1
|
This S, Costantino S, Melichar HJ. Machine learning predictions of T cell antigen specificity from intracellular calcium dynamics. SCIENCE ADVANCES 2024; 10:eadk2298. [PMID: 38446885 PMCID: PMC10917351 DOI: 10.1126/sciadv.adk2298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/29/2024] [Indexed: 03/08/2024]
Abstract
Adoptive T cell therapies rely on the production of T cells with an antigen receptor that directs their specificity toward tumor-specific antigens. Methods for identifying relevant T cell receptor (TCR) sequences, predominantly achieved through the enrichment of antigen-specific T cells, represent a major bottleneck in the production of TCR-engineered cell therapies. Fluctuation of intracellular calcium is a proximal readout of TCR signaling and candidate marker for antigen-specific T cell identification that does not require T cell expansion; however, calcium fluctuations downstream of TCR engagement are highly variable. We propose that machine learning algorithms may allow for T cell classification from complex datasets such as polyclonal T cell signaling events. Using deep learning tools, we demonstrate accurate prediction of TCR-transgenic CD8+ T cell activation based on calcium fluctuations and test the algorithm against T cells bearing a distinct TCR as well as polyclonal T cells. This provides the foundation for an antigen-specific TCR sequence identification pipeline for adoptive T cell therapies.
Collapse
Affiliation(s)
- Sébastien This
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
- Department of Microbiology and Immunology, Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
| | - Santiago Costantino
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
- Département d’Ophtalmologie, Université de Montréal, Montréal, Québec, Canada
| | - Heather J. Melichar
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada
- Department of Microbiology and Immunology, Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
- Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
2
|
Zills G, Datta T, Malmi-Kakkada AN. Enhanced mechanical heterogeneity of cell collectives due to temporal fluctuations in cell elasticity. Phys Rev E 2023; 107:014401. [PMID: 36797877 DOI: 10.1103/physreve.107.014401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 12/08/2022] [Indexed: 06/18/2023]
Abstract
Cells are dynamic systems characterized by temporal variations in biophysical properties such as stiffness and contractility. Recent studies show that the recruitment and release of actin filaments into and out of the cell cortex-a network of proteins underneath the cell membrane-leads to cell stiffening prior to division and softening immediately afterward. In three-dimensional (3D) cell collectives, it is unclear whether the stiffness change during division at the single-cell scale controls the spatial structure and dynamics at the multicellular scale. This is an important question to understand because cell stiffness variations impact cell spatial organization and cancer progression. Using a minimal 3D model incorporating cell birth, death, and cell-to-cell elastic and adhesive interactions, we investigate the effect of mechanical heterogeneity-variations in individual cell stiffnesses that make up the cell collective-on tumor spatial organization and cell dynamics. We discover that spatial mechanical heterogeneity characterized by a spheroid core composed of stiffer cells and softer cells in the periphery emerges within dense 3D cell collectives, which may be a general feature of multicellular tumor growth. We show that heightened spatial mechanical heterogeneity enhances single-cell dynamics and volumetric tumor growth driven by fluctuations in cell elasticity. Our results could have important implications in understanding how spatiotemporal variations in single-cell stiffness determine tumor growth and spread.
