1
|
Expanded substrate specificity supported by P1' and P2' residues enables bacterial dipeptidyl-peptidase 7 to degrade bioactive peptides. J Biol Chem 2022; 298:101585. [PMID: 35032549 PMCID: PMC8851246 DOI: 10.1016/j.jbc.2022.101585] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 01/06/2023] Open
Abstract
Dipeptide production from extracellular proteins is crucial for Porphyromonas gingivalis, a pathogen related to chronic periodontitis, because its energy production is entirely dependent on the metabolism of amino acids predominantly incorporated as dipeptides. These dipeptides are produced by periplasmic dipeptidyl-peptidase (DPP)4, DPP5, DPP7, and DPP11. Although the substrate specificities of these four DPPs cover most amino acids at the penultimate position from the N terminus (P1), no DPP is known to cleave penultimate Gly, Ser, Thr, or His. Here, we report an expanded substrate preference of bacterial DPP7 that covers those residues. MALDI-TOF mass spectrometry analysis demonstrated that DPP7 efficiently degraded incretins and other gastrointestinal peptides, which were successively cleaved at every second residue, including Ala, Gly, Ser, and Gln, as well as authentic hydrophobic residues. Intravenous injection of DPP7 into mice orally administered glucose caused declines in plasma glucagon-like peptide-1 and insulin, accompanied by increased blood glucose levels. A newly developed coupled enzyme reaction system that uses synthetic fluorogenic peptides revealed that the P1′ and P2′ residues of substrates significantly elevated kcat values, providing an expanded substrate preference. This activity enhancement was most effective toward the substrates with nonfavorable but nonrepulsive P1 residues in DPP7. Enhancement of kcat by prime-side residues was also observed in DPP11 but not DPP4 and DPP5. Based on this expanded substrate specificity, we demonstrate that a combination of DPPs enables proteolytic liberation of all types of N-terminal dipeptides and ensures P. gingivalis growth and pathogenicity.
Collapse
|
2
|
Healey RD, Basu S, Humm AS, Leyrat C, Cong X, Golebiowski J, Dupeux F, Pica A, Granier S, Márquez JA. An automated platform for structural analysis of membrane proteins through serial crystallography. CELL REPORTS METHODS 2021; 1:None. [PMID: 34723237 PMCID: PMC8545655 DOI: 10.1016/j.crmeth.2021.100102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/07/2021] [Accepted: 09/22/2021] [Indexed: 11/01/2022]
Abstract
Membrane proteins are central to many pathophysiological processes, yet remain very difficult to analyze structurally. Moreover, high-throughput structure-based drug discovery has not yet been exploited for membrane proteins because of lack of automation. Here, we present a facile and versatile platform for in meso membrane protein crystallization, enabling rapid atomic structure determination at both cryogenic and room temperatures. We apply this approach to human integral membrane proteins, which allowed us to identify different conformational states of intramembrane enzyme-product complexes and analyze by molecular dynamics simulations the structural dynamics of the ADIPOR2 integral membrane protein. Finally, we demonstrate an automated pipeline combining high-throughput microcrystal soaking, automated laser-based harvesting, and serial crystallography, enabling screening of small-molecule libraries with membrane protein crystals grown in meso. This approach brings needed automation to this important class of drug targets and enables high-throughput structure-based ligand discovery with membrane proteins.
