1
|
Jyothish L, Kazi S, Gokhale JS. Microfluidics for detection of food pathogens: recent trends and opportunities. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:2243-2262. [PMID: 39431185 PMCID: PMC11486885 DOI: 10.1007/s13197-024-06058-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 10/22/2024]
Abstract
Safe and healthy food is the fundamental right of every citizen. Problems caused by foodborne pathogens have always raised a threat to food safety and human health. Centers for Disease Control and Prevention (CDC) estimates that around 48 million people are affected by food intoxication, and 3000 people succumb to death. Hence, it is inevitable that an approach that is efficient, reliable, sensitive, and rapid approach that can replace the conventional analytical methods such as microbiological and biochemical methods, high throughput next-generation sequence (NGS), polymerase chain reaction (PCR), and enzyme-linked immunosorbent assay (ELISA), etc. Even though the accuracy of conventional methods is high, it is tedious; increased consumption of reagents/samples, false positives, and complex operations are the drawbacks of these methods. Microfluidic devices have shown remarkable advances in all branches of science. They serve as an alternative to conventional ways to overcome the abovementioned drawbacks. Furthermore, coupling microfluidics can improve the efficiency and accuracy of conventional methods such as surface plasma resonance, loop-mediated isothermal amplification, ELISA, and PCR. This article reviewed the progress of microfluidic devices in the last ten years in detecting foodborne pathogens. Microfluidic technology has opened the research gateway for developing low-cost, on-site, portable, and rapid assay devices. The article includes the application of microfluidic-based devices to identify critical food pathogens and briefly discusses the necessary research in this area.
Collapse
Affiliation(s)
- Lakshmi Jyothish
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai, 400019 India
| | - Sameera Kazi
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai, 400019 India
| | - Jyoti S. Gokhale
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai, 400019 India
| |
Collapse
|
2
|
Liu KZ, Tian G, Ko ACT, Geissler M, Malic L, Moon BU, Clime L, Veres T. Microfluidic methods for the diagnosis of acute respiratory tract infections. Analyst 2024. [PMID: 39440426 DOI: 10.1039/d4an00957f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Acute respiratory tract infections (ARTIs) are caused by sporadic or pandemic outbreaks of viral or bacterial pathogens, and continue to be a considerable socioeconomic burden for both developing and industrialized countries alike. Diagnostic methods and technologies serving as the cornerstone for disease management, epidemiological tracking, and public health interventions are evolving continuously to keep up with the demand for higher sensitivity, specificity and analytical throughput. Microfluidics is becoming a key technology in these developments as it allows for integrating, miniaturizing and automating bioanalytical assays at an unprecedented scale, reducing sample and reagent consumption and improving diagnostic performance in terms of sensitivity, throughput and response time. In this article, we describe relevant ARTIs-pneumonia, influenza, severe acute respiratory syndrome, and coronavirus disease 2019-along with their pathogenesis. We provide a summary of established methods for disease diagnosis, involving nucleic acid amplification techniques, antigen detection, serological testing as well as microbial culture. This is followed by a short introduction to microfluidics and how flow is governed at low volume and reduced scale using centrifugation, pneumatic pumping, electrowetting, capillary action, and propagation in porous media through wicking, for each of these principles impacts the design, functioning and performance of diagnostic tools in a particular way. We briefly cover commercial instruments that employ microfluidics for use in both laboratory and point-of-care settings. The main part of the article is dedicated to emerging methods deriving from the use of miniaturized, microfluidic systems for ARTI diagnosis. Finally, we share our thoughts on future perspectives and the challenges associated with validation, approval, and adaptation of microfluidic-based systems.
Collapse
Affiliation(s)
- Kan-Zhi Liu
- Life Sciences Division, Medical Devices Research Centre, National Research Council of Canada, 435 Ellice Avenue, Winnipeg, MB, R3B 1Y6, Canada
| | - Ganghong Tian
- Life Sciences Division, Medical Devices Research Centre, National Research Council of Canada, 435 Ellice Avenue, Winnipeg, MB, R3B 1Y6, Canada
| | - Alex C-T Ko
- Life Sciences Division, Medical Devices Research Centre, National Research Council of Canada, 435 Ellice Avenue, Winnipeg, MB, R3B 1Y6, Canada
| | - Matthias Geissler
- Life Sciences Division, Medical Devices Research Centre, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| | - Lidija Malic
- Life Sciences Division, Medical Devices Research Centre, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| | - Byeong-Ui Moon
- Life Sciences Division, Medical Devices Research Centre, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| | - Liviu Clime
- Life Sciences Division, Medical Devices Research Centre, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| | - Teodor Veres
- Life Sciences Division, Medical Devices Research Centre, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| |
Collapse
|
3
|
Screpis GA, Aleo A, Privitera N, Capuano GE, Farina R, Corso D, Libertino S, Coniglio MA. Biosensing Technologies for Detecting Legionella in Environmental Samples: A Systematic Review. Microorganisms 2024; 12:1855. [PMID: 39338529 PMCID: PMC11434302 DOI: 10.3390/microorganisms12091855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
The detection of Legionella in environmental samples, such as water, is crucial for public health monitoring and outbreak prevention. Although effective, traditional detection methods, including culture-based techniques and polymerase chain reaction, have limitations such as long processing times, trained operators, and the need for specialized laboratory equipment. Biosensing technologies offer a promising alternative due to their rapid, sensitive, cost-effectiveness, and on-site detection capabilities. To summarize the current advancements in biosensor development for detecting Legionella in environmental samples, we used 'Legionella' AND 'biosensors' NEAR 'environmental samples' OR 'water' as keywords searching through the most relevant biomedical databases for research articles. After removing duplicates and inadequate articles from the n.1268 records identified using the PRISMA methodology exclusion criteria, we selected n.65 full-text articles which suited the inclusion criteria. Different results between the studies describing the current biosensing techniques, including optical, electrochemical, magnetic, and mass-sensitive sensors were observed. For each biosensing technique, sensitivity, specificity, and detection limits were evaluated. Furthermore, the integration of nanomaterials, microfluidics, and portable devices in biosensor systems' design were discussed, highlighting their role in enhancing detection performance. The potential challenges and future directions in the field of Legionella biosensing were also addressed, providing insights into the feasibility of implementing these technologies in routine environmental monitoring. Undoubtedly, biosensors can play a crucial role in the early detection and management of Legionella infections and outbreaks, ultimately protecting public health and safety.
Collapse
Affiliation(s)
- Giuseppe Andrea Screpis
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, Via S. Sofia 87, 95123 Catania, Italy; (G.A.S.); (A.A.); (N.P.); (M.A.C.)
| | - Andrea Aleo
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, Via S. Sofia 87, 95123 Catania, Italy; (G.A.S.); (A.A.); (N.P.); (M.A.C.)
| | - Natalia Privitera
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, Via S. Sofia 87, 95123 Catania, Italy; (G.A.S.); (A.A.); (N.P.); (M.A.C.)
| | - Giuseppe Emanuele Capuano
- Institute for Microelectronics and Microsystems (CNR—IMM), HQ, National Research Council of Italy, VIII Street Z.I., 5, 95121 Catania, Italy; (D.C.); (S.L.)
| | - Roberta Farina
- Institute for Microelectronics and Microsystems (CNR—IMM), HQ, National Research Council of Italy, VIII Street Z.I., 5, 95121 Catania, Italy; (D.C.); (S.L.)
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Domenico Corso
- Institute for Microelectronics and Microsystems (CNR—IMM), HQ, National Research Council of Italy, VIII Street Z.I., 5, 95121 Catania, Italy; (D.C.); (S.L.)
| | - Sebania Libertino
- Institute for Microelectronics and Microsystems (CNR—IMM), HQ, National Research Council of Italy, VIII Street Z.I., 5, 95121 Catania, Italy; (D.C.); (S.L.)
| | - Maria Anna Coniglio
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, Via S. Sofia 87, 95123 Catania, Italy; (G.A.S.); (A.A.); (N.P.); (M.A.C.)
- Institute for Microelectronics and Microsystems (CNR—IMM), HQ, National Research Council of Italy, VIII Street Z.I., 5, 95121 Catania, Italy; (D.C.); (S.L.)
- Regional Reference Laboratory of Clinical and Environmental Surveillance of Legionellosis, Azienda Ospedaliero Universitaria Policlinico “G. Rodolico-San Marco”, Via S. Sofia 78, 95123 Catania, Italy
| |
Collapse
|
4
|
Tsougeni K, Kanioura A, Kastania AS, Ellinas K, Stellas A, Constantoudis V, Moschonas G, Andritsos ND, Velonakis M, Petrou PS, Kakabakos SE, Gogolides E, Tserepi A. A Diagnostic Chip for the Colorimetric Detection of Legionella pneumophila in Less than 3 h at the Point of Need. BIOSENSORS 2024; 14:228. [PMID: 38785702 PMCID: PMC11118137 DOI: 10.3390/bios14050228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/23/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
Legionella pneumophila has been pinpointed by the World Health Organization as the highest health burden of all waterborne pathogens in the European Union and is responsible for many disease outbreaks around the globe. Today, standard analysis methods (based on bacteria culturing onto agar plates) need several days (~12) in specialized analytical laboratories to yield results, not allowing for timely actions to prevent outbreaks. Over the last decades, great efforts have been made to develop more efficient waterborne pathogen diagnostics and faster analysis methods, requiring further advancement of microfluidics and sensors for simple, rapid, accurate, inexpensive, real-time, and on-site methods. Herein, a lab-on-a-chip device integrating sample preparation by accommodating bacteria capture, lysis, and DNA isothermal amplification with fast (less than 3 h) and highly sensitive, colorimetric end-point detection of L. pneumophila in water samples is presented, for use at the point of need. The method is based on the selective capture of viable bacteria on on-chip-immobilized and -lyophilized antibodies, lysis, the loop-mediated amplification (LAMP) of DNA, and end-point detection by a color change, observable by the naked eye and semiquantified by computational image analysis. Competitive advantages are demonstrated, such as low reagent consumption, portability and disposability, color change, storage at RT, and compliance with current legislation.
Collapse
Affiliation(s)
- Katerina Tsougeni
- Nanoplasmas P.C., “Lefkippos” Technology Park, Patriarchou Gregoriou E’ & 27 Neapoleos Str., P.O. Box 60037, Ag. Paraskevi, 153 41 Athens, Greece; (K.T.); (A.S.K.); (K.E.); (P.S.P.); (S.E.K.); (E.G.)
| | - Anastasia Kanioura
- Nanoplasmas P.C., “Lefkippos” Technology Park, Patriarchou Gregoriou E’ & 27 Neapoleos Str., P.O. Box 60037, Ag. Paraskevi, 153 41 Athens, Greece; (K.T.); (A.S.K.); (K.E.); (P.S.P.); (S.E.K.); (E.G.)
| | - Athina S. Kastania
- Nanoplasmas P.C., “Lefkippos” Technology Park, Patriarchou Gregoriou E’ & 27 Neapoleos Str., P.O. Box 60037, Ag. Paraskevi, 153 41 Athens, Greece; (K.T.); (A.S.K.); (K.E.); (P.S.P.); (S.E.K.); (E.G.)
- National Centre for Scientific Research “Demokritos”, Patriarchou Gregoriou E’ & 27 Neapoleos Str., Ag. Paraskevi, 153 41 Athens, Greece;
| | - Kosmas Ellinas
- Nanoplasmas P.C., “Lefkippos” Technology Park, Patriarchou Gregoriou E’ & 27 Neapoleos Str., P.O. Box 60037, Ag. Paraskevi, 153 41 Athens, Greece; (K.T.); (A.S.K.); (K.E.); (P.S.P.); (S.E.K.); (E.G.)
| | - Antonios Stellas
- Nanometrisis P.C., “Lefkippos” Technology Park, Patriarchou Gregoriou E’ & 27 Neapoleos Str., P.O. Box 60037, Ag. Paraskevi, 153 41 Athens, Greece
| | - Vassilios Constantoudis
- National Centre for Scientific Research “Demokritos”, Patriarchou Gregoriou E’ & 27 Neapoleos Str., Ag. Paraskevi, 153 41 Athens, Greece;
- Nanometrisis P.C., “Lefkippos” Technology Park, Patriarchou Gregoriou E’ & 27 Neapoleos Str., P.O. Box 60037, Ag. Paraskevi, 153 41 Athens, Greece
| | - Galatios Moschonas
- Eurofins Athens Analysis Laboratories, 29 Nafpliou Str., Metamorfosi, 144 52 Athens, Greece; (G.M.); (N.D.A.)
| | - Nikolaos D. Andritsos
- Eurofins Athens Analysis Laboratories, 29 Nafpliou Str., Metamorfosi, 144 52 Athens, Greece; (G.M.); (N.D.A.)
| | - Manolis Velonakis
- Eurofins Athens Analysis Laboratories, 29 Nafpliou Str., Metamorfosi, 144 52 Athens, Greece; (G.M.); (N.D.A.)
| | - Panagiota S. Petrou
- Nanoplasmas P.C., “Lefkippos” Technology Park, Patriarchou Gregoriou E’ & 27 Neapoleos Str., P.O. Box 60037, Ag. Paraskevi, 153 41 Athens, Greece; (K.T.); (A.S.K.); (K.E.); (P.S.P.); (S.E.K.); (E.G.)
