DNA damage and stress responses inflicted in cancer cells by copper-64 ions. Front Med (Lausanne) 2023; 10:1197846. [PMID: 37415761 PMCID: PMC10320858 DOI: 10.3389/fmed.2023.1197846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/31/2023] [Indexed: 07/08/2023] Open
Abstract
Due to combined therapeutical emissions, a high linear energy transfer Auger-electrons with the longer ranged β- particles, 64Cu-based radiopharmaceuticals raise particular theragnostic interest in cancer, by joined therapeutic and real-time PET imaging properties. The in vitro study aimed to investigate the biological and molecular background of 64CuCl2 therapy by analyzing the damages and stress responses inflicted in various human normal and tumor cell lines. Colon (HT29 and HCT116) and prostate carcinoma (DU145) cell lines, as well as human normal BJ fibroblasts, were treated up to 72 h with 2-40 MBq/mL 64CuCl2. Radioisotope uptake and retention were assessed, and cell viability/death, DNA damage, oxidative stress, and the expression of 84 stress genes were investigated at various time points after [64Cu]CuCl2 addition. All the investigated cells incorporated 64Cu ions similarly, independent of their tumoral or normal status, but their fate after exposure to [64Cu]CuCl2 was cell-dependent. The most striking cytotoxic effects of the radioisotope were registered in colon carcinoma HCT116 cells, for which a substantial decrease in the number of metabolically active cells, and an increased DNA damage and oxidative stress were registered. The stress gene expression study highlighted the activation of both death and repair mechanisms in these cells, related to extrinsic apoptosis, necrosis/necroptosis or autophagy, and cell cycle arrest, nucleotide excision repair, antioxidant, and hypoxic responses, respectively. The in vitro study indicated that 40 MBq/mL [64Cu]CuCl2 delivers a therapeutic effect in human colon carcinoma, but its use is limited by harmful, yet lower effects on normal fibroblasts. The exposure of tumor cells to 20 MBq/mL [64Cu]CuCl2, might be used for a softer approach aiming for a lower radiotoxicity in normal fibroblasts as compared to tumor cells. This radioactive concentration was able to induce a persistent decrease in the number of metabolically active cells, accompanied by DNA damage and oxidative stress, associated with significant changes in stress gene expression in HCT116 colon cancer cells.
Collapse
Affiliation(s)
- Radu M. Serban
- Radiopharmaceutical Research Centre, Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Măgurele, Ilfov, Romania
- Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Dana Niculae
- Radiopharmaceutical Research Centre, Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Măgurele, Ilfov, Romania
- Faculty of Pharmacy, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
| | - Gina Manda
- Radiobiology Laboratory, National Institute of Pathology "Victor Babeș", Bucharest, Romania
| | - Ionela Neagoe
- Radiobiology Laboratory, National Institute of Pathology "Victor Babeș", Bucharest, Romania
| | - Maria Dobre
- Radiobiology Laboratory, National Institute of Pathology "Victor Babeș", Bucharest, Romania
| | - Dragoș A. Niculae
- Faculty of Pharmacy, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
| | - Mihaela Temelie
- Radiopharmaceutical Research Centre, Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Măgurele, Ilfov, Romania
| | - Cosmin Mustăciosu
- Radiopharmaceutical Research Centre, Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Măgurele, Ilfov, Romania
| | - Radu A. Leonte
- Radiopharmaceutical Research Centre, Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Măgurele, Ilfov, Romania
| | - Livia E. Chilug
- Radiopharmaceutical Research Centre, Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Măgurele, Ilfov, Romania
| | - Maria R. Cornoiu
- Radiopharmaceutical Research Centre, Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Măgurele, Ilfov, Romania
- Doctoral School of Applied Chemistry and Materials Science, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Bucharest, Romania
| | - Diana Cocioabă
- Radiopharmaceutical Research Centre, Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Măgurele, Ilfov, Romania
- Doctoral School of Physics, Faculty of Physics, University of Bucharest, Măgurele, Ilfov, Romania
| | - Miruna Stan
- Faculty of Biology, University of Bucharest, Bucharest, Romania
| | | |
Collapse
|
6
|
Benfante V, Stefano A, Ali M, Laudicella R, Arancio W, Cucchiara A, Caruso F, Cammarata FP, Coronnello C, Russo G, Miele M, Vieni A, Tuttolomondo A, Yezzi A, Comelli A. An Overview of In Vitro Assays of 64Cu-, 68Ga-, 125I-, and 99mTc-Labelled Radiopharmaceuticals Using Radiometric Counters in the Era of Radiotheranostics. Diagnostics (Basel) 2023; 13:diagnostics13071210. [PMID: 37046428 PMCID: PMC10093267 DOI: 10.3390/diagnostics13071210] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/11/2023] [Accepted: 03/17/2023] [Indexed: 04/14/2023] Open
Abstract
Radionuclides are unstable isotopes that mainly emit alpha (α), beta (β) or gamma (γ) radiation through radiation decay. Therefore, they are used in the biomedical field to label biomolecules or drugs for diagnostic imaging applications, such as positron emission tomography (PET) and/or single-photon emission computed tomography (SPECT). A growing field of research is the development of new radiopharmaceuticals for use in cancer treatments. Preclinical studies are the gold standard for translational research. Specifically, in vitro radiopharmaceutical studies are based on the use of radiopharmaceuticals directly on cells. To date, radiometric β- and γ-counters are the only tools able to assess a preclinical in vitro assay with the aim of estimating uptake, retention, and release parameters, including time- and dose-dependent cytotoxicity and kinetic parameters. This review has been designed for researchers, such as biologists and biotechnologists, who would like to approach the radiobiology field and conduct in vitro assays for cellular radioactivity evaluations using radiometric counters. To demonstrate the importance of in vitro radiopharmaceutical assays using radiometric counters with a view to radiogenomics, many studies based on 64Cu-, 68Ga-, 125I-, and 99mTc-labeled radiopharmaceuticals have been revised and summarized in this manuscript.