Collapse
Affiliation(s)
- Robert D. Healey
- IGF, University of Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Shibom Basu
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Anne-Sophie Humm
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Cedric Leyrat
- IGF, University of Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Xiaojing Cong
- IGF, University of Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Jérôme Golebiowski
- Institute of Chemistry of Nice UMR7272, Université Côte d’Azur, CNRS, 28 Avenue Valrose, 06108 Nice, France
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Technology, 711-873 Daegu, South Korea
| | - Florine Dupeux
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38000 Grenoble, France
- Institut de Biologie Structurale, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Andrea Pica
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38000 Grenoble, France
- ALPX S.A.S. 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Sébastien Granier
- IGF, University of Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - José Antonio Márquez
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38000 Grenoble, France
- ALPX S.A.S. 71 Avenue des Martyrs, 38000 Grenoble, France
| |
Collapse
|
3
|
Sarwar MT, Ohara-Nemoto Y, Kobayakawa T, Naito M, Nemoto TK. Characterization of substrate specificity and novel autoprocessing mechanism of dipeptidase A from Prevotella intermedia. Biol Chem 2021; 401:629-642. [PMID: 31913843 DOI: 10.1515/hsz-2019-0387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/19/2019] [Indexed: 01/06/2023]
Abstract
Prevotella intermedia, a Gram-negative anaerobic rod, is frequently observed in subgingival polymicrobial biofilms from adults with chronic periodontitis. Peptidases in periodontopathic bacteria are considered to function as etiological reagents. Prevotella intermedia OMA14 cells abundantly express an unidentified cysteine peptidase specific for Arg-4-methycoumaryl-7-amide (MCA). BAU17746 (locus tag, PIOMA14_I_1238) and BAU18827 (locus tag, PIOMA14_II_0322) emerged as candidates of this peptidase from the substrate specificity and sequence similarity with C69-family Streptococcus gordonii Arg-aminopeptidase. The recombinant form of the former solely exhibited hydrolyzing activity toward Arg-MCA, and BAU17746 possesses a 26.6% amino acid identity with the C69-family Lactobacillus helveticus dipeptidase A. It was found that BAU17746 as well as L. helveticus dipeptidase A was a P1-position Arg-specific dipeptidase A, although the L. helveticus entity, a representative of the C69 family, had been reported to be specific for Leu and Phe. The full-length form of BAU17746 was intramolecularly processed to a mature form carrying the N-terminus of Cys15. In conclusion, the marked Arg-MCA-hydrolyzing activity in Pre. intermedia was mediated by BAU17746 belonging to the C69-family dipeptidase A, in which the mature form carries an essential cysteine at the N-terminus.
Collapse
Affiliation(s)
- Mohammad Tanvir Sarwar
- Department of Oral Molecular Biology, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Yuko Ohara-Nemoto
- Department of Oral Molecular Biology, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Takeshi Kobayakawa
- Department of Oral Molecular Biology, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Mariko Naito
- Department of Microbiology and Oral Infection, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | - Takayuki K Nemoto
- Department of Oral Molecular Biology, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| |
Collapse
|
4
|
Structural basis for an exceptionally strong preference for asparagine residue at the S2 subsite of Stenotrophomonas maltophilia dipeptidyl peptidase 7. Sci Rep 2021; 11:7929. [PMID: 33846449 PMCID: PMC8041751 DOI: 10.1038/s41598-021-86965-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/17/2021] [Indexed: 02/01/2023] Open
Abstract
The emergence of drug-resistant bacteria has become a major problem worldwide. Bacterial dipeptidyl peptidases 7 and 11 (DPP7s and DPP11s), belonging to the family-S46 peptidases, are important enzymes for bacterial growth and are not present in mammals. Therefore, specific inhibitors for these peptidases are promising as potential antibiotics. While the molecular mechanisms underlining strict specificity at the S1 subsite of S46 peptidases have been well studied, those of relatively broad preference at the S2 subsite of these peptidases are unknown. In this study, we performed structural and biochemical analyses on DPP7 from Stenotrophomonas maltophilia (SmDPP7). SmDPP7 showed preference for the accommodation of hydrophobic amino acids at the S2 subsite in general, but as an exception, also for asparagine, a hydrophilic amino acid. Structural analyses of SmDPP7 revealed that this exceptional preference to asparagine is caused by a hydrogen bonding network at the bottom of the S2 subsite. The residues in the S2 subsite are well conserved among S46 peptidases as compared with those in the S1 subsite. We expect that our findings will contribute toward the development of a universal inhibitor of S46 peptidases.