- National Centre for Scientific Research “Demokritos”, Patriarchou Gregoriou E’ & 27 Neapoleos Str., Ag. Paraskevi, 153 41 Athens, Greece;
| | - Sotirios E. Kakabakos
- Nanoplasmas P.C., “Lefkippos” Technology Park, Patriarchou Gregoriou E’ & 27 Neapoleos Str., P.O. Box 60037, Ag. Paraskevi, 153 41 Athens, Greece; (K.T.); (A.S.K.); (K.E.); (P.S.P.); (S.E.K.); (E.G.)
- National Centre for Scientific Research “Demokritos”, Patriarchou Gregoriou E’ & 27 Neapoleos Str., Ag. Paraskevi, 153 41 Athens, Greece;
| | - Evangelos Gogolides
- Nanoplasmas P.C., “Lefkippos” Technology Park, Patriarchou Gregoriou E’ & 27 Neapoleos Str., P.O. Box 60037, Ag. Paraskevi, 153 41 Athens, Greece; (K.T.); (A.S.K.); (K.E.); (P.S.P.); (S.E.K.); (E.G.)
- National Centre for Scientific Research “Demokritos”, Patriarchou Gregoriou E’ & 27 Neapoleos Str., Ag. Paraskevi, 153 41 Athens, Greece;
| | - Angeliki Tserepi
- Nanoplasmas P.C., “Lefkippos” Technology Park, Patriarchou Gregoriou E’ & 27 Neapoleos Str., P.O. Box 60037, Ag. Paraskevi, 153 41 Athens, Greece; (K.T.); (A.S.K.); (K.E.); (P.S.P.); (S.E.K.); (E.G.)
- National Centre for Scientific Research “Demokritos”, Patriarchou Gregoriou E’ & 27 Neapoleos Str., Ag. Paraskevi, 153 41 Athens, Greece;
| |
Collapse
|
5
|
Hernández-Baño P, Molina-García A, Vera-García F. Data-Monitoring Solution for Desalination Processes: Cooling Tower and Mechanical Vapor Compression Hybrid System. SENSORS (BASEL, SWITZERLAND) 2024; 24:2909. [PMID: 38733014 PMCID: PMC11086185 DOI: 10.3390/s24092909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
The advancement of novel water treatment technologies requires the implementation of both accurate data measurement and recording processes. These procedures are essential for acquiring results and conducting thorough analyses to enhance operational efficiency. In addition, accurate sensor data facilitate precise control over chemical treatment dosages, ensuring optimal water quality and corrosion inhibition while minimizing chemical usage and associated costs. Under this framework, this paper describes the sensoring and monitoring solution for a hybrid system based on a cooling tower (CT) connected to mechanical vapor compression (MVC) equipment for desalination and brine concentration purposes. Sensors connected to the data commercial logger solution, Almemo 2890-9, are also discussed in detail such as temperature, relative humidity, pressure, flow rate, etc. The monitoring system allows remote control of the MVC based on a server, GateManager, and TightVNC. In this way, the proposed solution provides remote access to the hybrid system, being able to visualize gathered data in real time. A case study located in Cartagena (Spain) is used to assess the proposed solution. Collected data from temperature transmitters, pneumatic valves, level sensors, and power demand are included and discussed in the paper. These variables allow a subsequent forecasting process to estimate brine concentration values. Different sample times are included in this paper to minimize the collected data from the hybrid system within suitable operation conditions. This solution is suitable to be applied to other desalination processes and locations.
Collapse
Affiliation(s)
- Paula Hernández-Baño
- Department of Automatics, Electrical Engineering and Electronic Technology, Universidad Politécnica de Cartagena, 30202 Cartagena, Spain;
| | - Angel Molina-García
- Department of Automatics, Electrical Engineering and Electronic Technology, Universidad Politécnica de Cartagena, 30202 Cartagena, Spain;
| | - Francisco Vera-García
- Department of Thermal Engineering and Fluids, Universidad Politécnica de Cartagena, 30202 Cartagena, Spain;
| |
Collapse
|
6
|
Zhou X, Liu X, Zhao H, Guo G, Jiang X, Liu S, Sun X, Yang H. Research advances in microfluidic collection and detection of virus, bacterial, and fungal bioaerosols. Mikrochim Acta 2024; 191:132. [PMID: 38351367 DOI: 10.1007/s00604-024-06213-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/14/2024] [Indexed: 02/16/2024]
Abstract
Bioaerosols are airborne suspensions of fine solid or liquid particles containing biological substances such as viruses, bacteria, cellular debris, fungal spores, mycelium, and byproducts of microbial metabolism. The global Coronavirus disease 2019 (COVID-19) pandemic and the previous emergence of severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and influenza have increased the need for reliable and effective monitoring tools for bioaerosols. Bioaerosol collection and detection have aroused considerable attention. Current bioaerosol sampling and detection techniques suffer from long response time, low sensitivity, and high costs, and these drawbacks have forced the development of novel monitoring strategies. Microfluidic technique is considered a breakthrough for high performance analysis of bioaerosols. In recent years, several emerging methods based on microfluidics have been developed and reported for collection and detection of bioaerosols. The unique advantages of microfluidic technique have enabled the integration of bioaerosol collection and detection, which has a higher efficiency over conventional methods. This review focused on the research progress of bioaerosol collection and detection methods based on microfluidic techniques, with special attention on virus aerosols and bacterial aerosols. Different from the existing reviews, this work took a unique perspective of the targets to be collected and detected in bioaerosols, which would provide a direct index of bioaerosol categories readers may be interested in. We also discussed integrated microfluidic monitoring system for bioaerosols. Additionally, the application of bioaerosol detection in biomedicine was presented. Finally, the current challenges in the field of bioaerosol monitoring are presented and an outlook given of future developments.
Collapse
Affiliation(s)
- Xinyue Zhou
- Department of Respiratory Medicine, The Fourth Hospital of China Medical University, No. 4, Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning, China
| | - Xin Liu
- Department of Respiratory Medicine, The Fourth Hospital of China Medical University, No. 4, Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning, China
| | - Haiyang Zhao
- Teaching Center for Basic Medical Experiment, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning Province, China
| | - Guanqi Guo
- Teaching Center for Basic Medical Experiment, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning Province, China
| | - Xiran Jiang
- School of Intelligent Medicine, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning Province, China.
| | - Shuo Liu
- Department of Respiratory Medicine, The Fourth Hospital of China Medical University, No. 4, Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning, China.
| | - Xiaoting Sun
- School of Forensic Medicine, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning Province, China.
| | - Huazhe Yang
- School of Intelligent Medicine, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning Province, China.
| |
Collapse
|
7
|
Wu X, Xie B, Qiao Y, Yuan S, Du W. μMET: A Novel Reusable Microfluidic Chip for Precision Microbial Enumeration Tests. Anal Chem 2024; 96:630-635. [PMID: 38163292 DOI: 10.1021/acs.analchem.3c04889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
This work describes μMET, a novel microfluidic device for precise microbial enumeration tests (MET), essential in pharmaceutical, cosmetic, and food industries for ensuring microbiological safety standards. The μMET chip, comprising two hydrophobic glass plates, features a 15-μm deep μMET chamber enhanced by nanopillars and air supply units, facilitating both immediate and growth-dependent MET. Experimental results, with E. coli as a model bacterium, demonstrate that μMET provides counting linearity that outperforms traditional hemocytometers. The chip's design mitigates challenges like evaporation and ensures high-resolution imaging, making it a cost-effective and reusable alternative to conventional methods. Notably, bright-field μMET eliminates the need for fluorescent staining, streamlining operations with deep-learning algorithms for bacterial counts. Furthermore, we have developed a high-parallel μMET chip featuring 16 counting chambers, enhancing throughput and accommodating immediate and growth-dependent MET approaches. Its innovative design and adaptability render the μMET chip as a valuable tool for microbiology, medicine, and industry applications.
Collapse
Affiliation(s)
- Xiaolin Wu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences and Savaid Medical School, University of the Chinese Academy of Sciences, Beijing 10049, China
| | - Bingliang Xie
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences and Savaid Medical School, University of the Chinese Academy of Sciences, Beijing 10049, China
| | - Yuxin Qiao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuai Yuan
- China National Pharmaceutical Foreign Trade Corporation, Beijing 100029, China
| | - Wenbin Du
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences and Savaid Medical School, University of the Chinese Academy of Sciences, Beijing 10049, China
| |
Collapse
|
8
|
Semi-automated water sampling module for repeated sampling and concentration of Bacillus cereus group spores. Sci Rep 2023; 13:831. [PMID: 36646757 PMCID: PMC9842714 DOI: 10.1038/s41598-023-27900-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 01/10/2023] [Indexed: 01/17/2023] Open
Abstract
Monitoring the presence of pathogenic Bacillus spores is important for industrial applications, as well as necessary for ensuring human health. Bacillus thuringiensis is used as a biopesticide against several insect pests. Bacillus cereus spores are a significant cause of food poisoning, and Bacillus anthracis is a recognized biosecurity threat. Laboratory-based methods, such as polymerase chain reaction, enzyme-linked immunosorbent assay, or matrix-assisted laser desorption ionization spectroscopy provide sensitive detection of bacteria and spores, but the application of those methods for quasi-continuous environmental monitoring presents a significant challenge requiring frequent human intervention. To address this challenge, we developed a workstation for quasi-autonomous monitoring of water reservoirs for the presence of bacteria and spores, and designed and validated the functionality of a microprocessor-controlled module capable of repetitive collection and pre-concentration of spores in liquid samples tested with fiberglass (FG), polyether sulfone and polyvinylidene fluoride filters. The best results were obtained with FG filters delivering a 20× concentration of B. thuringiensis and B. cereus spores from saline suspensions. The successful 20× pre-concentration of Bacillus spores demonstrated with FG filters could be repeated up to 3 times when bleach decontamination is applied between filtrations. Taken together, our results demonstrate an attractive instrument suitable for semi-automated, quasi-continuous sampling and pre-processing of water samples for biosensing of bacterial spores originating from a complex environment.
Collapse
|
9
|
Islam MA, Hassen WM, Ishika I, Tayabali AF, Dubowski JJ. Selective Detection of Legionella pneumophila Serogroup 1 and 5 with a Digital Photocorrosion Biosensor Using Antimicrobial Peptide-Antibody Sandwich Strategy. BIOSENSORS 2022; 12:105. [PMID: 35200365 PMCID: PMC8869675 DOI: 10.3390/bios12020105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/02/2022] [Accepted: 02/02/2022] [Indexed: 11/17/2022]
Abstract
Rapid detection of Legionella pneumophila (L. pneumophila) is important for monitoring the presence of these bacteria in water sources and preventing the transmission of the Legionnaires' disease. We report improved biosensing of L. pneumophila with a digital photocorrosion (DIP) biosensor functionalized with an innovative structure of cysteine-modified warnericin antimicrobial peptides for capturing bacteria that are subsequently decorated with anti-L. pneumophila polyclonal antibodies (pAbs). The application of peptides for the operation of a biosensing device was enabled by the higher bacterial-capture efficiency of peptides compared to other traditional ligands, such as those based on antibodies or aptamers. At the same time, the significantly stronger affinity of pAbs decorating the L. pneumophila serogroup-1 (SG-1) compared to serogroup-5 (SG-5) allowed for the selective detection of L. pneumophila SG-1 at 50 CFU/mL. The results suggest that the attractive sensitivity of the investigated sandwich method is related to the flow of an extra electric charge between the pAb and a charge-sensing DIP biosensor. The method has the potential to offer highly specific and sensitive detection of L. pneumophila as well as other pathogenic bacteria and viruses.
Collapse
Affiliation(s)
- M. Amirul Islam
- Laboratory for Quantum Semiconductors and Photon-Based BioNanotechnology, Interdisciplinary Institute for Technological Innovation (3IT), CNRS UMI-3463, Department of Electrical and Computer Engineering, Université de Sherbrooke, 3000, Boul. de l’Université, Sherbrooke, QC J1K 0A5, Canada; (M.A.I.); (W.M.H.); (I.I.)
| | - Walid M. Hassen
- Laboratory for Quantum Semiconductors and Photon-Based BioNanotechnology, Interdisciplinary Institute for Technological Innovation (3IT), CNRS UMI-3463, Department of Electrical and Computer Engineering, Université de Sherbrooke, 3000, Boul. de l’Université, Sherbrooke, QC J1K 0A5, Canada; (M.A.I.); (W.M.H.); (I.I.)
| | - Ishika Ishika
- Laboratory for Quantum Semiconductors and Photon-Based BioNanotechnology, Interdisciplinary Institute for Technological Innovation (3IT), CNRS UMI-3463, Department of Electrical and Computer Engineering, Université de Sherbrooke, 3000, Boul. de l’Université, Sherbrooke, QC J1K 0A5, Canada; (M.A.I.); (W.M.H.); (I.I.)
| | - Azam F. Tayabali
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Environmental Health Centre, Health Canada, Ottawa, ON K1A 0K9, Canada;
| | - Jan J. Dubowski
- Laboratory for Quantum Semiconductors and Photon-Based BioNanotechnology, Interdisciplinary Institute for Technological Innovation (3IT), CNRS UMI-3463, Department of Electrical and Computer Engineering, Université de Sherbrooke, 3000, Boul. de l’Université, Sherbrooke, QC J1K 0A5, Canada; (M.A.I.); (W.M.H.); (I.I.)
| |
Collapse
|
10
|
Kawai M. [Environmental Monitoring in a Pharmaceutical Manufacturing Facility Using a Culture Independent Approach]. YAKUGAKU ZASSHI 2022; 142:33-37. [PMID: 34980749 DOI: 10.1248/yakushi.21-00161-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Strict microbial control is required in manufacturing facilities to ensure the quality of pharmaceuticals and foods. Environmental microbial monitoring plays a fundamental role in reducing the risk of microbial contamination. Appropriate microbial control requires an understanding of abundance and community structures of microbes in the target environment. However, most of these microbes are not culturable using conventional methods. In this study, we determined the number of microbial particles and assessed the environmental microbiome in a pharmaceutical manufacturing facility, using high-throughput sequencing of rRNA gene fragments. Our results provide fundamental data for the evaluation and control of microbes in the pharmaceutical and food industries.
Collapse
Affiliation(s)
- Mako Kawai
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University
| |
Collapse
|
11
|
Tokunaga Y, Wakabayashi Y, Yonogi S, Saito M, Yamaguchi N. Microfluidic rapid quantification of
Salmonella enterica serovar
Typhimurium collected from chicken meat using immunomagnetic separation after formaldehyde treatment. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yusuke Tokunaga
- Osaka Institute of Public Health 1‐3‐69 Nakamichi, Higashinari‐ku Osaka 537‐0025 Japan
| | - Yuki Wakabayashi
- Osaka Institute of Public Health 1‐3‐69 Nakamichi, Higashinari‐ku Osaka 537‐0025 Japan
| | - Shinya Yonogi
- Osaka Institute of Public Health 1‐3‐69 Nakamichi, Higashinari‐ku Osaka 537‐0025 Japan
| | - Mamoru Saito
- Osaka Research Institute of Industrial Science and Technology 1‐6‐50, Morinomiya, Joto‐ku Osaka 536‐8553 Japan
| | - Nobuyasu Yamaguchi
- Osaka Institute of Public Health 1‐3‐69 Nakamichi, Higashinari‐ku Osaka 537‐0025 Japan
| |
Collapse
|
12
|
John JJ, May CJ, Bruno JG. A Combined Immunofluorescence and Fluorescent Viability Cocktail Staining Procedure for Rapid Microscopic Detection and Enumeration of Live Legionella pneumophila. J Fluoresc 2021; 31:1425-1432. [PMID: 34241791 DOI: 10.1007/s10895-021-02776-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/30/2021] [Indexed: 10/20/2022]
Abstract
This report describes a combined immunofluorescence and fluorescence viability stain applied as one staining solution for rapid detection of live Legionella pneumophila in mixed bacterial populations. Instead of sequential viability staining with the Invitrogen BacLight LIVE/DEAD staining kit followed by antibody-Alexa Fluor (AF) 647 conjugate staining to identify live L. pneumophila, a combined single cocktail solution staining protocol was developed to simplify and accelerate the time to detection of viable L. pneumophila serogroup-1 (SG-1) in mixed species populations on a filter membrane. The stain cocktail will aid in accelerating fluorescence microscopic analysis of cooling tower, air conditioner and water fountain or other liquid samples for the presence of L. pneumophila and its viability status. Visibly red stained cells were identified as dead non-L. pneumophila SG-1 cells, while green fluorescing cells represented viable non-L. pneumophila SG-1 cells. Due to also staining red with antibody-AF 647, L. pneumophila SG-1 cells were pseudocolorized as blue to distinguish them from other dead cells. Fluorescence color emission mixing from the viability dyes (SYTO 9 and propidium iodide) with antibody-AF 647 stained L. pneumophila led to other fluorescent colors. For example, green plus pseudocolorized blue AF 647-antibody- labeled cells were identified as live cyan-colored L. pneumophila SG-1 cells. Magenta-colored cells resulted from dead L. pneumophila cells that combined red propidium iodide with blue pseudocolorized AF 647-antibody emissions. Analysis of measured RGB (red, green, blue) color values in microscopic images of mixed bacterial populations suggests the possibility of facile automated discrimination of subpopulations of live and dead L. pneumophila and non-L. pneumophila species by computers in 3-dimensional RGB color space after staining in the combined cocktail which will save time for more rapid microscopic detection of potential sources of Legionnaire's disease.
Collapse
Affiliation(s)
- Jeremy J John
- Nanohmics Inc., 6201 E. Oltorf Street, Suite 400, TX, 78741, Austin, USA
| | - Christopher J May
- Nanohmics Inc., 6201 E. Oltorf Street, Suite 400, TX, 78741, Austin, USA
| | - John G Bruno
- Nanohmics Inc., 6201 E. Oltorf Street, Suite 400, TX, 78741, Austin, USA.
| |
Collapse
|
13
|
Schwaminger S, Rottmueller ME, Fischl R, Kalali B, Berensmeier S. Detection of targeted bacteria species on filtration membranes. Analyst 2021; 146:3549-3556. [PMID: 33899848 DOI: 10.1039/d1an00117e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The detection of pathogens in aquatic environments issues a time-consuming challenge, but it is an essential task to prevent the spread of diseases. We have developed a new point-of-care (POC) method for the fast and efficient detection of Legionella pneumophila in water. The method consists first of the generation of immunocomplexes of bacteria species with its corresponding targeted fluorescence-labelled serogroup-specific antibodies, and second a concentration step of pathogens with a membrane filter. Third, on the filtration membrane, our method can detect the fluorescence intensity corresponding to the pathogen concentration. Thus selective and efficient evidence for the presence of bacteria can be evaluated. We tested our system on fluorescent Escherichia coli bacteria and were able to reach an accurate determination of 1000 cells. The technique was furthermore tested on Legionella pneumophila cells, which were labelled with fluorescence-labelled antibodies as a proof of principle. Furthermore, we were able to verify this method in the presence of other bacteria species. We were able to detect bacteria cells within half an hour, a substantial advancement compared to the prevailling state of the art detection method based on the cultivation of Legionella pneumophila. Hence, this system represents the basis for future developments in analysis of pathogens.
Collapse
Affiliation(s)
- Sebastian Schwaminger
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, 85748 Garching, Germany.
| | - Marina E Rottmueller
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, 85748 Garching, Germany.
| | - Ramona Fischl
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, 85748 Garching, Germany.
| | - Behnam Kalali
- Institute of Medical Microbiology, Immunology and Hygiene, Technical University of Munich, Munich, Germany
| | - Sonja Berensmeier
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, 85748 Garching, Germany.
| |
Collapse
|
14
|
Buja I, Sabella E, Monteduro AG, Chiriacò MS, De Bellis L, Luvisi A, Maruccio G. Advances in Plant Disease Detection and Monitoring: From Traditional Assays to In-Field Diagnostics. SENSORS 2021; 21:s21062129. [PMID: 33803614 PMCID: PMC8003093 DOI: 10.3390/s21062129] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 12/20/2022]
Abstract
Human activities significantly contribute to worldwide spread of phytopathological adversities. Pathogen-related food losses are today responsible for a reduction in quantity and quality of yield and decrease value and financial returns. As a result, “early detection” in combination with “fast, accurate, and cheap” diagnostics have also become the new mantra in plant pathology, especially for emerging diseases or challenging pathogens that spread thanks to asymptomatic individuals with subtle initial symptoms but are then difficult to face. Furthermore, in a globalized market sensitive to epidemics, innovative tools suitable for field-use represent the new frontier with respect to diagnostic laboratories, ensuring that the instruments and techniques used are suitable for the operational contexts. In this framework, portable systems and interconnection with Internet of Things (IoT) play a pivotal role. Here we review innovative diagnostic methods based on nanotechnologies and new perspectives concerning information and communication technology (ICT) in agriculture, resulting in an improvement in agricultural and rural development and in the ability to revolutionize the concept of “preventive actions”, making the difference in fighting against phytopathogens, all over the world.
Collapse
Affiliation(s)
- Ilaria Buja
- Omnics Research Group, Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Via per Monteroni, 73100 Lecce, Italy; (I.B.); (A.G.M.); (G.M.)
- Institute of Nanotechnology, CNR NANOTEC, Via per Monteroni, 73100 Lecce, Italy;
| | - Erika Sabella
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, 73100 Lecce, Italy; (E.S.); (L.D.B.)
| | - Anna Grazia Monteduro
- Omnics Research Group, Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Via per Monteroni, 73100 Lecce, Italy; (I.B.); (A.G.M.); (G.M.)
- Institute of Nanotechnology, CNR NANOTEC, Via per Monteroni, 73100 Lecce, Italy;
| | | | - Luigi De Bellis
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, 73100 Lecce, Italy; (E.S.); (L.D.B.)
| | - Andrea Luvisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, 73100 Lecce, Italy; (E.S.); (L.D.B.)
- Correspondence:
| | - Giuseppe Maruccio
- Omnics Research Group, Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Via per Monteroni, 73100 Lecce, Italy; (I.B.); (A.G.M.); (G.M.)
- Institute of Nanotechnology, CNR NANOTEC, Via per Monteroni, 73100 Lecce, Italy;
| |
Collapse
|
15
|
Tokunaga Y, Yamaguchi N. Rapid quantification of
Escherichia coli
O157
:
H7
in lettuce and beef using an on‐chip staining microfluidic device. J Food Saf 2020. [DOI: 10.1111/jfs.12851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yusuke Tokunaga
- Division of Hygienic Chemistry Osaka Institute of Public Health Osaka Japan
| | - Nobuyasu Yamaguchi
- Division of Hygienic Chemistry Osaka Institute of Public Health Osaka Japan
| |
Collapse
|
16
|
Saad M, Chinerman D, Tabrizian M, Faucher SP. Identification of two aptamers binding to Legionella pneumophila with high affinity and specificity. Sci Rep 2020; 10:9145. [PMID: 32499557 PMCID: PMC7272621 DOI: 10.1038/s41598-020-65973-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 05/13/2020] [Indexed: 12/21/2022] Open
Abstract
Legionella pneumophila (Lp) is a water borne bacterium causing Legionnaires’ Disease (LD) in humans. Rapid detection of Lp in water system is essential to reduce the risk of LD outbreaks. The methods currently available require expert skills and are time intensive, thus delaying intervention. In situ detection of Lp by biosensor would allow rapid implementation of control strategies. To this end, a biorecognition element is required. Aptamers are considered promising biorecognition molecules for biosensing. Aptamers are short oligonucleotide sequence folding into a specific structure and are able to bind to specific molecules. Currently, no aptamer and thus no aptamer-based technology exists for the detection of Lp. In this study, Systemic Evolution of Ligands through EXponential enrichment (SELEX) was used to identify aptamers binding specifically to Lp. Ten rounds of positive selection and two rounds of counter-selection against two Pseudomonas species were performed. Two aptamers binding strongly to Lp were identified with KD of 116 and 135 nM. Binding specificity of these two aptamers to Lp was confirmed by flow cytometry and fluorescence microscopy. Therefore, these two aptamers are promising biorecognition molecules for the detection of Lp in water systems.