Collapse
Affiliation(s)
- Viviana Benfante
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), 90015 Cefalù, Italy
| | - Alessandro Stefano
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), 90015 Cefalù, Italy
| | - Muhammad Ali
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy
| | | | - Walter Arancio
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy
| | - Antonino Cucchiara
- Department of Diagnostic and Therapeutic Services, IRCCS-ISMETT (Mediterranean Institute for Transplantation and Advanced Specialized Therapies), Via Tricomi 5, 90127 Palermo, Italy
| | - Fabio Caruso
- Department of Diagnostic and Therapeutic Services, IRCCS-ISMETT (Mediterranean Institute for Transplantation and Advanced Specialized Therapies), Via Tricomi 5, 90127 Palermo, Italy
| | - Francesco Paolo Cammarata
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), 90015 Cefalù, Italy
| | - Claudia Coronnello
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Giorgio Russo
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), 90015 Cefalù, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Monica Miele
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy
| | - Alessandra Vieni
- Department of Diagnostic and Therapeutic Services, IRCCS-ISMETT (Mediterranean Institute for Transplantation and Advanced Specialized Therapies), Via Tricomi 5, 90127 Palermo, Italy
| | - Antonino Tuttolomondo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy
| | - Anthony Yezzi
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Albert Comelli
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
7
|
DDTC-Cu(I) based metal-organic framework (MOF) for targeted melanoma therapy by inducing SLC7A11/GPX4-mediated ferroptosis. Colloids Surf B Biointerfaces 2023; 225:113253. [PMID: 36934611 DOI: 10.1016/j.colsurfb.2023.113253] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/22/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
Disulfiram (DSF), a drug for alcohol withdrawal, has attracted extensive scientific attention due to its potential to treat cancer. The metabolite of DSF, diethyl dithiocarbamate (DDTC), forms a Cu-DDTC complex in vivo with copper ions, which has been shown to be a proteasome inhibitor with high antitumor activity. However, the in vivo stability of Cu-DDTC complexes remains a challenge. In this study, the nanomedicine Cu-BTC@DDTC with high antitumor activity was prepared by using the nanoscale metal-organic framework (MOF) Cu-BTC as a carrier and loading diethyldithiocarbamate (DDTC) through coordination interaction. The results showed that Cu-BTC@DDTC had high drug loading and adequate stability, and exhibited DDTC-Cu(I) chemical valence characteristics and polycrystalline structure features. In vitro cytocompatibility investigation and animal xenograft tumor model evaluation demonstrated the anti-cancer potential of Cu-BTC@DDTC, especially the combination of Cu-BTC@DDTC with low-dose cisplatin showed significant antitumor effect and biosafety. This study provides a feasible protocol for developing antitumor drugs based on the drug repurposing strategy.
Collapse
|
8
|
Almeida SFF, Fonseca A, Sereno J, Ferreira HRS, Lapo-Pais M, Martins-Marques T, Rodrigues T, Oliveira RC, Miranda C, Almeida LP, Girão H, Falcão A, Abrunhosa AJ, Gomes CM. Osteosarcoma-Derived Exosomes as Potential PET Imaging Nanocarriers for Lung Metastasis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203999. [PMID: 36316233 DOI: 10.1002/smll.202203999] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Lung metastases represent the most adverse clinical factor and rank as the leading cause of osteosarcoma-related death. Nearly 80% of patients present lung micrometastasis at diagnosis not detected with current clinical tools. Herein, an exosome (EX)-based imaging tool is developed for lung micrometastasis by positron emission tomography (PET) using osteosarcoma-derived EXs as natural nanocarriers of the positron-emitter copper-64 (64 Cu). Exosomes are isolated from metastatic osteosarcoma cells and functionalized with the macrocyclic chelator NODAGA for complexation with 64 Cu. Surface functionalization has no effect on the physicochemical properties of EXs, or affinity for donor cells and endows them with favorable pharmacokinetics for in vivo studies. Whole-body PET/magnetic resonance imaging (MRI) images in xenografted models show a specific accumulation of 64 Cu-NODAGA-EXs in metastatic lesions as small as 2-3 mm or in a primary tumor, demonstrating the exquisite tropism of EXs for homotypic donor cells. The targetability for lung metastasis is also observed by optical imaging using indocyanine green (ICG)-labeled EXs and D-luciferin-loaded EXs. These findings show that tumor-derived EXs hold great potential as targeted imaging agents for the noninvasive detection of small lung metastasis by PET. This represents a step forward in the biomedical application of EXs in imaging diagnosis with increased translational potential.