Collapse
Affiliation(s)
- Garrett Zills
- Department of Chemistry and Physics, Augusta University, 1120 15th Street, Augusta, Georgia 30912, USA
| | - Trinanjan Datta
- Department of Chemistry and Physics, Augusta University, 1120 15th Street, Augusta, Georgia 30912, USA
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA
| | | |
Collapse
|
3
|
Marchant CL, Malmi-Kakkada AN, Espina JA, Barriga EH. Cell clusters softening triggers collective cell migration in vivo. NATURE MATERIALS 2022; 21:1314-1323. [PMID: 35970965 PMCID: PMC9622418 DOI: 10.1038/s41563-022-01323-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 06/28/2022] [Indexed: 05/02/2023]
Abstract
Embryogenesis, tissue repair and cancer metastasis rely on collective cell migration. In vitro studies propose that cells are stiffer while migrating in stiff substrates, but softer when plated in compliant surfaces which are typically considered as non-permissive for migration. Here we show that cells within clusters from embryonic tissue dynamically decrease their stiffness in response to the temporal stiffening of their native substrate to initiate collective cell migration. Molecular and mechanical perturbations of embryonic tissues reveal that this unexpected mechanical response involves a mechanosensitive pathway relying on Piezo1-mediated microtubule deacetylation. We further show that decreasing microtubule acetylation and consequently cluster stiffness is sufficient to trigger collective cell migration in soft non-permissive substrates. This suggests that reaching an optimal cluster-to-substrate stiffness ratio is essential to trigger the onset of this collective process. Overall, these in vivo findings challenge the current understanding of collective cell migration and its physiological and pathological roles.
Collapse
Affiliation(s)
- Cristian L Marchant
- Mechanisms of Morphogenesis Laboratory, Gulbenkian Institute of Science (IGC), Oeiras, Portugal
| | - Abdul N Malmi-Kakkada
- Computational Biological Physics Laboratory, Department of Chemistry and Physics, Augusta University, Augusta, GA, USA
| | - Jaime A Espina
- Mechanisms of Morphogenesis Laboratory, Gulbenkian Institute of Science (IGC), Oeiras, Portugal
| | - Elias H Barriga
- Mechanisms of Morphogenesis Laboratory, Gulbenkian Institute of Science (IGC), Oeiras, Portugal.
| |
Collapse
|
4
|
Kalashnikov N, Moraes C. Engineering physical microenvironments to study innate immune cell biophysics. APL Bioeng 2022; 6:031504. [PMID: 36156981 PMCID: PMC9492295 DOI: 10.1063/5.0098578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/22/2022] [Indexed: 12/04/2022] Open
Abstract
Innate immunity forms the core of the human body's defense system against infection, injury, and foreign objects. It aims to maintain homeostasis by promoting inflammation and then initiating tissue repair, but it can also lead to disease when dysregulated. Although innate immune cells respond to their physical microenvironment and carry out intrinsically mechanical actions such as migration and phagocytosis, we still do not have a complete biophysical description of innate immunity. Here, we review how engineering tools can be used to study innate immune cell biophysics. We first provide an overview of innate immunity from a biophysical perspective, review the biophysical factors that affect the innate immune system, and then explore innate immune cell biophysics in the context of migration, phagocytosis, and phenotype polarization. Throughout the review, we highlight how physical microenvironments can be designed to probe the innate immune system, discuss how biophysical insight gained from these studies can be used to generate a more comprehensive description of innate immunity, and briefly comment on how this insight could be used to develop mechanical immune biomarkers and immunomodulatory therapies.
Collapse
Affiliation(s)
- Nikita Kalashnikov
- Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 0G4, Canada
| | | |
Collapse
|
5
|
Szittner Z, Péter B, Kurunczi S, Székács I, Horváth R. Functional blood cell analysis by label-free biosensors and single-cell technologies. Adv Colloid Interface Sci 2022; 308:102727. [DOI: 10.1016/j.cis.2022.102727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/25/2022] [Accepted: 06/27/2022] [Indexed: 11/01/2022]
|
6
|
Ender AM, Kaygisiz K, Räder HJ, Mayer FJ, Synatschke CV, Weil T. Cell-Instructive Surface Gradients of Photoresponsive Amyloid-like Fibrils. ACS Biomater Sci Eng 2021; 7:4798-4808. [PMID: 34515483 PMCID: PMC8512672 DOI: 10.1021/acsbiomaterials.1c00889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Gradients of bioactive molecules play a crucial role in various biological processes like vascularization, tissue regeneration, or cell migration. To study these complex biological systems, it is necessary to control the concentration of bioactive molecules on their substrates. Here, we created a photochemical strategy to generate gradients using amyloid-like fibrils as scaffolds functionalized with a model epitope, that is, the integrin-binding peptide RGD, to modulate cell adhesion. The self-assembling β-sheet forming peptide (CKFKFQF) was connected to the RGD epitope via a photosensitive nitrobenzyl linker and assembled into photoresponsive nanofibrils. The fibrils were spray-coated on glass substrates and macroscopic gradients were generated by UV-light over a centimeter-scale. We confirmed the gradient formation using matrix-assisted laser desorption ionization mass spectroscopy imaging (MALDI-MSI), which directly visualizes the molecular species on the surface. The RGD gradient was used to instruct cells. In consequence, A549 adapted their adhesion properties in dependence of the RGD-epitope density.
Collapse
Affiliation(s)
- Adriana Maria Ender
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Kübra Kaygisiz
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Hans-Joachim Räder
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Franz J Mayer
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Christopher V Synatschke
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Tanja Weil
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
7
|
Burn GL, Foti A, Marsman G, Patel DF, Zychlinsky A. The Neutrophil. Immunity 2021; 54:1377-1391. [PMID: 34260886 DOI: 10.1016/j.immuni.2021.06.006] [Citation(s) in RCA: 247] [Impact Index Per Article: 82.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/30/2021] [Accepted: 06/08/2021] [Indexed: 12/17/2022]
Abstract
Neutrophils are immune cells with unusual biological features that furnish potent antimicrobial properties. These cells phagocytose and subsequently kill prokaryotic and eukaryotic organisms very efficiently. Importantly, it is not only their ability to attack microbes within a constrained intracellular compartment that endows neutrophils with antimicrobial function. They can unleash their effectors into the extracellular space, where, even post-mortem, their killing machinery can endure and remain functional. The antimicrobial activity of neutrophils must not be misconstrued as being microbe specific and should be viewed more generally as biotoxic. Outside of fighting infections, neutrophils can harness their noxious machinery in other contexts, like cancer. Inappropriate or dysregulated neutrophil activation damages the host and contributes to autoimmune and inflammatory disease. Here we review a number of topics related to neutrophil biology based on contemporary findings.
Collapse
Affiliation(s)
- Garth Lawrence Burn
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Alessandro Foti
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Gerben Marsman
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Dhiren Ferise Patel
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Arturo Zychlinsky
- Department of Cellular Microbiology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
8
|
Engemann VI, Rink I, Kilb MF, Hungsberg M, Helmer D, Schmitz K. Cell-based actin polymerization assay to analyze chemokine inhibitors. J Pharmacol Toxicol Methods 2021; 109:107056. [PMID: 33819607 DOI: 10.1016/j.vascn.2021.107056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/24/2021] [Accepted: 03/27/2021] [Indexed: 11/29/2022]
Abstract
Chemokines play an important role in various diseases as signaling molecules for immune cells. Therefore, the inhibition of the chemokine-receptor interaction and the characterization of potential inhibitors are important steps in the development of new therapies. Here, we present a new cell-based assay for chemokine-receptor interaction, using chemokine-dependent actin polymerization as a readout. We used interleukin-8 (IL-8, CXCL8) as a model chemokine and measured the IL-8-dependent actin polymerization with Atto565-phalloidin by monitoring the fluorescence intensity in the cell layer after activation with IL-8. This assay needs no transfection, is easy to perform and requires only a few working steps. It can be used to confirm receptor activation and to characterize the effect of chemokine receptor antagonists. Experiments with the well-known CXCR1/2 inhibitor reparixin confirmed that the observed increase in fluorescence intensity is a result of chemokine receptor activation and can be inhibited in a dose-dependent manner. With optimized parameters, the difference between positive and negative control was highly significant and statistical Z´-factors of 0.4 were determined on average.
Collapse
Affiliation(s)
- Victoria I Engemann
- Technical University of Darmstadt, Clemens-Schöpf-Institute for Organic Chemistry and Biochemistry, 64287 Darmstadt, Germany
| | - Ina Rink
- Technical University of Darmstadt, Clemens-Schöpf-Institute for Organic Chemistry and Biochemistry, 64287 Darmstadt, Germany
| | - Michelle F Kilb
- Technical University of Darmstadt, Clemens-Schöpf-Institute for Organic Chemistry and Biochemistry, 64287 Darmstadt, Germany.
| | - Maximilian Hungsberg
- Technical University of Darmstadt, Clemens-Schöpf-Institute for Organic Chemistry and Biochemistry, 64287 Darmstadt, Germany.
| | - Dorothea Helmer
- Albert-Ludwigs-University of Freiburg, Department of Microsystems Engineering (IMTEK), 79110 Freiburg im Breisgau, Germany.
| | - Katja Schmitz
- Technical University of Darmstadt, Clemens-Schöpf-Institute for Organic Chemistry and Biochemistry, 64287 Darmstadt, Germany.
| |
Collapse
|
9
|
Kilb MF, Engemann VI, Siddique A, Stark RW, Schmitz K. Immobilisation of CXCL8 gradients in microfluidic devices for migration experiments. Colloids Surf B Biointerfaces 2020; 198:111498. [PMID: 33302150 DOI: 10.1016/j.colsurfb.2020.111498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 11/29/2022]
Abstract
The release of inflammatory chemokines leads to the formation of chemokine gradients that result in the directed migration of immune cells to the site of injury. In this process, cells respond to soluble gradients (chemotaxis) as well as to immobilised gradients (haptotaxis). Surface-bound chemokine gradients are mostly presented by endothelial cells and supported by glycosaminoglycans (GAGs), such as heparan sulfate, involving the GAG binding site of chemokines. Microfluidic devices have been used to analyse cell migration along soluble chemokine gradients, as these devices allow the generation of stable gradients with resolutions in the range of microns. To immobilise well-controlled soluble gradients of interleukin-8 (CXCL8), an inflammatory chemokine, we developed a simple procedure using a heparin-coated PDMS-microfluidic device. We used these immobilised gradients for migration experiments with CXCL8-responsive THP-1 cells and confirmed directed cell migration. This setup might be useful for the examination of factors that may alter chemotaxis and haptotaxis as well as synergistic and antagonistic effects of other soluble and immobilised chemokines.
Collapse
Affiliation(s)
- Michelle F Kilb
- Technical University of Darmstadt, Clemens-Schöpf-Institute of Organic Chemistry and Biochemistry, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany
| | - Victoria I Engemann
- Technical University of Darmstadt, Clemens-Schöpf-Institute of Organic Chemistry and Biochemistry, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany
| | - Asma Siddique
- Technical University of Darmstadt, Institute of Materials Science, Physics of Surfaces, Alarich-Weiss-Straße 16, 64287. Darmstadt, Germany
| | - Robert W Stark
- Technical University of Darmstadt, Institute of Materials Science, Physics of Surfaces, Alarich-Weiss-Straße 16, 64287. Darmstadt, Germany
| | - Katja Schmitz
- Technical University of Darmstadt, Clemens-Schöpf-Institute of Organic Chemistry and Biochemistry, Alarich-Weiss-Straße 8, 64287, Darmstadt, Germany.
| |
Collapse
|
10
|
De la Fuente IM, López JI. Cell Motility and Cancer. Cancers (Basel) 2020; 12:E2177. [PMID: 32764365 PMCID: PMC7464129 DOI: 10.3390/cancers12082177] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
Cell migration is an essential systemic behavior, tightly regulated, of all living cells endowed with directional motility that is involved in the major developmental stages of all complex organisms such as morphogenesis, embryogenesis, organogenesis, adult tissue remodeling, wound healing, immunological cell activities, angiogenesis, tissue repair, cell differentiation, tissue regeneration as well as in a myriad of pathological conditions. However, how cells efficiently regulate their locomotion movements is still unclear. Since migration is also a crucial issue in cancer development, the goal of this narrative is to show the connection between basic findings in cell locomotion of unicellular eukaryotic organisms and the regulatory mechanisms of cell migration necessary for tumor invasion and metastases. More specifically, the review focuses on three main issues, (i) the regulation of the locomotion system in unicellular eukaryotic organisms and human cells, (ii) how the nucleus does not significantly affect the migratory trajectories of cells in two-dimension (2D) surfaces and (iii) the conditioned behavior detected in single cells as a primitive form of learning and adaptation to different contexts during cell migration. New findings in the control of cell motility both in unicellular organisms and mammalian cells open up a new framework in the understanding of the complex processes involved in systemic cellular locomotion and adaptation of a wide spectrum of diseases with high impact in the society such as cancer.
Collapse
Affiliation(s)
- Ildefonso M. De la Fuente
- Department of Nutrition, CEBAS-CSIC Institute, Espinardo University Campus, 30100 Murcia, Spain
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, 48940 Leioa, Spain
| | - José I. López
- Department of Pathology, Cruces University Hospital, Biocruces-Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| |
Collapse
|
11
|
C3a elicits unique migratory responses in immature low-density neutrophils. Oncogene 2020; 39:2612-2623. [PMID: 32020055 DOI: 10.1038/s41388-020-1169-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 12/14/2019] [Accepted: 01/20/2020] [Indexed: 12/31/2022]
Abstract
Neutrophils represent the immune system's first line of defense and are rapidly recruited into inflamed tissue. In cancer associated inflammation, phenotypic heterogeneity has been ascribed to this cell type, whereby neutrophils can manifest anti- or pro-metastatic functions depending on the cellular/micro-environmental context. Here, we demonstrate that pro-metastatic immature low-density neutrophils (iLDNs) more efficiently accumulate in the livers of mice bearing metastatic lesions compared with anti-metastatic mature high-density neutrophils (HDNs). Transcriptomic analyses reveal enrichment of a migration signature in iLDNs relative to HDNs. We find that conditioned media derived from liver-metastatic breast cancer cells, but not lung-metastatic variants, specifically induces chemotaxis of iLDNs and not HDNs. Chemotactic responses are due to increased surface expression of C3aR in iLDNs relative to HDNs. In addition, we detect elevated secretion of cancer-cell derived C3a from liver-metastatic versus lung-metastatic breast cancer cells. Perturbation of C3a/C3aR signaling axis with either a small molecule inhibitor, SB290157, or reducing the levels of secreted C3a from liver-metastatic breast cancer cells by short hairpin RNAs, can abrogate the chemotactic response of iLDNs both in vitro and in vivo, respectively. Together, these data reveal novel mechanisms through which iLDNs prefentially accumulate in liver tissue harboring metastases in response to tumor-derived C3a secreted from the liver-aggressive 4T1 breast cancer cells.
Collapse
|
12
|
Luo X, Seveau de Noray V, Aoun L, Biarnes-Pelicot M, Strale PO, Studer V, Valignat MP, Theodoly O. Lymphocyte perform reverse adhesive haptotaxis mediated by integrins LFA-1. J Cell Sci 2020; 133:jcs.242883. [DOI: 10.1242/jcs.242883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 07/13/2020] [Indexed: 01/10/2023] Open
Abstract
Cell Guidance by anchored molecules, or haptotaxis, is crucial in development, immunology and cancer. Adhesive haptotaxis, or guidance by adhesion molecules, is well established for mesenchymal cells like fibroblasts, whereas its existence remains unreported for amoeboid cells that require less or no adhesion to migrate. We show here in vitro that amoeboid human T lymphocytes develop adhesive haptotaxis versus densities of integrin ligands expressed by high endothelial venules. Moreover, lymphocytes orient towards increasing adhesion with VLA-4 integrins, like all mesenchymal cells, but towards decreasing adhesion with LFA-1 integrins, which has never been observed. This counterintuitive ‘reverse haptotaxis’ cannot be explained with the existing mesenchymal mechanisms of competition between cells’ pulling edges or of lamellipodia growth activated by integrins, which favor orientation towards increasing adhesion. Mechanisms and functions of amoeboid adhesive haptotaxis remain unclear, however multidirectional integrin-mediated haptotaxis may operate around transmigration ports on endothelium, stromal cells in lymph nodes, and inflamed tissue where integrin ligands are spatially modulated.
Collapse
Affiliation(s)
- Xuan Luo
- LAI, Aix Marseille Univ, CNRS, INSERM, Marseille, France
| | | | - Laurene Aoun
- LAI, Aix Marseille Univ, CNRS, INSERM, Marseille, France
| | | | | | - Vincent Studer
- University of Bordeaux, Interdisciplinary Institute for Neuroscience, Bordeaux, France
- CNRS UMR 5297, F-33000 Bordeaux, France
| | | | | |
Collapse
|
13
|
Yang L, Chen X, Zeng X, Radosevich M, Ripp S, Zhuang J, Sayler GS. Surface-Adsorbed Contaminants Mediate the Importance of Chemotaxis and Haptotaxis for Bacterial Transport Through Soils. Front Microbiol 2019; 10:2691. [PMID: 32038503 PMCID: PMC6988784 DOI: 10.3389/fmicb.2019.02691] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/06/2019] [Indexed: 12/25/2022] Open
Abstract
Chemotaxis and haptotaxis are important biological mechanisms that influence microbial movement toward concentrated chemoattractants in mobile liquids and along immobile surfaces, respectively. This study investigated their coupled effect, as induced by naphthalene (10 mg L−1), on the transport and retention of two pollutant-degrading bacteria, Pseudomonas fluorescens 5RL (Pf5RL) and Pseudomonas stutzeri DQ1 (PsDQ1), in quartz sand and natural soil. The results demonstrated that PsDQ1 was not chemotactic, whereas Pf5RL was chemotactic at 25°C but not at 4°C due to the restricted movement. In a quartz sand column, haptotaxis did not play a role in increasing the transport of Pf5RL as compared with chemotaxis. Compared with a naphthalene-free soil column, Pf5RL broke through naphthalene-presaturated soil columns to reach a stable effluent concentration 0.5 pore volumes earlier due to advective chemotaxis occurring behind the plume front in the bulk solution. Pf5RL also demonstrated greater retention (e.g., a doubled rate of attachment and a one-third smaller breakthrough percentage) due to along-surface haptotaxis and near-surface chemotaxis occurring in less mobile water near the soil surface. However, both chemotaxis and haptotaxis were weakened when Pf5RL co-transported with naphthalene due to reduced adsorption of naphthalene on the soil. This study suggests that surface adsorption of naphthalene can mediate the relative importance of advective chemotaxis (facilitating initial breakthrough), near-surface chemotaxis (increasing bacterial collision), and haptotaxis (increasing bacterial residence time).
Collapse
Affiliation(s)
- Liqiong Yang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Xijuan Chen
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Xiangfeng Zeng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Mark Radosevich
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN, United States
| | - Steven Ripp
- Department of Microbiology, Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, United States
| | - Jie Zhuang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China.,Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN, United States.,Department of Microbiology, Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, United States
| | - Gary S Sayler
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN, United States.,Department of Microbiology, Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
14
|
Witzel II, Nasser R, Garcia-Sabaté A, Sapudom J, Ma C, Chen W, Teo JCM. Deconstructing Immune Microenvironments of Lymphoid Tissues for Reverse Engineering. Adv Healthc Mater 2019; 8:e1801126. [PMID: 30516005 DOI: 10.1002/adhm.201801126] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/25/2018] [Indexed: 01/01/2023]
Abstract
The immune microenvironment presents a diverse panel of cues that impacts immune cell migration, organization, differentiation, and the immune response. Uniquely, both the liquid and solid phases of every specific immune niche within the body play an important role in defining cellular functions in immunity at that particular location. The in vivo immune microenvironment consists of biomechanical and biochemical signals including their gradients, surface topography, dimensionality, modes of ligand presentation, and cell-cell interactions, and the ability to recreate these immune biointerfaces in vitro can provide valuable insights into the immune system. This manuscript reviews the critical roles played by different immune cells and surveys the current progress of model systems for reverse engineering of immune microenvironments with a focus on lymphoid tissues.
Collapse
Affiliation(s)
- Ini-Isabée Witzel
- Core Technology Platforms; New York University Abu Dhabi; Saadiyat Campus, P.O. Box 127788 Abu Dhabi UAE
| | - Rasha Nasser
- Laboratory for Immuno Bioengineering Research and Applications (LIBRA); Division of Engineering; New York University Abu Dhabi; Saadiyat Campus, P.O. Box 127788 Abu Dhabi UAE
| | - Anna Garcia-Sabaté
- Laboratory for Immuno Bioengineering Research and Applications (LIBRA); Division of Engineering; New York University Abu Dhabi; Saadiyat Campus, P.O. Box 127788 Abu Dhabi UAE
| | - Jiranuwat Sapudom
- Laboratory for Immuno Bioengineering Research and Applications (LIBRA); Division of Engineering; New York University Abu Dhabi; Saadiyat Campus, P.O. Box 127788 Abu Dhabi UAE
| | - Chao Ma
- Department of Mechanical and Aerospace Engineering; New York University; 6 MetroTech Center Brooklyn NY 11201 USA
| | - Weiqiang Chen
- Department of Mechanical and Aerospace Engineering; New York University; 6 MetroTech Center Brooklyn NY 11201 USA
- Department of Biomedical Engineering; New York University; 6 MetroTech Center Brooklyn NY 11201 USA
| | - Jeremy C. M. Teo
- Laboratory for Immuno Bioengineering Research and Applications (LIBRA); Division of Engineering; New York University Abu Dhabi; Saadiyat Campus, P.O. Box 127788 Abu Dhabi UAE
- Department of Mechanical and Aerospace Engineering; New York University; 6 MetroTech Center Brooklyn NY 11201 USA
| |
Collapse
|
15
|
Qasaimeh MA, Pyzik M, Astolfi M, Vidal SM, Juncker D. Neutrophil Chemotaxis in Moving Gradients. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201700243] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Mohammad A. Qasaimeh
- Biomedical Engineering Department; McGill University; Montréal QC H3A 0G1 Canada
- Division of Engineering; New York University Abu Dhabi; Abu Dhabi 129188 UAE
- Department of Mechanical and Aerospace Engineering; New York University; NY 11201 USA
| | - Michal Pyzik
- Department of Human Genetics; McGill University; Montréal QC H3G 0B1 Canada
- Division of Gastroenterology; Department of Medicine; Brigham &Women's Hospital; Harvard Medical School; Boston MA 02115 USA
| | - Mélina Astolfi
- Biomedical Engineering Department; McGill University; Montréal QC H3A 0G1 Canada
| | - Silvia M. Vidal
- Department of Human Genetics; McGill University; Montréal QC H3G 0B1 Canada
| | - David Juncker
- Biomedical Engineering Department; McGill University; Montréal QC H3A 0G1 Canada
- Genome Quebec Innovation Centre; McGill University; Montréal QC H3A 0G1 Canada
- Department of Neurology and Neurosurgery; McGill University; Montréal QC H3A 1A4 Canada
| |
Collapse
|