1
|
Kraft F, Rodriguez-Aliaga P, Yuan W, Franken L, Zajt K, Hasan D, Lee TT, Flex E, Hentschel A, Innes AM, Zheng B, Julia Suh DS, Knopp C, Lausberg E, Krause J, Zhang X, Trapane P, Carroll R, McClatchey M, Fry AE, Wang L, Giesselmann S, Hoang H, Baldridge D, Silverman GA, Radio FC, Bertini E, Ciolfi A, Blood KA, de Sainte Agathe JM, Charles P, Bergant G, Čuturilo G, Peterlin B, Diderich K, Streff H, Robak L, Oegema R, van Binsbergen E, Herriges J, Saunders CJ, Maier A, Wolking S, Weber Y, Lochmüller H, Meyer S, Aleman A, Polavarapu K, Nicolas G, Goldenberg A, Guyant L, Pope K, Hehmeyer KN, Monaghan KG, Quade A, Smol T, Caumes R, Duerinckx S, Depondt C, Van Paesschen W, Rieubland C, Poloni C, Guipponi M, Arcioni S, Meuwissen M, Jansen AC, Rosenblum J, Haack TB, Bertrand M, Gerstner L, Magg J, Riess O, Schulz JB, Wagner N, Wiesmann M, Weis J, Eggermann T, Begemann M, Roos A, Häusler M, Schedl T, Tartaglia M, Bremer J, Pak SC, Frydman J, Elbracht M, Kurth I. Brain malformations and seizures by impaired chaperonin function of TRiC. Science 2024; 386:516-525. [PMID: 39480921 DOI: 10.1126/science.adp8721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/22/2024] [Indexed: 11/02/2024]
Abstract
Malformations of the brain are common and vary in severity, from negligible to potentially fatal. Their causes have not been fully elucidated. Here, we report pathogenic variants in the core protein-folding machinery TRiC/CCT in individuals with brain malformations, intellectual disability, and seizures. The chaperonin TRiC is an obligate hetero-oligomer, and we identify variants in seven of its eight subunits, all of which impair function or assembly through different mechanisms. Transcriptome and proteome analyses of patient-derived fibroblasts demonstrate the various consequences of TRiC impairment. The results reveal an unexpected and potentially widespread role for protein folding in the development of the central nervous system and define a disease spectrum of "TRiCopathies."
Collapse
Affiliation(s)
- Florian Kraft
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, 52074, Germany
| | | | - Weimin Yuan
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Lena Franken
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, 52074, Germany
| | - Kamil Zajt
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Dimah Hasan
- Department for Diagnostic and Interventional Neuroradiology, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Ting-Ting Lee
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Elisabetta Flex
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Andreas Hentschel
- Leibniz- Institut für Analytische Wissenschaften -ISAS- e.V., Dortmund 44139, Germany
| | - A Micheil Innes
- Department of Medical Genetics and Alberta Children's Hospital Research Institute, University of Calgary, Calgary T2N 1N4, Canada
| | - Bixia Zheng
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Dong Sun Julia Suh
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, 52074, Germany
| | - Cordula Knopp
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, 52074, Germany
| | - Eva Lausberg
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, 52074, Germany
| | - Jeremias Krause
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, 52074, Germany
| | - Xiaomeng Zhang
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Pamela Trapane
- Division of Pediatric Genetics, Department of Pediatrics, University of Florida College of Medicine-Jacksonville, Jacksonville, FL 32209, USA
| | - Riley Carroll
- Division of Pediatric Genetics, Department of Pediatrics, University of Florida College of Medicine-Jacksonville, Jacksonville, FL 32209, USA
| | - Martin McClatchey
- Institute of Medical Genetics, University Hospital of Wales, Cardiff CF14 4XW, UK
- Division of Cancer and Genetics, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Andrew E Fry
- Division of Cancer and Genetics, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
- All Wales Medical Genomics Service, University Hospital of Wales, Heath Park, Cardiff CF14 4XW, UK
| | - Lisa Wang
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Sebastian Giesselmann
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, 52074, Germany
| | - Hieu Hoang
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Dustin Baldridge
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Gary A Silverman
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | | | - Enrico Bertini
- Neuromuscular Disorders, Ospedale Pediatrico Bambino Gesù IRCCS, Rome 00146, Italy
| | - Andrea Ciolfi
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù IRCCS, Rome 00146, Italy
| | - Katherine A Blood
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 2A1, Canada
| | - Jean-Madeleine de Sainte Agathe
- Department of Medical Genetics, Pitié-Salpêtrière Hospital, AP-HP.Sorbonne University, Paris 75005, France
- Laboratoire de Médecine Génomique Sorbonne Université, LBM SeqOIA, Paris 75014, France
| | - Perrine Charles
- Department of Medical Genetics, Pitié-Salpêtrière Hospital, AP-HP.Sorbonne University, Paris 75005, France
| | - Gaber Bergant
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana 1000, Slovenia
| | - Goran Čuturilo
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia, and University Children's Hospital, 11000 Belgrade, Serbia
| | - Borut Peterlin
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana 1000, Slovenia
| | - Karin Diderich
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam 3015 GD, Netherlands
| | - Haley Streff
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Laurie Robak
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Renske Oegema
- Department of Genetics, University Medical Centre Utrecht, Utrecht University, Utrecht 3584 CX, Netherlands
| | - Ellen van Binsbergen
- Department of Genetics, University Medical Centre Utrecht, Utrecht University, Utrecht 3584 CX, Netherlands
| | - John Herriges