Collapse
Affiliation(s)
- Sara F F Almeida
- Institute for Nuclear Sciences Applied to Health (ICNAS) and Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548, Coimbra, Portugal
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548, Coimbra, Portugal
| | - Alexandra Fonseca
- Institute for Nuclear Sciences Applied to Health (ICNAS) and Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548, Coimbra, Portugal
| | - José Sereno
- Institute for Nuclear Sciences Applied to Health (ICNAS) and Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548, Coimbra, Portugal
- Chemistry Department, University of Coimbra, 3004-535, Coimbra, Portugal
| | - Hugo R S Ferreira
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology Consortium (CIBB), University of Coimbra, 3000-548, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-075, Coimbra, Portugal
| | - Mariana Lapo-Pais
- Institute for Nuclear Sciences Applied to Health (ICNAS) and Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548, Coimbra, Portugal
| | - Tânia Martins-Marques
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology Consortium (CIBB), University of Coimbra, 3000-548, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-075, Coimbra, Portugal
| | - Teresa Rodrigues
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology Consortium (CIBB), University of Coimbra, 3000-548, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-075, Coimbra, Portugal
| | - Rui C Oliveira
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology Consortium (CIBB), University of Coimbra, 3000-548, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-075, Coimbra, Portugal
- Pathology Department, Centro Hospitalar e Universitário de Coimbra, 3004-561, Coimbra, Portugal
| | - Catarina Miranda
- Center for Innovative Biomedicine and Biotechnology Consortium (CIBB), University of Coimbra, 3000-548, Coimbra, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504, Coimbra, Portugal
| | - Luís P Almeida
- Center for Innovative Biomedicine and Biotechnology Consortium (CIBB), University of Coimbra, 3000-548, Coimbra, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504, Coimbra, Portugal
| | - Henrique Girão
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology Consortium (CIBB), University of Coimbra, 3000-548, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-075, Coimbra, Portugal
| | - Amílcar Falcão
- Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Antero J Abrunhosa
- Institute for Nuclear Sciences Applied to Health (ICNAS) and Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548, Coimbra, Portugal
| | - Célia M Gomes
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology Consortium (CIBB), University of Coimbra, 3000-548, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-075, Coimbra, Portugal
| |
Collapse
|
9
|
Gelb M, Messina KMM, Vinciguerra D, Ko JH, Collins J, Tamboline M, Xu S, Ibarrondo FJ, Maynard HD. Poly(trehalose methacrylate) as an Excipient for Insulin Stabilization: Mechanism and Safety. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37410-37423. [PMID: 35968684 PMCID: PMC9412841 DOI: 10.1021/acsami.2c09301] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/21/2022] [Indexed: 05/07/2023]
Abstract
Insulin, the oldest U.S. Food and Drug Administration (FDA)-approved recombinant protein and a World Health Organization (WHO) essential medicine for treating diabetes globally, faces challenges due to its storage instability. One approach to stabilize insulin is the addition of poly(trehalose methacrylate) (pTrMA) as an excipient. The polymer increases the stability of the peptide to heat and mechanical agitation and has a low viscosity suitable for injection and pumps. However, the safety and stabilizing mechanism of pTrMA is not yet known and is required to understand the potential suitability of pTrMA as an insulin excipient. Herein is reported the immune response, biodistribution, and insulin plasma lifetime in mice, as well as investigation into insulin stabilization. pTrMA alone or formulated with ovalbumin did not elicit an antibody response over 3 weeks in mice, and there was no observable cytokine production in response to pTrMA. Micropositron emission tomography/microcomputer tomography of 64Cu-labeled pTrMA showed excretion of 78-79% ID/cc within 24 h and minimal liver accumulation at 6-8% ID/cc when studied out to 120 h. Further, the plasma lifetime of insulin in mice was not altered by added pTrMA. Formulating insulin with 2 mol equiv of pTrMA improved the stability of insulin to standard storage conditions: 46 weeks at 4 °C yielded 87.0% intact insulin with pTrMA present as compared to 7.8% intact insulin without the polymer. The mechanism by which pTrMA-stabilized insulin was revealed to be a combination of inhibiting deamidation of amino acid residues and preventing fibrillation, followed by aggregation of inactive and immunogenic amyloids all without complexing insulin into its hexameric state, which could delay the onset of insulin activity. Based on the data reported here, we suggest that pTrMA stabilizes insulin as an excipient without adverse effects in vivo and is promising to investigate further for the safe formulation of insulin.
Collapse
Affiliation(s)
- Madeline
B. Gelb
- Department
of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| | - Kathryn M. M. Messina
- Department
of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| | - Daniele Vinciguerra
- Department
of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| | - Jeong Hoon Ko
- Department
of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| | - Jeffrey Collins
- Department
of Molecular and Medical Pharmacology and Crump Institute for Molecular
Imaging, David Geffen School of Medicine,
University of California, Los Angeles, California 90095-1735, United States
| | - Mikayla Tamboline
- Department
of Molecular and Medical Pharmacology and Crump Institute for Molecular
Imaging, David Geffen School of Medicine,
University of California, Los Angeles, California 90095-1735, United States
| | - Shili Xu
- Department
of Molecular and Medical Pharmacology and Crump Institute for Molecular
Imaging, David Geffen School of Medicine,
University of California, Los Angeles, California 90095-1735, United States
| | - F. Javier Ibarrondo
- Division
of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095-1569, United States
| | - Heather D. Maynard
- Department
of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| |
Collapse
|
10
|
Miller C, Rousseau J, Ramogida CF, Celler A, Rahmim A, Uribe CF. Implications of physics, chemistry and biology for dosimetry calculations using theranostic pairs. Theranostics 2022; 12:232-259. [PMID: 34987643 PMCID: PMC8690938 DOI: 10.7150/thno.62851] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/18/2021] [Indexed: 12/15/2022] Open
Abstract
Theranostics is an emerging paradigm that combines imaging and therapy in order to personalize patient treatment. In nuclear medicine, this is achieved by using radiopharmaceuticals that target identical molecular targets for both imaging (using emitted gamma rays) and radiopharmaceutical therapy (using emitted beta, alpha or Auger-electron particles) for the treatment of various diseases, such as cancer. If the therapeutic radiopharmaceutical cannot be imaged quantitatively, a “theranostic pair” imaging surrogate can be used to predict the absorbed radiation doses from the therapeutic radiopharmaceutical. However, theranostic dosimetry assumes that the pharmacokinetics and biodistributions of both radiopharmaceuticals in the pair are identical or very similar, an assumption that still requires further validation for many theranostic pairs. In this review, we consider both same-element and different-element theranostic pairs and attempt to determine if factors exist which may cause inaccurate dose extrapolations in theranostic dosimetry, either intrinsic (e.g. chemical differences) or extrinsic (e.g. injecting different amounts of each radiopharmaceutical) to the radiopharmaceuticals. We discuss the basis behind theranostic dosimetry and present common theranostic pairs and their therapeutic applications in oncology. We investigate general factors that could create alterations in the behavior of the radiopharmaceuticals or the quantitative accuracy of imaging them. Finally, we attempt to determine if there is evidence showing some specific pairs as suitable for theranostic dosimetry. We show that there are a variety of intrinsic and extrinsic factors which can significantly alter the behavior among pairs of radiopharmaceuticals, even if they belong to the same chemical element. More research is needed to determine the impact of these factors on theranostic dosimetry estimates and on patient outcomes, and how to correctly account for them.