Collapse
Affiliation(s)
- Mariam Saad
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada.,Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Université de Montréal, Faculté de Médecine Vétérinaire, Saint-Hyacinthe, Québec, J2S 2M2, Canada
| | - Deanna Chinerman
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Maryam Tabrizian
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 2B4, Canada.,Faculty of Dentistry, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Sebastien P Faucher
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada. .,Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Université de Montréal, Faculté de Médecine Vétérinaire, Saint-Hyacinthe, Québec, J2S 2M2, Canada.
| |
Collapse
|
17
|
Yamaguchi N, Fujii Y. Rapid On-Site Monitoring of Bacteria in Freshwater Environments Using a Portable Microfluidic Counting System. Biol Pharm Bull 2020; 43:87-92. [DOI: 10.1248/bpb.b19-00549] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Nobuyasu Yamaguchi
- Osaka Institute of Public Health
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Yudai Fujii
- Graduate School of Pharmaceutical Sciences, Osaka University
| |
Collapse
|
18
|
Reuter C, Slesiona N, Hentschel S, Aehlig O, Breitenstein A, Csáki A, Henkel T, Fritzsche W. Loop-mediated amplification as promising on-site detection approach for Legionella pneumophila and Legionella spp. Appl Microbiol Biotechnol 2019; 104:405-415. [PMID: 31832709 DOI: 10.1007/s00253-019-10286-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/08/2019] [Accepted: 11/28/2019] [Indexed: 12/16/2022]
Abstract
Recently Legionella pneumophila is the main causative waterborne organism of severe respiratory infections. Additionally, other Legionella species are documented as human pathogens. In our work, we describe a rapid detection method which combines two advantages for sensitive and specific detection of the genus Legionella: the fast isothermal amplification method "Loop-mediated isothermal AMPlification" (LAMP), and a colorimetric detection method using the metal indicator hydroxynaphtol blue (HBN) which allows to determine an optical signal with a simple readout (with the naked eye). Moreover, we present two approaches for minimizing the assay volume using a stationary microchip LAMP and droplet digital-based LAMP (ddLAMP) as promising highly sensitive setups.
Collapse
Affiliation(s)
- Cornelia Reuter
- Leibniz Institute of Photonic Technology (Leibniz IPHT) Jena, Member of the Leibniz Research Alliance-Leibniz Health Technologies, Albert-Einstein-Straße 9, 07745, Jena, Germany.
| | - Nicole Slesiona
- Leibniz Institute of Photonic Technology (Leibniz IPHT) Jena, Member of the Leibniz Research Alliance-Leibniz Health Technologies, Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Stefanie Hentschel
- Leibniz Institute of Photonic Technology (Leibniz IPHT) Jena, Member of the Leibniz Research Alliance-Leibniz Health Technologies, Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Oliver Aehlig
- Leibniz Institute of Photonic Technology (Leibniz IPHT) Jena, Member of the Leibniz Research Alliance-Leibniz Health Technologies, Albert-Einstein-Straße 9, 07745, Jena, Germany
| | | | - Andrea Csáki
- Leibniz Institute of Photonic Technology (Leibniz IPHT) Jena, Member of the Leibniz Research Alliance-Leibniz Health Technologies, Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Thomas Henkel
- Leibniz Institute of Photonic Technology (Leibniz IPHT) Jena, Member of the Leibniz Research Alliance-Leibniz Health Technologies, Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Wolfgang Fritzsche
- Leibniz Institute of Photonic Technology (Leibniz IPHT) Jena, Member of the Leibniz Research Alliance-Leibniz Health Technologies, Albert-Einstein-Straße 9, 07745, Jena, Germany
| |
Collapse
|
19
|
Kawai M, Ichijo T, Takahashi Y, Noguchi M, Katayama H, Cho O, Sugita T, Nasu M. Culture independent approach reveals domination of human-oriented microbes in a pharmaceutical manufacturing facility. Eur J Pharm Sci 2019; 137:104973. [PMID: 31254644 DOI: 10.1016/j.ejps.2019.104973] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/13/2019] [Accepted: 06/24/2019] [Indexed: 01/13/2023]
Abstract
Strict microbial control is required in pharmaceutical manufacturing facilities, for which environmental microbial monitoring is fundamental. Appropriate microbial control is based on understanding the abundance and community structure of the microbes in the target environment, but most microbes are not culturable by conventional methods. Here, we determined the bacterial abundance and assessed the environmental microbiome in a pharmaceutical manufacturing facility using rRNA gene-targeted quantitative PCR (qPCR) and high-throughput sequencing of rRNA gene fragments. A commercially available microbial particle counter was also used for real-time measurements. In the air of the first gowning room and the passageway of the facility, the microbial particle number determined by both the particle counter and qPCR was ca. 104/m3; the number of microbial particles was about 100 times the number of culturable bacteria. Thus, the measurement of microbes using the particle counter was accurate. In the second gowning room of the facility, managed by a HEPA filter, the number of particles in the air was dependent on human movement, and was below the detection limit around 10 min after movement. Bacteria of the phyla Proteobacteria, Firmicutes, and Actinobacteria were frequently detected in samples from the facility; these bacteria are constituents of the human microbiota. Among fungi, Aspergillus and Cladosporium were detected in the air, and Malassezia was dominant on the walls. Our results provide fundamental data for the evaluation and control of microbes in pharmaceutical and food industry facilities.
Collapse
Affiliation(s)
- Mako Kawai
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji, Hyogo 670-8524, Japan.
| | - Tomoaki Ichijo
- Faculty of Health & Nutrition, Osaka Shoin Women's University, 4-2-26 Hishiya-nishi, Higashi-Osaka, Osaka 577-8550, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Yuji Takahashi
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Miyako Noguchi
- Bayer Yakuhin Ltd., 121-1 Toriino, Koka-cho, Koka, Shiga 520-3493, Japan
| | - Hirohito Katayama
- Bayer Yakuhin Ltd., 121-1 Toriino, Koka-cho, Koka, Shiga 520-3493, Japan
| | - Otomi Cho
- Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Takashi Sugita
- Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan.
| | - Masao Nasu
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Graduate School of Pharmaceutical Sciences, Osaka Ohtani University, 3-11-1 Nishikiori-kita, Tondabayashi, Osaka 584-8540, Japan.
| |
Collapse
|
20
|
Rapid On-Site Detection and Quantification of Foodborne Pathogens Using Microfluidic Devices. Methods Mol Biol 2019. [PMID: 30580399 DOI: 10.1007/978-1-4939-9000-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The potential for foodborne infectious disease outbreaks has increased not only on a local scale but also on a regional and international scale. Simple, rapid, and accurate methods to enumerate pathogenic bacteria in food and drink are required to prevent the spread of these bacteria. Here, I describe applications of a microfluidic device for on-chip fluorescent staining and semiautomated counting of target bacteria in food samples.
Collapse
|
21
|
Cortés-Sánchez ADJ. Legionella, water and biotechnology. REGULATORY MECHANISMS IN BIOSYSTEMS 2019. [DOI: 10.15421/021918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Legionella spp. are microorganisms that are generally found in the aquatic environment (rivers, streams, lakes, among others). The importance in public health is in the fact that this bacterium is capable of multiplying and propagating in artificial aquatic systems (piping systems, storage tanks, fountains, and cooling towers), giving rise to diseases in humans called legionellosis, transmitted by inhalation of contaminated water droplets or aerosols and whose complications can lead to the death of the patient. Legionellosis is of worldwide distribution, Legionella pneumophila being the most commonly involved species in outbreaks and reported cases. The people most at risk are the elderly, people with weakened immune systems, and people with a history of smoking. Around the world, regulatory agencies and health organizations have issued and established recommendations with the purpose of controlling and preventing the risk of contracting this disease, which include the sanitation of water supplies, maintenance through regular cleaning and disinfection of facilities and devices for reducing the presence of this pathogen. The main objective of this review is to present in a general manner, aspects related to the disease known as legionellosis, its casual agents, habitat, transmission form, and phenotypic and metabolic characteristics. Likewise, the methods of control and prevention of these pathogens are presented, including a potential biotechnological alternative that can contribute to actions in favour of the protection of public health through the use of compounds with surface activity called biosurfactants.
Collapse
|
22
|
|
23
|
New system for the detection of Legionella pneumophila in water samples. Talanta 2018; 189:324-331. [PMID: 30086926 DOI: 10.1016/j.talanta.2018.07.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/04/2018] [Accepted: 07/06/2018] [Indexed: 11/21/2022]
Abstract
Waterborne pathogens are a global concern for public health worldwide. Despite continuing efforts to maintain water safety, water quality is still affected by deterioration and pollution. Legionella pneumophila colonizes man-made water systems and can infect humans causing Legionnaire's disease (LD), pneumonia. The prevention of LD is a public health issue and requires specific systems to control and detect these microorganisms. Culture plate is the only technique currently approved, but requires more than 10 days to obtain results. A rapid test that inform in hours about the presence of Legionella pneumophila in water samples will improve the control of this pathogen colonization. In order to control colonization by L. pneumophila we developed a membrane filter method to capture and immunodetect this microorganism in water samples. This membrane filter is used to retain the bacteria using a nitrocellulose disc inside a home-made cartridge. Subsequently we perform the immunodetection of the bacteria retained in the nitrocellulose (blocking, antibody incubation, washings and developing). On comparing our test with the gold-standard, the most important finding is the considerably reduction in time maintaining the same detection limit. This rapid test is easily automated for L. pneumophila detection allowing a comprehensive surveillance of L. pneumophila in water facilities and reducing the variability in the analyses due to the low need for manipulation. Moreover, corrective measures may be applied the same day of the analysis. This method considerably reduces the detection time compared with the conventional, gold-standard detection culture method that requires more than 10 days, being decisive to prevent outbreaks.
Collapse
|
24
|
Swart AL, Harrison CF, Eichinger L, Steinert M, Hilbi H. Acanthamoeba and Dictyostelium as Cellular Models for Legionella Infection. Front Cell Infect Microbiol 2018; 8:61. [PMID: 29552544 PMCID: PMC5840211 DOI: 10.3389/fcimb.2018.00061] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/13/2018] [Indexed: 12/20/2022] Open
Abstract
Environmental bacteria of the genus Legionella naturally parasitize free-living amoebae. Upon inhalation of bacteria-laden aerosols, the opportunistic pathogens grow intracellularly in alveolar macrophages and can cause a life-threatening pneumonia termed Legionnaires' disease. Intracellular replication in amoebae and macrophages takes place in a unique membrane-bound compartment, the Legionella-containing vacuole (LCV). LCV formation requires the bacterial Icm/Dot type IV secretion system, which translocates literally hundreds of "effector" proteins into host cells, where they modulate crucial cellular processes for the pathogen's benefit. The mechanism of LCV formation appears to be evolutionarily conserved, and therefore, amoebae are not only ecologically significant niches for Legionella spp., but also useful cellular models for eukaryotic phagocytes. In particular, Acanthamoeba castellanii and Dictyostelium discoideum emerged over the last years as versatile and powerful models. Using genetic, biochemical and cell biological approaches, molecular interactions between amoebae and Legionella pneumophila have recently been investigated in detail with a focus on the role of phosphoinositide lipids, small and large GTPases, autophagy components and the retromer complex, as well as on bacterial effectors targeting these host factors.
Collapse
Affiliation(s)
- A Leoni Swart
- Institute of Medical Microbiology, Medical Faculty, University of Zurich, Zurich, Switzerland
| | - Christopher F Harrison
- Max von Pettenkofer Institute, Medical Faculty, Ludwig-Maximilians University Munich, Munich, Germany
| | - Ludwig Eichinger
- Institute for Biochemistry I, Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - Michael Steinert
- Department of Life Sciences, Institute of Microbiology, Technical University of Braunschweig, Braunschweig, Germany
| | - Hubert Hilbi
- Institute of Medical Microbiology, Medical Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
25
|
Antibody test for Legionella pneumophila detection. Diagn Microbiol Infect Dis 2018; 90:85-89. [DOI: 10.1016/j.diagmicrobio.2017.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/03/2017] [Accepted: 11/04/2017] [Indexed: 11/21/2022]
|