- Department of Pathology and Laboratory Medicine, Children's Mercy-Kansas City, Kansas City, MO 64108, USA
- School of Medicine, University of Missouri Kansas City, Kansas City, MO 64108, USA
| | - Carol J Saunders
- Department of Pathology and Laboratory Medicine, Children's Mercy-Kansas City, Kansas City, MO 64108, USA
- School of Medicine, University of Missouri Kansas City, Kansas City, MO 64108, USA
- Genomic Medicine Center, Children's Mercy Research Institute, Kansas City, MO 64108, USA
| | - Andrea Maier
- Department of Neurology, University Hospital, RWTH Aachen University, Aachen 52074, Germany
- Center for Rare Diseases Aachen (ZSEA), RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Stefan Wolking
- Department of Epileptology and Neurology, Medical Faculty, RWTH Aachen University, Aachen 52074, Germany
| | - Yvonne Weber
- Department of Epileptology and Neurology, Medical Faculty, RWTH Aachen University, Aachen 52074, Germany
| | - Hanns Lochmüller
- Children's Hospital of Eastern Ontario Research Institute, Division of Neurology, Department of Medicine, The Ottawa Hospital, and Brain and Mind Research Institute, University of Ottawa, Ottawa K1H 8L1, Canada
| | - Stefanie Meyer
- Children's Hospital of Eastern Ontario Research Institute, Division of Neurology, Department of Medicine, The Ottawa Hospital, and Brain and Mind Research Institute, University of Ottawa, Ottawa K1H 8L1, Canada
| | - Alberto Aleman
- Children's Hospital of Eastern Ontario Research Institute, Division of Neurology, Department of Medicine, The Ottawa Hospital, and Brain and Mind Research Institute, University of Ottawa, Ottawa K1H 8L1, Canada
| | - Kiran Polavarapu
- Children's Hospital of Eastern Ontario Research Institute, Division of Neurology, Department of Medicine, The Ottawa Hospital, and Brain and Mind Research Institute, University of Ottawa, Ottawa K1H 8L1, Canada
- Department of Neurology, National Institute of Mental Health and Neuro Sciences, Bangalore 560030, India
| | - Gael Nicolas
- Univ Rouen Normandie, Normandie univ, Inserm U1245 and CHU Rouen, Department of Genetics and Reference Center for Neurogenetics Diorders, F-76000 Rouen, France
| | - Alice Goldenberg
- Univ Rouen Normandie, Normandie univ, Inserm U1245 and CHU Rouen, Department of Genetics and Reference Center for Neurogenetics Diorders, F-76000 Rouen, France
| | - Lucie Guyant
- Univ Rouen Normandie, Normandie univ, Inserm U1245 and CHU Rouen, Department of Genetics and Reference Center for Neurogenetics Diorders, F-76000 Rouen, France
| | - Kathleen Pope
- University of South Florida, College of Public Health, Tampa, FL 33612, USA
- Nemours Children's Health, Department of Pediatrics, Division of Genetics, Orlando, FL 32827, USA
| | - Katherine N Hehmeyer
- Nemours Children's Health, Department of Pediatrics, Division of Genetics, Orlando, FL 32827, USA
| | | | - Annegret Quade
- Division of Pediatric Neurology and Social Pediatrics, Department of Pediatrics, University Hospital RWTH Aachen, Aachen 52074, Germany
| | - Thomas Smol
- Department of Clinical Genetics, Lille University Hospital, CHU Lille, Lille 59000, France
| | - Roseline Caumes
- Department of Clinical Genetics, Lille University Hospital, CHU Lille, Lille 59000, France
| | - Sarah Duerinckx
- Department of Pediatric Neurology, Hôpital Universitaire de Bruxelles, Hôpital Erasme, Université Libre de Bruxelles, Brussels 1070, Belgium
| | - Chantal Depondt
- Department of Neurology, Hôpital Universitaire de Bruxelles, Hôpital Erasme, Université Libre de Bruxelles, Brussels 1070, Belgium
| | - Wim Van Paesschen
- Laboratory for Epilepsy Research, KU Leuven, Leuven 3000, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven 3000, Belgium
| | - Claudine Rieubland
- Department of Medical Genetics, Central Institute of the Hospitals, Hospital of the Valais, Sion 1951, Switzerland
| | - Claudia Poloni
- Department of Medical Genetics, Central Institute of the Hospitals, Hospital of the Valais, Sion 1951, Switzerland
| | - Michel Guipponi
- Department of Genetic Medicine, University Hospitals of Geneva and University of Geneva Medical Faculty, Geneva 1205, Switzerland
| | - Severine Arcioni
- Department of Medical Genetics, Central Institute of the Hospitals, Hospital of the Valais, Sion 1951, Switzerland
- Division of Medical Genetics, Central Institute of Hospitals, Valais Hospital, Sion 1951, Switzerland
| | - Marije Meuwissen
- Center of Medical Genetics, Antwerp University Hospital/ University of Antwerp, Edegem 2650, Belgium
| | - Anna C Jansen
- Department of Pediatrics, Division of Child Neurology, Antwerp University Hospital, University of Antwerp, Edegem 2650, Belgium
| | - Jessica Rosenblum
- Center of Medical Genetics, Antwerp University Hospital/ University of Antwerp, Edegem 2650, Belgium
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen 72076, Germany
| | - Miriam Bertrand
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen 72076, Germany
| | - Lea Gerstner
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen 72076, Germany
| | - Janine Magg
- Department of Neuropediatrics, Developmental Neurology, Social Pediatrics, University Children's Hospital, University of Tübingen, Tübingen 72076, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen 72076, Germany
| | - Jörg B Schulz
- Department of Neurology, University Hospital, RWTH Aachen University, Aachen 52074, Germany
- Center for Rare Diseases Aachen (ZSEA), RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Norbert Wagner
- Center for Rare Diseases Aachen (ZSEA), RWTH Aachen University Hospital, Aachen 52074, Germany
- Department of Pediatrics, University Hospital RWTH Aachen, Aachen 52074, Germany
| | - Martin Wiesmann
- Department for Diagnostic and Interventional Neuroradiology, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Joachim Weis
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Thomas Eggermann
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, 52074, Germany
| | - Matthias Begemann
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, 52074, Germany
| | - Andreas Roos
- Children's Hospital of Eastern Ontario Research Institute, Division of Neurology, Department of Medicine, The Ottawa Hospital, and Brain and Mind Research Institute, University of Ottawa, Ottawa K1H 8L1, Canada
- Department for Pediatric Neurology, University Medicine Essen, Duisburg-Essen University, 45147 Essen, Germany
- Institute of Neurology, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Martin Häusler
- Center for Rare Diseases Aachen (ZSEA), RWTH Aachen University Hospital, Aachen 52074, Germany
- Division of Pediatric Neurology and Social Pediatrics, Department of Pediatrics, University Hospital RWTH Aachen, Aachen 52074, Germany
| | - Tim Schedl
- Department of Genetics, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù IRCCS, Rome 00146, Italy
| | - Juliane Bremer
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Stephen C Pak
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Miriam Elbracht
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, 52074, Germany
- Center for Rare Diseases Aachen (ZSEA), RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Ingo Kurth
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, 52074, Germany
- Center for Rare Diseases Aachen (ZSEA), RWTH Aachen University Hospital, Aachen 52074, Germany
| |
Collapse
|
2
|
Anand A, Gautam G, Yadav S, Ramalingam K, Kumar Haldar A, Goyal N. Epsilon subunit of T-complex protein-1 from Leishmania donovani: A tetrameric chaperonin. Gene 2024; 926:148637. [PMID: 38844270 DOI: 10.1016/j.gene.2024.148637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/17/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
The cytosolic T-complex protein-1 ring complex (TRiC), also referred as chaperonin containing TCP-1(CCT), comprising eight different subunits stacked in double toroidal rings, binds to around 10 % of newly synthesized polypeptides and facilitates their folding in ATP dependent manner. In Leishmania, among five subunits of TCP1 complex, identified either by transcriptome or by proteome analysis, only LdTCP1γ has been well characterized. It forms biologically active homo-oligomeric complex and plays role in protein folding and parasite survival. Lack of information regarding rest of the TCP1 subunits and its structural configuration laid down the necessity to study individual subunits and their role in parasite pathogenicity. The present study involves the cloning, expression and biochemical characterization of TCP1ε subunit (LdTCP1ε) of Leishmania donovani, the causative agent of visceral leishmaniasis. LdTCP1ε exhibited significant difference in primary structure as compared to LdTCP1γ and was evolutionary close to LdTCP1 zeta subunit. Recombinant protein (rLdTCP1ε) exhibited two major bands of 132 kDa and 240 kDa on native-PAGE that corresponds to the dimeric and tetrameric assembly of the epsilon subunit, which showed the chaperonin activity (ATPase and luciferase refolding activity). LdTCP1ε also displayed an increased expression upto 2.7- and 1.8-fold in the late log phase and stationary phase promastigotes and exhibited majorly vesicular localization. The study, thus for the first time, provides an insight for the presence of highly diverge but functionally active dimeric/tetrameric TCP1 epsilon subunit in Leishmania parasite.
Collapse
Affiliation(s)
- Apeksha Anand
- Division of Biochemistry and Structural Biology, CSIR- Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Gaziabaad 201002, India
| | - Gunjan Gautam
- Division of Biochemistry and Structural Biology, CSIR- Central Drug Research Institute, Lucknow 226031, India
| | - Shailendra Yadav
- Division of Biochemistry and Structural Biology, CSIR- Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Gaziabaad 201002, India
| | - Karthik Ramalingam
- Division of Biochemistry and Structural Biology, CSIR- Central Drug Research Institute, Lucknow 226031, India
| | - Arun Kumar Haldar
- Division of Biochemistry and Structural Biology, CSIR- Central Drug Research Institute, Lucknow 226031, India
| | - Neena Goyal
- Division of Biochemistry and Structural Biology, CSIR- Central Drug Research Institute, Lucknow 226031, India.
| |
Collapse
|
3
|
Righetto GL, Yin Y, Duda DM, Vu V, Szewczyk MM, Zeng H, Li Y, Loppnau P, Mei T, Li YY, Seitova A, Patrick AN, Brazeau JF, Chaudhry C, Barsyte-Lovejoy D, Santhakumar V, Halabelian L. Probing the CRL4 DCAF12 interactions with MAGEA3 and CCT5 di-Glu C-terminal degrons. PNAS NEXUS 2024; 3:pgae153. [PMID: 38665159 PMCID: PMC11044963 DOI: 10.1093/pnasnexus/pgae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/02/2024] [Indexed: 04/28/2024]
Abstract
Damaged DNA-binding protein-1 (DDB1)- and CUL4-associated factor 12 (DCAF12) serves as the substrate recognition component within the Cullin4-RING E3 ligase (CRL4) complex, capable of identifying C-terminal double-glutamic acid degrons to promote the degradation of specific substrates through the ubiquitin proteasome system. Melanoma-associated antigen 3 (MAGEA3) and T-complex protein 1 subunit epsilon (CCT5) proteins have been identified as cellular targets of DCAF12. To further characterize the interactions between DCAF12 and both MAGEA3 and CCT5, we developed a suite of biophysical and proximity-based cellular NanoBRET assays showing that the C-terminal degron peptides of both MAGEA3 and CCT5 form nanomolar affinity interactions with DCAF12 in vitro and in cells. Furthermore, we report here the 3.17 Å cryo-EM structure of DDB1-DCAF12-MAGEA3 complex revealing the key DCAF12 residues responsible for C-terminal degron recognition and binding. Our study provides new insights and tools to enable the discovery of small molecule handles targeting the WD40-repeat domain of DCAF12 for future proteolysis targeting chimera design and development.
Collapse
Affiliation(s)
- Germanna Lima Righetto
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Yanting Yin
- Structural and Protein Sciences, Therapeutics Discovery, Janssen Research and Development, Spring House, PA 19044, USA
| | - David M Duda
- Structural and Protein Sciences, Therapeutics Discovery, Janssen Research and Development, Spring House, PA 19044, USA
| | - Victoria Vu
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Magdalena M Szewczyk
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Hong Zeng
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Yanjun Li
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Peter Loppnau
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Tony Mei
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Yen-Yen Li
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Alma Seitova
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Aaron N Patrick
- Discovery Technology and Molecular Pharmacology, Therapeutics Discovery, Janssen Research and Development, LLC, Welsh and McKean Roads, Spring House, PA 19477, USA
| | - Jean-Francois Brazeau
- Discovery Chemistry, Therapeutics Discovery, Janssen Research and Development, LLC, 3210 Merryfield Row, La Jolla, CA 92121, USA
| | - Charu Chaudhry
- Discovery Technology and Molecular Pharmacology, Therapeutics Discovery, Janssen Research and Development, LLC, Welsh and McKean Roads, Spring House, PA 19477, USA
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | - Levon Halabelian
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
4
|
Scalia F, Conway de Macario E, Bonaventura G, Cappello F, Macario AJL. Histopathology of Skeletal Muscle in a Distal Motor Neuropathy Associated with a Mutant CCT5 Subunit: Clues for Future Developments to Improve Differential Diagnosis and Personalized Therapy. BIOLOGY 2023; 12:biology12050641. [PMID: 37237456 DOI: 10.3390/biology12050641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023]
Abstract
Genetic chaperonopathies are rare but, because of misdiagnosis, there are probably more cases than those that are recorded in the literature and databases. This occurs because practitioners are generally unaware of the existence and/or the symptoms and signs of chaperonopathies. It is necessary to educate the medical community about these diseases and, with research, to unveil their mechanisms. The structure and functions of various chaperones in vitro have been studied, but information on the impact of mutant chaperones in humans, in vivo, is scarce. Here, we present a succinct review of the most salient abnormalities of skeletal muscle, based on our earlier report of a patient who carried a mutation in the chaperonin CCT5 subunit and suffered from a distal motor neuropathy of early onset. We discuss our results in relation to the very few other published pertinent reports we were able to find. A complex picture of multiple muscle-tissue abnormalities was evident, with signs of atrophy, apoptosis, and abnormally low levels and atypical distribution patterns of some components of muscle and the chaperone system. In-silico analysis predicts that the mutation affects CCT5 in a way that could interfere with the recognition and handling of substrate. Thus, it is possible that some of the abnormalities are the direct consequence of defective chaperoning, but others may be indirectly related to defective chaperoning or caused by other different pathogenic pathways. Biochemical, and molecular biologic and genetic analyses should now help in understanding the mechanisms underpinning the histologic abnormalities and, thus, provide clues to facilitate diagnosis and guide the development of therapeutic tools.
Collapse
Affiliation(s)
- Federica Scalia
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo (UNIPA), 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Everly Conway de Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA
| | - Giuseppe Bonaventura
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo (UNIPA), 90127 Palermo, Italy
| | - Francesco Cappello
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo (UNIPA), 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Alberto J L Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA
| |
Collapse
|
5
|
Pla‐Prats C, Cavadini S, Kempf G, Thomä NH. Recognition of the CCT5 di-Glu degron by CRL4 DCAF12 is dependent on TRiC assembly. EMBO J 2023; 42:e112253. [PMID: 36715408 PMCID: PMC9929631 DOI: 10.15252/embj.2022112253] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/21/2022] [Accepted: 12/14/2022] [Indexed: 01/31/2023] Open
Abstract
Assembly Quality Control (AQC) E3 ubiquitin ligases target incomplete or incorrectly assembled protein complexes for degradation. The CUL4-RBX1-DDB1-DCAF12 (CRL4DCAF12 ) E3 ligase preferentially ubiquitinates proteins that carry a C-terminal double glutamate (di-Glu) motif. Reported CRL4DCAF12 di-Glu-containing substrates include CCT5, a subunit of the TRiC chaperonin. How DCAF12 engages its substrates and the functional relationship between CRL4DCAF12 and CCT5/TRiC is currently unknown. Here, we present the cryo-EM structure of the DDB1-DCAF12-CCT5 complex at 2.8 Å resolution. DCAF12 serves as a canonical WD40 DCAF substrate receptor and uses a positively charged pocket at the center of the β-propeller to bind the C-terminus of CCT5. DCAF12 specifically reads out the CCT5 di-Glu side chains, and contacts other visible degron amino acids through Van der Waals interactions. The CCT5 C-terminus is inaccessible in an assembled TRiC complex, and functional assays demonstrate that DCAF12 binds and ubiquitinates monomeric CCT5, but not CCT5 assembled into TRiC. Our biochemical and structural results suggest a previously unknown role for the CRL4DCAF12 E3 ligase in overseeing the assembly of a key cellular complex.
Collapse
Affiliation(s)
- Carlos Pla‐Prats
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
- University of BaselBaselSwitzerland
| | - Simone Cavadini
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | - Georg Kempf
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | - Nicolas H Thomä
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| |
Collapse
|
6
|
Scalia F, Lo Bosco G, Paladino L, Vitale AM, Noori L, Conway de Macario E, Macario AJL, Bucchieri F, Cappello F, Lo Celso F. Structural and Dynamic Disturbances Revealed by Molecular Dynamics Simulations Predict the Impact on Function of CCT5 Chaperonin Mutations Associated with Rare Severe Distal Neuropathies. Int J Mol Sci 2023; 24:ijms24032018. [PMID: 36768350 PMCID: PMC9917133 DOI: 10.3390/ijms24032018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
Mutations in genes encoding molecular chaperones, for instance the genes encoding the subunits of the chaperonin CCT (chaperonin containing TCP-1, also known as TRiC), are associated with rare neurodegenerative disorders. Using a classical molecular dynamics approach, we investigated the occurrence of conformational changes and differences in physicochemical properties of the CCT5 mutations His147Arg and Leu224Val associated with a sensory and a motor distal neuropathy, respectively. The apical domain of both variants was substantially but differently affected by the mutations, although these were in other domains. The distribution of hydrogen bonds and electrostatic potentials on the surface of the mutant subunits differed from the wild-type molecule. Structural and dynamic analyses, together with our previous experimental data, suggest that genetic mutations may cause different changes in the protein-binding capacity of CCT5 variants, presumably within both hetero- and/or homo-oligomeric complexes. Further investigations are necessary to elucidate the molecular pathogenic pathways of the two variants that produce the two distinct phenotypes. The data and clinical observations by us and others indicate that CCT chaperonopathies are more frequent than currently believed and should be investigated in patients with neuropathies.
Collapse
Affiliation(s)
- Federica Scalia
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
- Correspondence: (F.S.); (F.C.)
| | - Giosuè Lo Bosco
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
- Department of Mathematics and Computer Science, University of Palermo, 90123 Palermo, Italy
| | - Letizia Paladino
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Alessandra Maria Vitale
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Leila Noori
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran 1417653911, Iran
| | - Everly Conway de Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore—Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA
| | - Alberto J. L. Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore—Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA
| | - Fabio Bucchieri
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
| | - Francesco Cappello
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
- Correspondence: (F.S.); (F.C.)
| | - Fabrizio Lo Celso
- Department of Physics and Chemistry—Emilio Segrè, University of Palermo, 90128 Palermo, Italy
- Ionic Liquids Laboratory, Institute of Structure of Matter, Italian National Research Council (ISM-CNR), 00133 Rome, Italy
| |
Collapse
|
7
|
Scalia F, Barone R, Rappa F, Marino Gammazza A, Lo Celso F, Lo Bosco G, Barone G, Antona V, Vadalà M, Vitale AM, Mangano GD, Amato D, Sentiero G, Macaluso F, Myburgh KH, Conway de Macario E, Macario AJL, Giuffrè M, Cappello F. Muscle Histopathological Abnormalities in a Patient With a CCT5 Mutation Predicted to Affect the Apical Domain of the Chaperonin Subunit. Front Mol Biosci 2022; 9:887336. [PMID: 35720129 PMCID: PMC9201415 DOI: 10.3389/fmolb.2022.887336] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Recognition of diseases associated with mutations of the chaperone system genes, e.g., chaperonopathies, is on the rise. Hereditary and clinical aspects are established, but the impact of the mutation on the chaperone molecule and the mechanisms underpinning the tissue abnormalities are not. Here, histological features of skeletal muscle from a patient with a severe, early onset, distal motor neuropathy, carrying a mutation on the CCT5 subunit (MUT) were examined in comparison with normal muscle (CTR). The MUT muscle was considerably modified; atrophy of fibers and disruption of the tissue architecture were prominent, with many fibers in apoptosis. CCT5 was diversely present in the sarcolemma, cytoplasm, and nuclei in MUT and in CTR and was also in the extracellular space; it colocalized with CCT1. In MUT, the signal of myosin appeared slightly increased, and actin slightly decreased as compared with CTR. Desmin was considerably delocalized in MUT, appearing with abnormal patterns and in precipitates. Alpha-B-crystallin and Hsp90 occurred at lower signals in MUT than in CTR muscle, appearing also in precipitates with desmin. The abnormal features in MUT may be the consequence of inactivity, malnutrition, denervation, and failure of protein homeostasis. The latter could be at least in part caused by malfunction of the CCT complex with the mutant CCT5 subunit. This is suggested by the results of the in silico analyses of the mutant CCT5 molecule, which revealed various abnormalities when compared with the wild-type counterpart, mostly affecting the apical domain and potentially impairing chaperoning functions. Thus, analysis of mutated CCT5 in vitro and in vivo is anticipated to provide additional insights on subunit involvement in neuromuscular disorders.
Collapse
Affiliation(s)
- Federica Scalia
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Rosario Barone
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
| | - Francesca Rappa
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
| | - Antonella Marino Gammazza
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
| | - Fabrizio Lo Celso
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Palermo, Italy
- Ionic Liquids Laboratory, Institute of Structure of Matter, Italian National Research Council (ISM-CNR), Rome, Italy
| | - Giosuè Lo Bosco
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
- Department of Mathematics and Computer Science, University of Palermo, Palermo, Italy
| | - Giampaolo Barone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Vincenzo Antona
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Maria Vadalà
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Alessandra Maria Vitale
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Giuseppe Donato Mangano
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
| | - Domenico Amato
- Department of Mathematics and Computer Science, University of Palermo, Palermo, Italy
| | - Giusy Sentiero
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Filippo Macaluso
- SMART Engineering Solutions & Technologies (SMARTEST) Research Center, eCampus University, Palermo, Italy
| | - Kathryn H. Myburgh
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Everly Conway de Macario
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD, United States
| | - Alberto J. L. Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD, United States
| | - Mario Giuffrè
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Francesco Cappello
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
- *Correspondence: Francesco Cappello, @hotmail.com
| |
Collapse
|
8
|
Ghozlan H, Cox A, Nierenberg D, King S, Khaled AR. The TRiCky Business of Protein Folding in Health and Disease. Front Cell Dev Biol 2022; 10:906530. [PMID: 35602608 PMCID: PMC9117761 DOI: 10.3389/fcell.2022.906530] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/20/2022] [Indexed: 01/03/2023] Open
Abstract
Maintenance of the cellular proteome or proteostasis is an essential process that when deregulated leads to diseases like neurological disorders and cancer. Central to proteostasis are the molecular chaperones that fold proteins into functional 3-dimensional (3D) shapes and prevent protein aggregation. Chaperonins, a family of chaperones found in all lineages of organisms, are efficient machines that fold proteins within central cavities. The eukaryotic Chaperonin Containing TCP1 (CCT), also known as Tailless complex polypeptide 1 (TCP-1) Ring Complex (TRiC), is a multi-subunit molecular complex that folds the obligate substrates, actin, and tubulin. But more than folding cytoskeletal proteins, CCT differs from most chaperones in its ability to fold proteins larger than its central folding chamber and in a sequential manner that enables it to tackle proteins with complex topologies or very large proteins and complexes. Unique features of CCT include an asymmetry of charges and ATP affinities across the eight subunits that form the hetero-oligomeric complex. Variable substrate binding capacities endow CCT with a plasticity that developed as the chaperonin evolved with eukaryotes and acquired functional capacity in the densely packed intracellular environment. Given the decades of discovery on the structure and function of CCT, much remains unknown such as the scope of its interactome. New findings on the role of CCT in disease, and potential for diagnostic and therapeutic uses, heighten the need to better understand the function of this essential molecular chaperone. Clues as to how CCT causes cancer or neurological disorders lie in the early studies of the chaperonin that form a foundational knowledgebase. In this review, we span the decades of CCT discoveries to provide critical context to the continued research on the diverse capacities in health and disease of this essential protein-folding complex.
Collapse
Affiliation(s)
- Heba Ghozlan
- Division of Cancer Research, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
- Department of Physiology and Biochemistry, Jordan University of Science and Technology, Irbid, Jordan
| | - Amanda Cox
- Division of Cancer Research, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Daniel Nierenberg
- Division of Cancer Research, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Stephen King
- Division of Neuroscience, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Annette R. Khaled
- Division of Cancer Research, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
9
|
Collier MP, Moreira KB, Li KH, Chen YC, Itzhak D, Samant R, Leitner A, Burlingame A, Frydman J. Native mass spectrometry analyses of chaperonin complex TRiC/CCT reveal subunit N-terminal processing and re-association patterns. Sci Rep 2021; 11:13084. [PMID: 34158536 PMCID: PMC8219831 DOI: 10.1038/s41598-021-91086-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 05/05/2021] [Indexed: 11/14/2022] Open
Abstract
The eukaryotic chaperonin TRiC/CCT is a large ATP-dependent complex essential for cellular protein folding. Its subunit arrangement into two stacked eight-membered hetero-oligomeric rings is conserved from yeast to man. A recent breakthrough enables production of functional human TRiC (hTRiC) from insect cells. Here, we apply a suite of mass spectrometry techniques to characterize recombinant hTRiC. We find all subunits CCT1-8 are N-terminally processed by combinations of methionine excision and acetylation observed in native human TRiC. Dissociation by organic solvents yields primarily monomeric subunits with a small population of CCT dimers. Notably, some dimers feature non-canonical inter-subunit contacts absent in the initial hTRiC. This indicates individual CCT monomers can promiscuously re-assemble into dimers, and lack the information to assume the specific interface pairings in the holocomplex. CCT5 is consistently the most stable subunit and engages in the greatest number of non-canonical dimer pairings. These findings confirm physiologically relevant post-translational processing and function of recombinant hTRiC and offer quantitative insight into the relative stabilities of TRiC subunits and interfaces, a key step toward reconstructing its assembly mechanism. Our results also highlight the importance of assigning contacts identified by native mass spectrometry after solution dissociation as canonical or non-canonical when investigating multimeric assemblies.
Collapse
Affiliation(s)
| | | | - Kathy H Li
- Department of Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Yu-Chan Chen
- Department of Biology, Stanford University, Stanford, CA, USA
| | | | - Rahul Samant
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, Zurich, Switzerland
| | - Alma Burlingame
- Department of Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
10
|
Xu J, Zhang Y, Liu C, Yan P, Yang Z. Roles of the miR-139-5p/CCT5 axis in hepatocellular carcinoma: a bioinformatic analysis. Int J Med Sci 2021; 18:3556-3564. [PMID: 34522182 PMCID: PMC8436101 DOI: 10.7150/ijms.57504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 08/06/2021] [Indexed: 02/05/2023] Open
Abstract
Background: MiRNAs are pivotal regulators involved in proliferation, apoptosis, invasion, metastasis, epithelial-mesenchymal transition (EMT), angiogenesis, drug resistance and autophagy in hepatocellular carcinoma (HCC). The aim of this study was to investigate the influence of miR-139-5p and its target genes on the outcomes of HCC. Methods: Survival analysis of miR-139-5p in HCC was conducted in Kaplan-Meier plotter. Target genes of miR-139-5p were identified in TargetScan, miRTarBase and starBase. Gene Expression Omnibus (GEO) series were used for the validation of miR-139-5p target genes. Cox proportional regression model was also established. Results: In Kaplan-Meier plotter, 163 HCC patients were included. MiR-139-5p downregulation was significantly associated with unfavorable overall survival (OS) and disease-free survival (DFS) in HCC patients (all P < 0.001). MiR-139-5p was significantly downregulated in HCC tumors and human hepatoma cell lines (all P < 0.05). As a target gene of miR-139-5p, CCT5 was overexpressed in HCC tumor tissues and peripheral blood mononuclear cells (all P < 0.05). A negative correlation between CCT5 and miR-139-5p was found in TCGA dataset. CCT5 overexpression was significantly associated with worse OS in HCC patients (P < 0.001), which was validated in the GSE14520 dataset (P = 0.017). CCT5 mRNA was significantly overexpressed in HCC patients with alpha-fetoprotein (AFP) > 300 ng/ml, BCLC staging B-C, TNM staging III and main tumor size > 5 cm (all P < 0.05). According to the Cox regression model of CCT5-interacting genes, HCC patients with high risk had poor OS compared to those with low risk in the TCGA dataset (P < 0.001), with the 1-year, 3-year, and 5-year ROC curves of an area under the curve (AUC) equal to 0.704, 0.662, and 0.631, respectively. Conclusions: MiR-139-5p suppresses HCC tumor aggression and conversely correlated with CCT5. The miR-139-5p/CCT5 axis might perform crucial functions in the development of HCC.
Collapse
Affiliation(s)
- Jingjing Xu
- Department of Pathology, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yuan Zhang
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Cheng Liu
- Department of Infectious Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Ping Yan
- Department of Infectious Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
- ✉ Corresponding authors: Zongguo Yang, MD, PhD, Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University. 2901 Caolang Road, Shanghai 201508, China. E-mail: ; Ping Yan, MD, Department of Infectious Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China. E-mail:
| | - Zongguo Yang
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
- ✉ Corresponding authors: Zongguo Yang, MD, PhD, Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University. 2901 Caolang Road, Shanghai 201508, China. E-mail: ; Ping Yan, MD, Department of Infectious Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China. E-mail:
| |
Collapse
|
11
|
Antona V, Scalia F, Giorgio E, Radio FC, Brusco A, Oliveri M, Corsello G, Lo Celso F, Vadalà M, Conway de Macario E, Macario AJL, Cappello F, Giuffrè M. A Novel CCT5 Missense Variant Associated with Early Onset Motor Neuropathy. Int J Mol Sci 2020; 21:ijms21207631. [PMID: 33076433 PMCID: PMC7589105 DOI: 10.3390/ijms21207631] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/05/2020] [Accepted: 10/12/2020] [Indexed: 12/04/2022] Open
Abstract
Diseases associated with acquired or genetic defects in members of the chaperoning system (CS) are increasingly found and have been collectively termed chaperonopathies. Illustrative instances of genetic chaperonopathies involve the genes for chaperonins of Groups I (e.g., Heat shock protein 60, Hsp60) and II (e.g., Chaperonin Containing T-Complex polypeptide 1, CCT). Examples of the former are hypomyelinating leukodystrophy 4 (HLD4 or MitCHAP60) and hereditary spastic paraplegia (SPG13). A distal sensory mutilating neuropathy has been linked to a mutation [p.(His147Arg)] in subunit 5 of the CCT5 gene. Here, we describe a new possibly pathogenic variant [p.(Leu224Val)] of the same subunit but with a different phenotype. This yet undescribed disease affects a girl with early onset demyelinating neuropathy and a severe motor disability. By whole exome sequencing (WES), we identified a homozygous CCT5 c.670C>G p.(Leu224Val) variant in the CCT5 gene. In silico 3D-structure analysis and bioinformatics indicated that this variant could undergo abnormal conformation and could be pathogenic. We compared the patient’s clinical, neurophysiological and laboratory data with those from patients carrying p.(His147Arg) in the equatorial domain. Our patient presented signs and symptoms absent in the p.(His147Arg) cases. Molecular dynamics simulation and modelling showed that the Leu224Val mutation that occurs in the CCT5 intermediate domain near the apical domain induces a conformational change in the latter. Noteworthy is the striking difference between the phenotypes putatively linked to mutations in the same CCT subunit but located in different structural domains, offering a unique opportunity for elucidating their distinctive roles in health and disease
Collapse
Affiliation(s)
- Vincenzo Antona
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy; (V.A.); (G.C.); (M.G.)
| | - Federica Scalia
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (F.S.); (M.V.)
- Department of Biomolecular Strategies, Genetics and Advanced Therapies, Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy;
| | - Elisa Giorgio
- Department of Medical Sciences, University of Torino, 10126 Torino, Italy; (E.G.); (A.B.)
| | - Francesca C. Radio
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù IRCSS, 00146 Rome, Italy;
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, 10126 Torino, Italy; (E.G.); (A.B.)
| | - Massimiliano Oliveri
- Department of Psychological, Pedagogical and Educational Sciences, University of Palermo, 90128 Palermo, Italy;
| | - Giovanni Corsello
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy; (V.A.); (G.C.); (M.G.)
| | - Fabrizio Lo Celso
- Department of Physics and Chemistry—Emilio Segrè, University of Palermo, 90128 Palermo, Italy;
- Ionic Liquids Laboratory, Institute of Structure of Matter, Italian National Research Council (ISM-CNR), 00133 Rome, Italy
| | - Maria Vadalà
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (F.S.); (M.V.)
- Department of Biomolecular Strategies, Genetics and Advanced Therapies, Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy;
| | - Everly Conway de Macario
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA;
| | - Alberto J. L. Macario
- Department of Biomolecular Strategies, Genetics and Advanced Therapies, Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy;
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA;
| | - Francesco Cappello
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (F.S.); (M.V.)
- Department of Biomolecular Strategies, Genetics and Advanced Therapies, Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy;
- Correspondence:
| | - Mario Giuffrè
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy; (V.A.); (G.C.); (M.G.)
| |
Collapse
|
12
|
Corrêa T, Poswar F, Feltes BC, Riegel M. Candidate Genes Associated With Neurological Findings in a Patient With Trisomy 4p16.3 and Monosomy 5p15.2. Front Genet 2020; 11:561. [PMID: 32625234 PMCID: PMC7311770 DOI: 10.3389/fgene.2020.00561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 05/11/2020] [Indexed: 12/12/2022] Open
Abstract
In this report, we present a patient with brain alterations and dysmorphic features associated with chromosome duplication seen in 4p16.3 region and chromosomal deletion in a critical region responsible for Cri-du-chat syndrome (CdCS). Chromosomal microarray analysis (CMA) revealed a 41.1 Mb duplication encompassing the band region 4p16.3-p13, and a 14.7 Mb deletion located between the bands 5p15.33 and p15.1. The patient's clinical findings overlap with previously reported cases of chromosome 4p duplication syndrome and CdCS. The patient's symptoms are notably similar to those of CdCS patients as she presented with a weak, high-pitched voice and showed a similar pathogenicity observed in the brain MRI. These contiguous gene syndromes present with distinct clinical manifestations. However, the phenotypic and cytogenetic variability in affected individuals, such as the low frequency and the large genomic regions that can be altered, make it challenging to identify candidate genes that contribute to the pathogenesis of these syndromes. Therefore, systems biology and CMA techniques were used to investigate the extent of chromosome rearrangement on critical regions in our patient's phenotype. We identified the candidate genes PPARGC1A, CTBP1, TRIO, TERT, and CCT5 that are associated with the neuropsychomotor delay, microcephaly, and neurological alterations found in our patient. Through investigating pathways that associate with essential nodes in the protein interaction network, we discovered proteins involved in cellular differentiation and proliferation, as well as proteins involved in the formation and disposition of the cytoskeleton. The combination of our cytogenomic and bioinformatic analysis provided these possible explanations for the unique clinical phenotype, which has not yet been described in scientific literature.
Collapse
Affiliation(s)
- Thiago Corrêa
- Post-Graduate Program in Genetics and Molecular Biology, Genetics Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fabiano Poswar
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Bruno César Feltes
- Department of Theoritical Informatics, Institute of Informatics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Mariluce Riegel
- Post-Graduate Program in Genetics and Molecular Biology, Genetics Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
13
|
Plasmodium chaperonin TRiC/CCT identified as a target of the antihistamine clemastine using parallel chemoproteomic strategy. Proc Natl Acad Sci U S A 2020; 117:5810-5817. [PMID: 32127489 DOI: 10.1073/pnas.1913525117] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The antihistamine clemastine inhibits multiple stages of the Plasmodium parasite that causes malaria, but the molecular targets responsible for its parasite inhibition were unknown. Here, we applied parallel chemoproteomic platforms to discover the mechanism of action of clemastine and identify that clemastine binds to the Plasmodium falciparum TCP-1 ring complex or chaperonin containing TCP-1 (TRiC/CCT), an essential heterooligomeric complex required for de novo cytoskeletal protein folding. Clemastine destabilized all eight P. falciparum TRiC subunits based on thermal proteome profiling (TPP). Further analysis using stability of proteins from rates of oxidation (SPROX) revealed a clemastine-induced thermodynamic stabilization of the Plasmodium TRiC delta subunit, suggesting an interaction with this protein subunit. We demonstrate that clemastine reduces levels of the major TRiC substrate tubulin in P. falciparum parasites. In addition, clemastine treatment leads to disorientation of Plasmodium mitotic spindles during the asexual reproduction and results in aberrant tubulin morphology suggesting protein aggregation. This clemastine-induced disruption of TRiC function is not observed in human host cells, demonstrating a species selectivity required for targeting an intracellular human pathogen. Our findings encourage larger efforts to apply chemoproteomic methods to assist in target identification of antimalarial drugs and highlight the potential to selectively target Plasmodium TRiC-mediated protein folding for malaria intervention.
Collapse
|
14
|
Engqvist H, Parris TZ, Kovács A, Rönnerman EW, Sundfeldt K, Karlsson P, Helou K. Validation of Novel Prognostic Biomarkers for Early-Stage Clear-Cell, Endometrioid and Mucinous Ovarian Carcinomas Using Immunohistochemistry. Front Oncol 2020; 10:162. [PMID: 32133296 PMCID: PMC7040170 DOI: 10.3389/fonc.2020.00162] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/29/2020] [Indexed: 12/17/2022] Open
Abstract
Early-stage (I and II) ovarian carcinoma patients generally have good prognosis. Yet, some patients die earlier than expected. Thus, it is important to stratify early-stage patients into risk groups to identify those in need of more aggressive treatment regimens. The prognostic value of 29 histotype-specific biomarkers identified using RNA sequencing was evaluated for early-stage clear-cell (CCC), endometrioid (EC) and mucinous (MC) ovarian carcinomas (n = 112) using immunohistochemistry on tissue microarrays. Biomarkers with prognostic significance were further evaluated in an external ovarian carcinoma data set using the web-based Kaplan-Meier plotter tool. Here, we provide evidence of aberrant protein expression patterns and prognostic significance of 17 novel histotype-specific prognostic biomarkers [10 for CCC (ARPC2, CCT5, GNB1, KCTD10, NUP155, RPL13A, RPL37, SETD3, SMYD2, TRIO), three for EC (CECR1, KIF26B, PIK3CA), and four for MC (CHEK1, FOXM1, KIF23, PARPBP)], suggesting biological heterogeneity within the histotypes. Combined predictive models comprising the protein expression status of the validated CCC, EC and MC biomarkers together with established clinical markers (age, stage, CA125, ploidy) improved the predictive power in comparison with models containing established clinical markers alone, further strengthening the importance of the biomarkers in ovarian carcinoma. Further, even improved predictive powers were demonstrated when combining these models with our previously identified prognostic biomarkers PITHD1 (CCC) and GPR158 (MC). Moreover, the proteins demonstrated improved risk prediction of CCC-, EC-, and MC-associated ovarian carcinoma survival. The novel histotype-specific prognostic biomarkers may not only improve prognostication and patient stratification of early-stage ovarian carcinomas, but may also guide future clinical therapy decisions.
Collapse
Affiliation(s)
- Hanna Engqvist
- Department of Oncology, Sahlgrenska Cancer Center, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Toshima Z. Parris
- Department of Oncology, Sahlgrenska Cancer Center, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Anikó Kovács
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Elisabeth Werner Rönnerman
- Department of Oncology, Sahlgrenska Cancer Center, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Karin Sundfeldt
- Department of Obstetrics and Gynecology, Sahlgrenska Cancer Center, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Per Karlsson
- Department of Oncology, Sahlgrenska Cancer Center, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Khalil Helou
- Department of Oncology, Sahlgrenska Cancer Center, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
15
|
Macario AJ, de Macario EC. Molecular mechanisms in chaperonopathies: clues to understanding the histopathological abnormalities and developing novel therapies. J Pathol 2019; 250:9-18. [PMID: 31579936 DOI: 10.1002/path.5349] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/02/2019] [Accepted: 09/17/2019] [Indexed: 12/13/2022]
Abstract
Molecular chaperones, many of which are heat shock proteins (Hsps), are components of the chaperoning system and when defective can cause disease, the chaperonopathies. Chaperone-gene variants cause genetic chaperonopathies, whereas in the acquired chaperonopathies the genes are normal, but their protein products are not, due to aberrant post-transcriptional mechanisms, e.g. post-translational modifications (PTMs). Since the chaperoning system is widespread in the body, chaperonopathies affect various tissues and organs, making these diseases of interest to a wide range of medical specialties. Genetic chaperonopathies are uncommon but the acquired ones are frequent, encompassing various types of cancer, and inflammatory and autoimmune disorders. The clinical picture of chaperonopathies is known. Much less is known on the impact that pathogenic mutations and PTMs have on the properties and functions of chaperone molecules. Elucidation of these molecular alterations is necessary for understanding the mechanisms underpinning the tissue and organ abnormalities occurring in patients. To illustrate this issue, we discuss structural-functional alterations caused by mutation in the chaperones CCT5 and HSPA9, and PTM effects on Hsp60. The data provide insights into what may happen when CCT5 and HSPA9 malfunction in patients, e.g. accumulation of cytotoxic protein aggregates with tissue destruction; or for Hsp60 with aberrant PTM, degradation and/or secretion of the chaperonin with mitochondrial damage. These and other possibilities are now open for investigation. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Alberto Jl Macario
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Columbus Center, Baltimore, MD, USA.,Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Everly Conway de Macario
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Columbus Center, Baltimore, MD, USA.,Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| |
Collapse
|
16
|
Sergeeva OA, Haase-Pettingell C, King JA. Co-expression of CCT subunits hints at TRiC assembly. Cell Stress Chaperones 2019; 24:1055-1065. [PMID: 31410727 PMCID: PMC6882961 DOI: 10.1007/s12192-019-01028-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 07/05/2019] [Accepted: 07/31/2019] [Indexed: 12/18/2022] