1
|
Lopez GH, Sarri ME, Flower RL, Hyland CA. Impact of transcription factors KLF1 and GATA1 on red blood cell antigen expression: a review. Immunohematology 2024; 40:1-9. [PMID: 38739025 DOI: 10.2478/immunohematology-2024-002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
KLF transcription factor 1 (KLF1) and GATA binding protein 1 (GATA1) are transcription factors (TFs) that initiate and regulate transcription of the genes involved in erythropoiesis. These TFs possess DNA-binding domains that recognize specific nucleotide sequences in genes, to which they bind and regulate transcription. Variants in the genes that encode either KLF1 or GATA1 can result in a range of hematologic phenotypes-from benign to severe forms of thrombocytopenia and anemia; they can also weaken the expression of blood group antigens. The Lutheran (LU) blood group system is susceptible to TF gene variations, particularly KLF1 variants. Individuals heterozygous for KLF1 gene variants show reduced Lutheran antigens on red blood cells that are not usually detected by routine hemagglutination methods. This reduced antigen expression is referred to as the In(Lu) phenotype. For accurate blood typing, it is important to distinguish between the In(Lu) phenotype, which has very weak antigen expression, and the true Lunull phenotype, which has no antigen expression. The International Society of Blood Transfusion blood group allele database registers KLF1 and GATA1 variants associated with modified Lutheran expression. Here, we review KLF1 and recent novel gene variants defined through investigating blood group phenotype and genotype discrepancies or, for one report, investigating cases with unexplained chronic anemia. In addition, we include a review of the GATA1 TF, including a case report describing the second GATA1 variant associated with a serologic Lu(a-b-) phenotype. Finally, we review both past and recent reports on variations in the DNA sequence motifs on the blood group genes that disrupt the binding of the GATA1 TF and either remove or reduce erythroid antigen expression. This review highlights the diversity and complexity of the transcription process itself and the need to consider these factors as an added component for accurate blood group phenotyping.
Collapse
Affiliation(s)
- Genghis H Lopez
- 1Research and Development, Australian Red Cross Lifeblood, Kelvin Grove, Queensland, Australia
- 2School of Health, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Mia E Sarri
- 1Research and Development, Australian Red Cross Lifeblood, Kelvin Grove, Queensland, Australia
| | - Robert L Flower
- 1Research and Development, Australian Red Cross Lifeblood, Kelvin Grove, Queensland, Australia
- 3Faculty of Health, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Catherine A Hyland
- 1Research and Development, Australian Red Cross Lifeblood, Kelvin Grove, Queensland, Australia
- 3Faculty of Health, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| |
Collapse
|
2
|
Sun Y, Xu H, Li J, Peng M, Jia Z, Kong L, Zhang X, Shao S, Zhang W, Wang W. Genome-wide survey identifies TNNI2 as a target of KLF7 that inhibits chicken adipogenesis via downregulating FABP4. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194899. [PMID: 36410687 DOI: 10.1016/j.bbagrm.2022.194899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/26/2022] [Accepted: 11/12/2022] [Indexed: 11/19/2022]
Abstract
Krüppel-like factor 7 (KLF7) negatively regulates adipocyte differentiation; however, the mechanism underlying its activity in mammals and birds remains poorly understood. To identify genome-wide KLF7-binding motifs in preadipocytes, we conducted a chromatin immunoprecipitation-sequencing analysis of immortalized chicken preadipocytes (ICP2), which revealed 11,063 specific binding sites. Intergenic binding site analysis showed that KLF7 regulates several novel factors whose functions in chicken and mammal adipogenesis are underexplored. We identified a novel regulator, troponin I2 (TNNI2), which is positively regulated by KLF7. TNNI2 is downregulated during preadipocyte differentiation and acts as an adipogenic repressor at least in part by repressing FABP4 promoter activity. In conclusion, we demonstrated that KLF7 functions through cis-regulation of TNNI2, which inhibits adipogenesis. Our findings not only provide the first genome-wide picture of KLF7 associations in preadipocytes but also identify a novel function of TNNI2.
Collapse
Affiliation(s)
- Yingning Sun
- College of Life Science and Agriculture Forestry, Qiqihar University, Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, Heilongjiang 161000, China.
| | - Hu Xu
- College of Life Science and Agriculture Forestry, Qiqihar University, Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, Heilongjiang 161000, China
| | - Jinwei Li
- College of Life Science and Agriculture Forestry, Qiqihar University, Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, Heilongjiang 161000, China
| | - Min Peng
- College of Life Science and Agriculture Forestry, Qiqihar University, Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, Heilongjiang 161000, China
| | - Ziqiu Jia
- College of Life Science and Agriculture Forestry, Qiqihar University, Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, Heilongjiang 161000, China
| | - Lingzhe Kong
- College of Life Science and Agriculture Forestry, Qiqihar University, Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, Heilongjiang 161000, China
| | - Xin Zhang
- College of Life Science and Agriculture Forestry, Qiqihar University, Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, Heilongjiang 161000, China
| | - Shuli Shao
- College of Life Science and Agriculture Forestry, Qiqihar University, Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, Heilongjiang 161000, China
| | - Weiwei Zhang
- College of Life Science and Agriculture Forestry, Qiqihar University, Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, Heilongjiang 161000, China
| | - Weiyu Wang
- College of Life Science and Agriculture Forestry, Qiqihar University, Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar, Heilongjiang 161000, China
| |
Collapse
|
3
|
Ahmed M, Min DS, Kim DR. Integrating binding and expression data to predict transcription factors combined function. BMC Genomics 2020; 21:610. [PMID: 32894066 PMCID: PMC7487729 DOI: 10.1186/s12864-020-06977-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 08/11/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Transcription factor binding to the regulatory region of a gene induces or represses its gene expression. Transcription factors share their binding sites with other factors, co-factors and/or DNA-binding proteins. These proteins form complexes which bind to the DNA as one-units. The binding of two factors to a shared site does not always lead to a functional interaction. RESULTS We propose a method to predict the combined functions of two factors using comparable binding and expression data (target). We based this method on binding and expression target analysis (BETA), which we re-implemented in R and extended for this purpose. target ranks the factor's targets by importance and predicts the dominant type of interaction between two transcription factors. We applied the method to simulated and real datasets of transcription factor-binding sites and gene expression under perturbation of factors. We found that Yin Yang 1 transcription factor (YY1) and YY2 have antagonistic and independent regulatory targets in HeLa cells, but they may cooperate on a few shared targets. CONCLUSION We developed an R package and a web application to integrate binding (ChIP-seq) and expression (microarrays or RNA-seq) data to determine the cooperative or competitive combined function of two transcription factors.
Collapse
Affiliation(s)
- Mahmoud Ahmed
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, 52727, Republic of Korea
| | - Do Sik Min
- College of Pharmacy, Yonsei University, Incheon, 21983, Republic of Korea
| | - Deok Ryong Kim
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, 52727, Republic of Korea.
| |
Collapse
|
4
|
Sun Y, Jin Z, Zhang X, Cui T, Zhang W, Shao S, Li H, Wang N. GATA Binding Protein 3 Is a Direct Target of Kruppel-Like Transcription Factor 7 and Inhibits Chicken Adipogenesis. Front Physiol 2020; 11:610. [PMID: 32587528 PMCID: PMC7298121 DOI: 10.3389/fphys.2020.00610] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/15/2020] [Indexed: 12/21/2022] Open
Abstract
Kruppel-like transcription factor 7 (KLF7) is a negative regulator of adipogenesis, however, its precise mechanism is poorly understood. Our previous KLF7 ChIP-seq analysis showed that one of the KLF7 binding peaks was present upstream of GATA binding protein 3 (GATA3) in chicken preadipocytes. In the present study, we identified GATA3 as a target of KLF7. Overexpression analysis showed KLF7 markedly enhanced the endogenous expression of GATA3 in the immortalized chicken preadipcyte cell line (ICP2), and the luciferase reporter assay showed that KLF7 overexpression increased the reporter gene activity of the cloned upstream region (-5285/-4336 relative to the translation initiation codon ATG) of GATA3 in ICP2 and DF1 cells, and mutation of the putative KLF7 binding site abolished the promotive effect of KLF7 overexpression on the reporter gene activity of the cloned GATA3 upstream region. ChIP-qPCR further demonstrated that KLF7 directly bound to the GATA3 upstream region. Gene expression analysis showed that GATA3 mRNA expression in abdominal adipose tissue was significantly higher in lean chicken line than in the fat line at 2, 3, and 6 weeks of age. In addition, GATA3 mRNA expression markedly decreased during the preadipocyte differentiation. Furthermore, a functional study showed that GATA3 overexpression inhibited the differentiation of the ICP2 cells. Taken together, our results demonstrated that KLF7 inhibits chicken adipogenesis, at least in part through direct upregulation of GATA3.
Collapse
Affiliation(s)
- Yingning Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,College of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar, China.,Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China
| | - Zhao Jin
- College of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar, China
| | - Xinyang Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China
| | - Tingting Cui
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,College of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar, China.,Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China
| | - Wenjian Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China
| | - Shuli Shao
- College of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar, China
| | - Hui Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China
| | - Ning Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China
| |
Collapse
|
5
|
Quintana-Urzainqui I, Kozić Z, Mitra S, Tian T, Manuel M, Mason JO, Price DJ. Tissue-Specific Actions of Pax6 on Proliferation and Differentiation Balance in Developing Forebrain Are Foxg1 Dependent. iScience 2018; 10:171-191. [PMID: 30529950 PMCID: PMC6287089 DOI: 10.1016/j.isci.2018.11.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/02/2018] [Accepted: 11/16/2018] [Indexed: 12/12/2022] Open
Abstract
Differences in the growth and maturation of diverse forebrain tissues depend on region-specific transcriptional regulation. Individual transcription factors act simultaneously in multiple regions that develop very differently, raising questions about the extent to which their actions vary regionally. We found that the transcription factor Pax6 affects the transcriptomes and the balance between proliferation and differentiation in opposite directions in the diencephalon versus cerebral cortex. We tested several possible mechanisms to explain Pax6's tissue-specific actions and found that the presence of the transcription factor Foxg1 in the cortex but not in the diencephalon was most influential. We found that Foxg1 is responsible for many of the differences in cell cycle gene expression between the diencephalon and cortex and, in cortex lacking Foxg1, Pax6's action on the balance of proliferation versus differentiation becomes diencephalon like. Our findings reveal a mechanism for generating regional forebrain diversity in which one transcription factor completely reverses the actions of another.
Collapse
Affiliation(s)
- Idoia Quintana-Urzainqui
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK.
| | - Zrinko Kozić
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Soham Mitra
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Tian Tian
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Martine Manuel
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - John O Mason
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - David J Price
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| |
Collapse
|
6
|
Hsieh PN, Sweet DR, Fan L, Jain MK. Aging and the Krüppel-like factors. TRENDS IN CELL & MOLECULAR BIOLOGY 2017; 12:1-15. [PMID: 29416266 PMCID: PMC5798252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The mammalian Krüppel-like factors (KLFs) are a family of zinc-finger containing transcription factors with diverse patterns of expression and a wide array of cellular functions. While their roles in mammalian physiology are well known, there is a growing appreciation for their roles in modulating the fundamental progression of aging. Here we review the current knowledge of Krüppel-like factors with a focus on their roles in processes regulating aging and age-associated diseases.
Collapse
Affiliation(s)
- Paishiun N. Hsieh
- Case Cardiovascular Research Institute, Case Western Reserve University, and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - David R. Sweet
- Case Cardiovascular Research Institute, Case Western Reserve University, and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Liyan Fan
- Case Cardiovascular Research Institute, Case Western Reserve University, and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Mukesh K. Jain
- Case Cardiovascular Research Institute, Case Western Reserve University, and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| |
Collapse
|