Collapse
|
5
|
Miller DP, Scott DA. Inherently and Conditionally Essential Protein Catabolism Genes of Porphyromonas gingivalis. Trends Microbiol 2020; 29:54-64. [PMID: 33071035 DOI: 10.1016/j.tim.2020.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/01/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023]
Abstract
Proteases are critical virulence determinants of Porphyromonas gingivalis, an emerging Alzheimer's disease, cancer, and arthritis pathogen and established agent of periodontitis. Transposon sequencing has been employed to define the core essential genome of this bacterium and genes conditionally essential in multiple environments - abscess formation; epithelial colonization; and cigarette smoke toxin exposure; as well as to elucidate genes required for iron acquisition and a functional type 9 secretion system. Validated and predicted protein catabolism genes identified include a combination of established virulence factors and a larger set of seemingly more mundane proteolytic genes. The functions and relevance of genes that share essentiality in multiple disease-relevant conditions are examined. These common stress-related genes may represent particularly attractive therapeutic targets for the control of P. gingivalis infections.
Collapse
Affiliation(s)
- Daniel P Miller
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - David A Scott
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
6
|
Nemoto TK, Ohara Nemoto Y. Dipeptidyl-peptidases: Key enzymes producing entry forms of extracellular proteins in asaccharolytic periodontopathic bacterium Porphyromonas gingivalis. Mol Oral Microbiol 2020; 36:145-156. [PMID: 33006264 PMCID: PMC8048996 DOI: 10.1111/omi.12317] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/17/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023]
Abstract
Porphyromonas gingivalis, a pathogen of chronic periodontitis, is an asaccharolytic microorganism that solely utilizes nutritional amino acids as its energy source and cellular constituents. The bacterium is considered to incorporate proteinaceous nutrients mainly as dipeptides, thus exopeptidases that produce dipeptides from polypeptides are critical for survival and proliferation. We present here an overview of dipeptide production by P. gingivalis mediated by dipeptidyl-peptidases (DPPs), e.g., DPP4, DPP5, DPP7, and DPP11, serine exopeptidases localized in periplasm, which release dipeptides from the N-terminus of polypeptides. Additionally, two other exopeptidases, acylpeptidyl-oligopeptidase (AOP) and prolyl tripeptidyl-peptidase A (PTP-A), which liberate N-terminal acylated di-/tri-peptides and tripeptides with Pro at the third position, respectively, provide polypeptides in an acceptable form for DPPs. Hence, a large fraction of dipeptides is produced from nutritional polypeptides by DPPs with differential specificities in combination with AOP and PTP-A. The resultant dipeptides are then incorporated across the inner membrane mainly via a proton-dependent oligopeptide transporter (POT), a member of the major facilitator superfamily. Recent studies also indicate that DPP4 and DPP7 directly link between periodontal and systemic diseases, such as type 2 diabetes mellitus and coagulation abnormality, respectively. Therefore, these dipeptide-producing and incorporation molecules are considered to be potent targets for prevention and treatment of periodontal and related systemic diseases.
Collapse
Affiliation(s)
- Takayuki K Nemoto
- Department of Oral Molecular Biology, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yuko Ohara Nemoto
- Department of Oral Molecular Biology, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
7
|
Muñoz‐Bacasehua C, Rosas‐Rodríguez JA, Arvizu‐Flores AA, Stephens‐Camacho A, Soñanez‐Organis JG, Figueroa‐Soto CG, Valenzuela‐Soto EM. Heterogeneity of active sites in recombinant betaine aldehyde dehydrogenase is modulated by potassium. J Mol Recognit 2020; 33:e2869. [DOI: 10.1002/jmr.2869] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/08/2020] [Accepted: 05/28/2020] [Indexed: 01/26/2023]
Affiliation(s)
- César Muñoz‐Bacasehua
- Ciencia de los AlimentosCentro de Investigación en Alimentación y Desarrollo A.C. Hermosillo México
| | - Jesús A. Rosas‐Rodríguez
- Departamento de Ciencias Químico Biológicas y AgropecuariasUniversidad de Sonora Unidad Regional Sur Navojoa México
| | | | - Aurora Stephens‐Camacho
- Licenciatura en Nutrición HumanaUniversidad Estatal de Sonora UAN, Periférico Sur y Carretera a Huatabampo Navojoa México
| | - José G. Soñanez‐Organis
- Departamento de Ciencias Químico Biológicas y AgropecuariasUniversidad de Sonora Unidad Regional Sur Navojoa México
| | - Ciria G. Figueroa‐Soto
- Ciencia de los AlimentosCentro de Investigación en Alimentación y Desarrollo A.C. Hermosillo México
| | - Elisa M. Valenzuela‐Soto
- Ciencia de los AlimentosCentro de Investigación en Alimentación y Desarrollo A.C. Hermosillo México
| |
Collapse
|
8
|
Muñoz-Bacasehua C, Rosas-Rodríguez JA, Arvizu-Flores AA, Valenzuela-Soto EM. Role of potassium levels in pkBADH heterogeneity of NAD + binding site. J Bioenerg Biomembr 2020; 52:61-70. [PMID: 32128683 DOI: 10.1007/s10863-020-09827-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/26/2020] [Indexed: 12/20/2022]
Abstract
Betaine aldehyde dehydrogenase (BADH) catalyzes the oxidation of betaine aldehyde to glycine betaine using NAD+ as a coenzyme. Studies in porcine kidney BADH (pkBADH) suggested that the enzyme exhibits heterogeneity of active sites and undergoes potassium-induced conformational changes. This study aimed to analyze if potassium concentration plays a role in the heterogeneity of pkBADH active sites through changes in NAD+ affinity constants, in its secondary structure content and stability. The enzyme was titrated with NAD+ 1 mM at fixed-variable KCl concentration, and the interaction measured by Isothermal Titration Calorimetry (ITC) and Circular Dichroism (CD). ITC data showed that K+ increased the first active site affinity in a manner dependent on its concentration; KD values to the first site were 14.4, 13.1, and 10.4 μM, at 25, 50, and 75 mM KCl. ΔG values showed that the coenzyme binding is a spontaneous reaction without changes between active sites or depending on KCl concentration. ΔH and TΔSb values showed that NAD+ binding to the active site is an endothermic process and is carried out at the expense of changes in entropy. α-Helix content increased as KCl increased, enzyme (Tm)app values were 2.6 °C and 3.3 °C higher at 20 mM and 200 mM K+. PkBADH molecular model showed three different interaction K+ sites. Results suggested K+ can interact with pkBADH and cause changes in the secondary structure, it provokes changes in the enzyme affinity by the coenzyme, and in the thermostability.
Collapse
Affiliation(s)
- César Muñoz-Bacasehua
- Centro de Investigación en Alimentación y Desarrollo A.C, GE Astiazaran Rosas 46, 83304, Hermosillo, Sonora, Mexico
| | | | - Aldo A Arvizu-Flores
- Departamento de Ciencias Químico-Biológicas, Universidad de Sonora, Apartado Postal, 83000, Hermosillo, Sonora, Mexico
| | - Elisa M Valenzuela-Soto
- Centro de Investigación en Alimentación y Desarrollo A.C, GE Astiazaran Rosas 46, 83304, Hermosillo, Sonora, Mexico.
| |
Collapse
|
9
|
Fragment-based discovery of the first nonpeptidyl inhibitor of an S46 family peptidase. Sci Rep 2019; 9:13587. [PMID: 31537874 PMCID: PMC6753110 DOI: 10.1038/s41598-019-49984-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/30/2019] [Indexed: 01/01/2023] Open
Abstract
Antimicrobial resistance is a global public threat and raises the need for development of new antibiotics with a novel mode of action. The dipeptidyl peptidase 11 from Porphyromonas gingivalis (PgDPP11) belongs to a new class of serine peptidases, family S46. Because S46 peptidases are not found in mammals, these enzymes are attractive targets for novel antibiotics. However, potent and selective inhibitors of these peptidases have not been developed to date. In this study, a high-resolution crystal structure analysis of PgDPP11 using a space-grown crystal enabled us to identify the binding of citrate ion, which could be regarded as a lead fragment mimicking the binding of a substrate peptide with acidic amino acids, in the S1 subsite. The citrate-based pharmacophore was utilized for in silico inhibitor screening. The screening resulted in an active compound SH-5, the first nonpeptidyl inhibitor of S46 peptidases. SH-5 and a lipophilic analog of SH-5 showed a dose-dependent inhibitory effect against the growth of P. gingivalis. The binding mode of SH-5 was confirmed by crystal structure analysis. Thus, these compounds could be lead structures for the development of selective inhibitors of PgDPP11.
Collapse
|
10
|
Establishment of potent and specific synthetic substrate for dipeptidyl-peptidase 7. Anal Biochem 2018; 548:78-81. [PMID: 29432753 DOI: 10.1016/j.ab.2018.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 10/18/2022]
Abstract
Bacterial dipeptidyl-peptidase (DPP) 7 liberates a dipeptide with a preference for aliphatic and aromatic penultimate residues from the N-terminus. Although synthetic substrates are useful for activity measurements, those currently used are problematic, because they are more efficiently degraded by DPP5. We here aimed to develop a potent and specific substrate and found that the kcat/Km value for Phe-Met-methylcoumaryl-7-amide (MCA) (41.40 ± 0.83 μM-1 s-1) was highest compared to Met-Leu-, Leu-Leu-, and Phe-Leu-MCA (1.06-3.77 μM-1 s-1). Its hydrolyzing activity was abrogated in a Porphyromonas gingivalis dpp7-knockout strain. Conclusively, we propose Phe-Met-MCA as an ideal synthetic substrate for DPP7.
Collapse
|
11
|
Nemoto TK, Bezerra GA, Ono T, Nishimata H, Fujiwara T, Ohara-Nemoto Y. Identification of a new subtype of dipeptidyl peptidase 11 and a third group of the S46-family members specifically present in the genus Bacteroides. Biochimie 2018; 147:25-35. [PMID: 29080830 DOI: 10.1016/j.biochi.2017.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/22/2017] [Indexed: 10/18/2022]
Abstract
Peptidase family S46 consists of two types of dipeptidyl-peptidases (DPPs), DPP7 and DPP11, which liberate dipeptides from the N-termini of polypeptides along with the penultimate hydrophobic and acidic residues, respectively. Their specificities are primarily defined by a single amino acid residue, Gly673 in DPP7 and Arg673 in DPP11 (numbering for Porphyromonas gingivalis DPP11). Bacterial species in the phyla Proteobacteria and Bacteroidetes generally possess one gene for each, while Bacteroides species exceptionally possess three genes, one gene as DPP7 and two genes as DPP11, annotated based on the full-length similarities. In the present study, we aimed to characterize the above-mentioned Bacteroides S46 DPPs. A recombinant protein of the putative DPP11 gene BF9343_2924 from Bacteroides fragilis harboring Gly673 exhibited DPP7 activity by hydrolyzing Leu-Leu-4-methylcoumaryl-7-amide (MCA). Another gene, BF9343_2925, as well as the Bacteroides vulgatus gene (BVU_2252) with Arg673 was confirmed to encode DPP11. These results demonstrated that classification of S46 peptidase is enforceable by the S1 essential residues. Bacteroides DPP11 showed a decreased level of activity towards the substrates, especially with P1-position Glu. Findings of 3D structural modeling indicated three potential amino acid substitutions responsible for the reduction, one of which, Asn650Thr substitution, actually recovered the hydrolyzing activity of Leu-Glu-MCA. On the other hand, the gene currently annotated as DPP7 carrying Gly673 from B. fragilis (BF9343_0130) and Bacteroides ovatus (Bovatus_03382) did not hydrolyze any of the examined substrates. The existence of a phylogenic branch of these putative Bacteroides DPP7 genes classified by the C-terminal conserved region (Ser571-Leu700) strongly suggests that Bacteroides species expresses a DPP with an unknown property. In conclusion, the genus Bacteroides exceptionally expresses three S46-family members; authentic DPP7, a new subtype of DPP11 with substantially reduced specificity for Glu, and a third group of S46 family members.
Collapse
Affiliation(s)
- Takayuki K Nemoto
- Department of Oral Molecular Biology, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan.
| | - Gustavo Arruda Bezerra
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, Vienna Biocenter Campus 5, 1030 Vienna, Austria.
| | - Toshio Ono
- Department of Oral Molecular Biology, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan.
| | - Haruka Nishimata
- Department of Pediatric Dentistry, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan.
| | - Taku Fujiwara
- Department of Pediatric Dentistry, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan.
| | - Yuko Ohara-Nemoto
- Department of Oral Molecular Biology, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan.
| |
Collapse
|