Collapse
|
11
|
Copper Isotopes in Theranostics. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00073-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
12
|
Küppers J, Kürpig S, Bundschuh RA, Essler M, Lütje S. Radiolabeling Strategies of Nanobodies for Imaging Applications. Diagnostics (Basel) 2021; 11:1530. [PMID: 34573872 PMCID: PMC8471529 DOI: 10.3390/diagnostics11091530] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/30/2021] [Accepted: 08/20/2021] [Indexed: 02/06/2023] Open
Abstract
Nanobodies are small recombinant antigen-binding fragments derived from camelid heavy-chain only antibodies. Due to their compact structure, pharmacokinetics of nanobodies are favorable compared to full-size antibodies, allowing rapid accumulation to their targets after intravenous administration, while unbound molecules are quickly cleared from the circulation. In consequence, high signal-to-background ratios can be achieved, rendering radiolabeled nanobodies high-potential candidates for imaging applications in oncology, immunology and specific diseases, for instance in the cardiovascular system. In this review, a comprehensive overview of central aspects of nanobody functionalization and radiolabeling strategies is provided.
Collapse
Affiliation(s)
- Jim Küppers
- Department of Nuclear Medicine, University Hospital Bonn, 53127 Bonn, Germany; (S.K.); (R.A.B.); (M.E.); (S.L.)
| | | | | | | | | |
Collapse
|
13
|
Bartnicka JJ, Al-Salemee F, Firth G, Blower PJ. L-Cysteine-mediated modulation of copper trafficking in prostate cancer cells: an in vitro and in vivo investigation with 64Cu and 64Cu-PET. Metallomics 2020; 12:1508-1520. [PMID: 32959856 DOI: 10.1039/d0mt00161a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Copper imbalance is implicated in many diseases, including cancer. Copper in blood is mainly transported by carrier proteins but a small fraction is bound to low molecular weight species, possibly amino acids. Their roles in cellular copper delivery are unknown. Our aim was to test whether accumulation of 64Cu into cancer-derived cells can be influenced by copper-binding serum amino acids. In vitro cellular accumulation of 64Cu was measured in Hank's Balanced Salt Solution in the presence of 100 μM l-histidine, l-methionine, l-cysteine and l-threonine. l-Cysteine markedly increased 64Cu accumulation and retention in DU145, PC3 and SK-OV-3 cells, while some other cell lines did not show an effect. This effect was not due to 64Cu delivery in the form of a 64Cu-cysteine complex, nor to reduction of 64Cu(ii) to 64Cu(i) by l-cysteine. Pre-incubation of cells with l-cysteine increased 64Cu accumulation, even if l-cysteine was removed from HBSS before 64Cu was added. The effect of l-cysteine on 64Cu accumulation was not mediated by increased glutathione synthesis. Despite the demonstrable in vitro effect, pre-injection of l-cysteine precursor N-acetyl-cysteine (NAC) in vivo did not enhance 64Cu delivery to DU145 xenografts in mice. Instead, it decreased 64Cu accumulation in the DU145 tumour and in brain, as assessed by PET imaging. We conclude that 64Cu is not delivered to DU145 cancer cells in vitro as a complex with amino acids but its cellular accumulation is enhanced by l-cysteine or NAC influx to cells. The latter effect was not demonstrable in vivo in the DU145 xenograft.
Collapse
Affiliation(s)
- Joanna J Bartnicka
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK.
| | - Fahad Al-Salemee
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK.
| | - George Firth
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK.
| | - Philip J Blower
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK.
| |
Collapse
|
14
|
Preclinical PET imaging study of lung cancer with 64CuCl 2. Ann Nucl Med 2020; 34:653-662. [PMID: 32567008 DOI: 10.1007/s12149-020-01491-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/15/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Human copper transporter 1 (CTR1) has been proven to be overexpressed in many types of cancer cells, and copper (II)-64 chloride (64CuCl2) has been used as an effective tracer for positron emission tomography (PET) imaging in tumor-bearing animal models. Thus, this study aimed to investigate the potential application of 64CuCl2 in PET imaging of lung cancer through targeting CTR1. METHODS The expression of CTR1 in a series of lung cancer cell lines was identified by quantitative real-time polymerase chain reaction (Q-PCR), western blot, enzyme-linked immunosorbnent assay (ELISA), and immunofluorescent staining. Then in vitro cell uptake assay of 64CuCl2 was investigated in human lung cancer cell lines with different levels of CTR1 expression. Small animal PET imaging and quantitative analysis were performed in human lung cancer tumor-bearing mice after intravenous injection of 64CuCl2, respectively. RESULTS The CTR1 expression in multiple human lung cancer cells was identified and confirmed, and H1299 cell lines with high CTR1 expression, H460 with moderate CTR1, and H1703 with low CTR1 were selected for further experiments. In vitro cellular uptake assay displayed that the 64CuCl2 uptake by these three kinds of cells was positively correlated with their CTR1 expressed levels. The blocking experiments testified the specificity of 64CuCl2 to target CTR1. Moreover, small animal PET imaging and quantitative results showed that 64CuCl2 accumulation in H1299, H460, and H1703 tumor-bearing mice were consistent with CTR1 levels and cell uptake experiments. CONCLUSIONS The expression of CTR1 in human lung cancer xenograft model could be successfully visualized by 64CuCl2 PET examination. With the expected growth of PET/CT examination to be an essential strategy in clinical lung cancer management, 64CuCl2 has the potential to be a promising PET imaging agent of lung cancer.
Collapse
|
15
|
Liu T, Karlsen M, Karlberg AM, Redalen KR. Hypoxia imaging and theranostic potential of [ 64Cu][Cu(ATSM)] and ionic Cu(II) salts: a review of current evidence and discussion of the retention mechanisms. EJNMMI Res 2020; 10:33. [PMID: 32274601 PMCID: PMC7145880 DOI: 10.1186/s13550-020-00621-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 03/19/2020] [Indexed: 02/07/2023] Open
Abstract
Background Tumor hypoxia (low tissue oxygenation) is an adverse condition of the solid tumor environment, associated with malignant progression, radiotherapy resistance, and poor prognosis. One method to detect tumor hypoxia is by positron emission tomography (PET) with the tracer [64Cu][Cu-diacetyl-bis(N(4)-methylthiosemicarbazone)] ([64Cu][Cu(ATSM)]), as demonstrated in both preclinical and clinical studies. In addition, emerging studies suggest using [64Cu][Cu(ATSM)] for molecular radiotherapy, mainly due to the release of therapeutic Auger electrons from copper-64, making [64Cu][Cu(ATSM)] a “theranostic” agent. However, the radiocopper retention based on a metal-ligand dissociation mechanism under hypoxia has long been controversial. Recent studies using ionic Cu(II) salts as tracers have raised further questions on the original mechanism and proposed a potential role of copper itself in the tracer uptake. We have reviewed the evidence of using the copper radiopharmaceuticals [60/61/62/64Cu][Cu(ATSM)]/ionic copper salts for PET imaging of tumor hypoxia, their possible therapeutic applications, issues related to the metal-ligand dissociation mechanism, and possible explanations of copper trapping based on studies of the copper metabolism under hypoxia. Results We found that hypoxia selectivity of [64Cu][Cu(ATSM)] has been clearly demonstrated in both preclinical and clinical studies. Preclinical therapeutic studies in mice have also demonstrated promising results, recently reporting significant tumor volume reductions and improved survival in a dose-dependent manner. Cu(II)-[Cu(ATSM)] appears to be accumulated in regions with substantially higher CD133+ expression, a marker for cancer stem cells. This, combined with the reported requirement of copper for activation of the hypoxia inducible factor 1 (HIF-1), provides a possible explanation for the therapeutic effects of [64Cu][Cu(ATSM)]. Comparisons between [64Cu][Cu(ATSM)] and ionic Cu(II) salts have showed similar results in both imaging and therapeutic studies, supporting the argument for the central role of copper itself in the retention mechanism. Conclusions We found promising evidence of using copper-64 radiopharmaceuticals for both PET imaging and treatment of hypoxic tumors. The Cu(II)-[Cu(ATSM)] retention mechanism remains controversial and future mechanistic studies should be focused on understanding the role of copper itself in the hypoxic tumor metabolism.
Collapse
Affiliation(s)
- Tengzhi Liu
- Department of Physics, Norwegian University of Science and Technology, Høgskoleringen 5, 7491, Trondheim, Norway.,Department of Radiology and Nuclear Medicine, St. Olavs hospital, Trondheim University Hospital, Trondheim, Norway
| | - Morten Karlsen
- Department of Radiology and Nuclear Medicine, St. Olavs hospital, Trondheim University Hospital, Trondheim, Norway
| | - Anna Maria Karlberg
- Department of Radiology and Nuclear Medicine, St. Olavs hospital, Trondheim University Hospital, Trondheim, Norway.,Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kathrine Røe Redalen
- Department of Physics, Norwegian University of Science and Technology, Høgskoleringen 5, 7491, Trondheim, Norway.
| |
Collapse
|
16
|
Ou YC, Wen X, Johnson CA, Shae D, Ayala OD, Webb JA, Lin EC, DeLapp RC, Boyd KL, Richmond A, Mahadevan-Jansen A, Rafat M, Wilson JT, Balko JM, Tantawy MN, Vilgelm AE, Bardhan R. Multimodal Multiplexed Immunoimaging with Nanostars to Detect Multiple Immunomarkers and Monitor Response to Immunotherapies. ACS NANO 2020; 14:651-663. [PMID: 31851488 PMCID: PMC7391408 DOI: 10.1021/acsnano.9b07326] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The overexpression of immunomarker programmed cell death protein 1 (PD-1) and engagement of PD-1 to its ligand, PD-L1, are involved in the functional impairment of cluster of differentiation 8+ (CD8+) T cells, contributing to cancer progression. However, heterogeneities in PD-L1 expression and variabilities in biopsy-based assays render current approaches inaccurate in predicting PD-L1 status. Therefore, PD-L1 screening alone is not predictive of patient response to treatment, which motivates us to simultaneously detect multiple immunomarkers engaged in immune modulation. Here, we have developed multimodal probes, immunoactive gold nanostars (IGNs), that accurately detect PD-L1+ tumor cells and CD8+ T cells simultaneously in vivo, surpassing the limitations of current immunoimaging techniques. IGNs integrate the whole-body imaging of positron emission tomography with high sensitivity and multiplexing of Raman spectroscopy, enabling the dynamic tracking of both immunomarkers. IGNs also monitor response to immunotherapies in mice treated with combinatorial PD-L1 and CD137 agonists and distinguish responders from those nonresponsive to treatment. Our results showed a multifunctional nanoscale probe with capabilities that cannot be achieved with either modality alone, allowing multiplexed immunologic tumor profiling critical for predicting early response to immunotherapies.
Collapse
Affiliation(s)
- Yu-Chuan Ou
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Xiaona Wen
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Christopher A. Johnson
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee 37212, United States
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Daniel Shae
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Oscar D. Ayala
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Joseph A. Webb
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Eugene C. Lin
- Radiology and Radiological Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt University Institute of Imaging Science, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 62106, Taiwan
| | - Rossane C. DeLapp
- Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Kelli L. Boyd
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Ann Richmond
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee 37212, United States
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Anita Mahadevan-Jansen
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Marjan Rafat
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - John T. Wilson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt Center for Immunobiology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Justin M. Balko
- Vanderbilt Center for Immunobiology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Mohammed N. Tantawy
- Radiology and Radiological Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt University Institute of Imaging Science, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Anna E. Vilgelm
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee 37212, United States
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Department of Pathology, Ohio State University, Columbus, Ohio 43210, United States
| | - Rizia Bardhan
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt University Institute of Imaging Science, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50012, United States
| |
Collapse
|
17
|
Kardos J, Héja L, Simon Á, Jablonkai I, Kovács R, Jemnitz K. Copper signalling: causes and consequences. Cell Commun Signal 2018; 16:71. [PMID: 30348177 PMCID: PMC6198518 DOI: 10.1186/s12964-018-0277-3] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/24/2018] [Indexed: 12/18/2022] Open
Abstract
Copper-containing enzymes perform fundamental functions by activating dioxygen (O2) and therefore allowing chemical energy-transfer for aerobic metabolism. The copper-dependence of O2 transport, metabolism and production of signalling molecules are supported by molecular systems that regulate and preserve tightly-bound static and weakly-bound dynamic cellular copper pools. Disruption of the reducing intracellular environment, characterized by glutathione shortage and ambient Cu(II) abundance drives oxidative stress and interferes with the bidirectional, copper-dependent communication between neurons and astrocytes, eventually leading to various brain disease forms. A deeper understanding of of the regulatory effects of copper on neuro-glia coupling via polyamine metabolism may reveal novel copper signalling functions and new directions for therapeutic intervention in brain disorders associated with aberrant copper metabolism.
Collapse
Affiliation(s)
- Julianna Kardos
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest, 1117 Hungary
| | - László Héja
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest, 1117 Hungary
| | - Ágnes Simon
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest, 1117 Hungary
| | - István Jablonkai
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest, 1117 Hungary
| | - Richard Kovács
- Institute of Neurophysiology, Charité-Universitätsmedizin, Berlin, Germany
| | - Katalin Jemnitz
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, Budapest, 1117 Hungary
| |
Collapse
|
18
|
Gutfilen B, Souza SA, Valentini G. Copper-64: a real theranostic agent. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:3235-3245. [PMID: 30323557 PMCID: PMC6173185 DOI: 10.2147/dddt.s170879] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ongoing studies of physiological and pathological processes have led to a corresponding need for new radiopharmaceuticals, especially when studies are limited by the absence of a particular radiolabeled target. Thus, the development of new radioactive tracers is highly relevant and can represent a significant contribution to efforts to elucidate important phenomena in biology. Currently, theranostics represents a new frontier in the fields of medicine and nuclear medicine, with the same compound being used for both diagnosis and treatment. In the human body, copper (Cu) is the third most abundant metal and it plays a crucial role in many biological functions. Correspondingly, in various acquired and inherited pathological conditions, such as cancer and Alzheimer’s disease, alterations in Cu levels have been found. Moreover, a wide spectrum of neurodegenerative disorders are associated with higher or lower levels of Cu, as well as inappropriately bound or distributed levels of Cu in the brain. In human cells, the membrane protein, hCtr1, binds Cu in its Cu(I) oxidation state in an energy-dependent manner. Copper-64 (64Cu) is a cyclotron-produced radionuclide that has exhibited physical properties that are complementary for diagnosis and/or therapeutic purposes. To date, very few reports have described the clinical development of 64Cu as a radiotracer for cancer imaging. In this review, we highlight recent insights in our understanding and use of 64CuCl2 as a theranostic agent for various types of tumors. To the best of our knowledge, no adverse effects or clinically observable pharmacological effects have been described for 64CuCl2 in the literature. Thus, 64Cu represents a revolutionary radiopharmaceutical for positron emission tomography imaging and opens a new era in the theranostic field.
Collapse
Affiliation(s)
- Bianca Gutfilen
- Department of Radiology, School of Medicine, Laboratório de Marcação de Células e Moléculas (LMCM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil,
| | - Sergio Al Souza
- Department of Radiology, School of Medicine, Laboratório de Marcação de Células e Moléculas (LMCM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil,
| | | |
Collapse
|
19
|
The emerging role of copper-64 radiopharmaceuticals as cancer theranostics. Drug Discov Today 2018; 23:1489-1501. [DOI: 10.1016/j.drudis.2018.04.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/02/2018] [Accepted: 04/03/2018] [Indexed: 12/12/2022]
|
20
|
Righi S, Ugolini M, Bottoni G, Puntoni M, Iacozzi M, Paparo F, Cabria M, Ceriani L, Gambaro M, Giovanella L, Piccardo A. Biokinetic and dosimetric aspects of 64CuCl 2 in human prostate cancer: possible theranostic implications. EJNMMI Res 2018; 8:18. [PMID: 29492782 PMCID: PMC5833894 DOI: 10.1186/s13550-018-0373-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/20/2018] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The aim of the present study is to evaluate the kinetics and dosimetry of 64CuCl2 in human prostate cancer (PCa) lesions. We prospectively evaluated 50 PCa patients with biochemical relapse after surgery or external beam radiation therapy. All patients underwent 64CuCl2-PET/CT to detect PCa recurrence/metastases. Volumes of interest were manually drawn for each 64CuCl2 avid PCa lesion with a diameter > 1 cm on mpMRI in each patient. Time-activity curves for all lesions were obtained. The effective and biological half-life and the standard uptake values (SUVs) were calculated. Tumour/background ratio (TBR) curves as a function of time were considered. Finally, the absorbed dose per lesion was estimated. RESULTS The mean effective half-life of 64CuCl2 calculated in the lymph nodes (10.2 ± 1.7 h) was significantly higher than in local relapses (8.8 ± 1.1 h) and similar to that seen in bone metastases (9.0 ± 0.4 h). The mean 64CuCl2 SUVmax calculated 1 h after tracer injection was significantly higher in the lymph nodes (6.8 ± 4.3) and bone metastases (6.8 ± 2.9) than in local relapses (4.7 ± 2.4). TBR mean curve of 64CuCl2 revealed that the calculated TBRmax value was 5.0, 7.0, and 6.2 in local relapse and lymph node and bone metastases, respectively, and it was achieved about 1 h after 64CuCl2 injection. The mean absorbed dose of the PCa lesions per administrated activity was 6.00E-2 ± 4.74E-2mGy/MBq. Indeed, for an administered activity of 3.7 GBq, the mean dose absorbed by the lesion would be 0.22 Gy. CONCLUSIONS Dosimetry showed that the dose absorbed by PCa recurrences/metastases per administrated activity was low. The dosimetric study performed does not take into account the possible therapeutic effect of the Auger electrons. Clinical trials are needed to evaluate 64Cu internalization in the cell nucleus that seems related to the therapeutic effectiveness reported in preclinical studies.
Collapse
Affiliation(s)
- Sergio Righi
- Medical Physics Department, E.O. Galliera Hospital, Genoa, Italy
| | - Martina Ugolini
- Medical Physics Department, E.O. Galliera Hospital, Genoa, Italy
| | - Gianluca Bottoni
- Department of Nuclear Medicine, Galliera Hospital, Mura delle Cappuccine 14, 16128, Genoa, Italy
| | - Matteo Puntoni
- Clinical Trial Unit, Office of the Scientific Director, Galliera Hospital, Genoa, Italy
| | - Massimiliano Iacozzi
- Department of Nuclear Medicine, Galliera Hospital, Mura delle Cappuccine 14, 16128, Genoa, Italy
| | | | - Manlio Cabria
- Department of Nuclear Medicine, Galliera Hospital, Mura delle Cappuccine 14, 16128, Genoa, Italy
| | - Luca Ceriani
- Department of Nuclear Medicine, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Monica Gambaro
- Medical Physics Department, E.O. Galliera Hospital, Genoa, Italy
| | - Luca Giovanella
- Department of Nuclear Medicine, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Arnoldo Piccardo
- Department of Nuclear Medicine, Galliera Hospital, Mura delle Cappuccine 14, 16128, Genoa, Italy.
| |
Collapse
|
21
|
Jiang L, Song D, Chen H, Zhang A, Wang H, Cheng Z. Pilot Study of 64CuCl₂ for PET Imaging of Inflammation. Molecules 2018; 23:molecules23020502. [PMID: 29495260 PMCID: PMC6017813 DOI: 10.3390/molecules23020502] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 02/18/2018] [Accepted: 02/20/2018] [Indexed: 11/16/2022] Open
Abstract
Copper(II) ion (Cu2+) is the essential element for numerous pathophysiological processes in vivo. Copper transporter 1 (CTR1) is mainly responsible for maintaining Cu2+ accumulation in cells, which has been found to be over-expressed in inflammatory tissues. Therefore, we explored the potential application of 64CuCl₂ for PET imaging of inflammation through targeting CTR1. The animal models of H₂O₂ induced muscle inflammation and lipopolysaccaharide induced lung inflammation were successfully established, then imaged by small animal PET (PET/CT) post-injection of 64CuCl₂, and PET images were quantitatively analyzed. H&E and immunohistochemical (IHC) staining and western blot experiments were performed for evaluating CTR1 levels in the inflammatory and control tissues. Both inflammatory muscle and lungs can be clearly imaged by PET. PET image quantitative analysis revealed that the inflammatory muscle and lungs showed significantly higher 64Cu accumulation than the controls, respectively (p < 0.05). Furthermore, IHC staining and western blot analysis demonstrated that compared with the controls, CTR1 expression was increased in both the inflammatory muscle and lungs, which was consistent with the levels of 64Cu2+ accumulation in these tissues. 64CuCl₂ can be used as a novel, simple, and highly promising PET tracer for CTR1 targeted imaging of inflammation.
Collapse
Affiliation(s)
- Lei Jiang
- Department of Nuclear Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA 94305-5484, USA.
| | - Dongli Song
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Hao Chen
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA 94305-5484, USA.
| | - Ao Zhang
- CAS Key Laboratory of Receptor Research, Synthetic Organic & Medicinal Chemistry Laboratory (SOMCL), Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchong Road, Pudong New Area, Shanghai 201203, China.
| | - Huoqiang Wang
- Department of Nuclear Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA 94305-5484, USA.
| |
Collapse
|
22
|
Bailly C, Gouard S, Lacombe M, Remaud-Le Saëc P, Chalopin B, Bourgeois M, Chouin N, Tripier R, Halime Z, Haddad F, Faivre-Chauvet A, Kraeber-Bodéré F, Chérel M, Bodet-Milin C. Comparison of Immuno-PET of CD138 and PET imaging with 64CuCl 2 and 18F-FDG in a preclinical syngeneic model of multiple myeloma. Oncotarget 2018; 9:9061-9072. [PMID: 29507674 PMCID: PMC5823645 DOI: 10.18632/oncotarget.23886] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 11/10/2017] [Indexed: 11/26/2022] Open
Abstract
PURPOSE Although recent data from the literature suggest that PET imaging with [18]-Fluorodeoxyglucose (18F-FDG) is a promising technique in multiple myeloma (MM), the development of other radiopharmaceuticals seems relevant. CD138 is currently used as a standard marker in many laboratories for the identification and purification of myeloma cells, and could be used in phenotype tumor imaging. In this study, we evaluated a 64Cu-labeled anti-CD138 murine antibody (64Cu-TE2A-9E7.4) and a metabolic tracer (64CuCl2) for PET imaging in a MM syngeneic mouse model. EXPERIMENTAL DESIGN AND RESULTS 64Cu-TE2A-9E7.4 antibody and 64CuCl2 were evaluated via PET imaging and biodistribution studies in C57BL / KaLwRij mice bearing either 5T33-MM subcutaneous tumors or bone lesions. These results were compared to 18F-FDG-PET imaging. Autoradiography and histology of representative tumors were secondly conducted. In biodistribution and PET studies, 64Cu-TE2A-9E7.4 displayed good tumor uptake of subcutaneous and intra-medullary lesions, greater than that demonstrated with 18F-FDG-PET. In control experiments, only low-level, non-specific uptake of 64Cu-labeled isotype IgG was observed in tumors. Similarly, low activity concentrations of 64CuCl2 were accumulated in MM lesions. Histopathologic analysis of the immuno-PET-positive lesions revealed the presence of plasma cell infiltrates within the bone marrow. CONCLUSIONS 64Cu-labeled anti-CD138 antibody can detect subcutaneous MM tumors and bone marrow lesions with high sensitivity, outperforming 18F-FDG-PET and 64CuCl2 in this preclinical model. These data support 64Cu-anti-CD138 antibody as a specific and promising new imaging radiopharmaceutical agent in MM.
Collapse
Affiliation(s)
- Clément Bailly
- Nuclear Medicine Department, University Hospital, Nantes, France
- Nantes-Angers Cancer Research Center CRCINA, University of Nantes, INSERM UMR1232, CNRS-ERL6001, Nantes, France
| | - Sébastien Gouard
- Nantes-Angers Cancer Research Center CRCINA, University of Nantes, INSERM UMR1232, CNRS-ERL6001, Nantes, France
| | - Marie Lacombe
- Nuclear Medicine Department, University Hospital, Nantes, France
- Nuclear Medicine Department, ICO-René Gauducheau Cancer Center, Saint-Herblain, France
| | - Patricia Remaud-Le Saëc
- Nantes-Angers Cancer Research Center CRCINA, University of Nantes, INSERM UMR1232, CNRS-ERL6001, Nantes, France
| | - Benjamin Chalopin
- Nantes-Angers Cancer Research Center CRCINA, University of Nantes, INSERM UMR1232, CNRS-ERL6001, Nantes, France
| | - Mickaël Bourgeois
- Nuclear Medicine Department, University Hospital, Nantes, France
- Nantes-Angers Cancer Research Center CRCINA, University of Nantes, INSERM UMR1232, CNRS-ERL6001, Nantes, France
- Groupement d’Intérêt Public ARRONAX, Saint-Herblain, France
| | - Nicolas Chouin
- Nantes-Angers Cancer Research Center CRCINA, University of Nantes, INSERM UMR1232, CNRS-ERL6001, Nantes, France
- AMaROC, Oniris, Ecole Nationale Vétérinaire, Agroalimentaire et de l'Alimentation de Nantes-Atlantique, Nantes, France
| | - Raphaël Tripier
- CNRS-UMR6521, University of Bretagne Occidentale, Brest, France
| | - Zakaria Halime
- CNRS-UMR6521, University of Bretagne Occidentale, Brest, France
| | - Ferid Haddad
- Groupement d’Intérêt Public ARRONAX, Saint-Herblain, France
| | - Alain Faivre-Chauvet
- Nuclear Medicine Department, University Hospital, Nantes, France
- Nantes-Angers Cancer Research Center CRCINA, University of Nantes, INSERM UMR1232, CNRS-ERL6001, Nantes, France
| | - Françoise Kraeber-Bodéré
- Nuclear Medicine Department, University Hospital, Nantes, France
- Nantes-Angers Cancer Research Center CRCINA, University of Nantes, INSERM UMR1232, CNRS-ERL6001, Nantes, France
- Nuclear Medicine Department, ICO-René Gauducheau Cancer Center, Saint-Herblain, France
| | - Michel Chérel
- Nantes-Angers Cancer Research Center CRCINA, University of Nantes, INSERM UMR1232, CNRS-ERL6001, Nantes, France
- Nuclear Medicine Department, ICO-René Gauducheau Cancer Center, Saint-Herblain, France
- Groupement d’Intérêt Public ARRONAX, Saint-Herblain, France
| | - Caroline Bodet-Milin
- Nuclear Medicine Department, University Hospital, Nantes, France
- Nantes-Angers Cancer Research Center CRCINA, University of Nantes, INSERM UMR1232, CNRS-ERL6001, Nantes, France
| |
Collapse
|
23
|
Wei W, Ehlerding EB, Lan X, Luo Q, Cai W. PET and SPECT imaging of melanoma: the state of the art. Eur J Nucl Med Mol Imaging 2018; 45:132-150. [PMID: 29085965 PMCID: PMC5700861 DOI: 10.1007/s00259-017-3839-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 09/18/2017] [Indexed: 12/12/2022]
Abstract
Melanoma represents the most aggressive form of skin cancer, and its incidence continues to rise worldwide. 18F-FDG PET imaging has transformed diagnostic nuclear medicine and has become an essential component in the management of melanoma, but still has its drawbacks. With the rapid growth in the field of nuclear medicine and molecular imaging, a variety of promising probes that enable early diagnosis and detection of melanoma have been developed. The substantial preclinical success of melanin- and peptide-based probes has recently resulted in the translation of several radiotracers to clinical settings for noninvasive imaging and treatment of melanoma in humans. In this review, we focus on the latest developments in radiolabeled molecular imaging probes for melanoma in preclinical and clinical settings, and discuss the challenges and opportunities for future development.
Collapse
Affiliation(s)
- Weijun Wei
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600# Yishan Road, Shanghai, 200233, China
- Department of Radiology, University of Wisconsin-Madison, Room 7137, 1111 Highland Avenue, Madison, WI, 53705-2275, USA
| | - Emily B Ehlerding
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Key Laboratory of Molecular Imaging, No. 1277 Jiefang Ave, Wuhan, 430022, China.
| | - Quanyong Luo
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600# Yishan Road, Shanghai, 200233, China.
| | - Weibo Cai
- Department of Radiology, University of Wisconsin-Madison, Room 7137, 1111 Highland Avenue, Madison, WI, 53705-2275, USA.
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- University of Wisconsin Carbone Cancer Center, Madison, WI, 53705, USA.
| |
Collapse
|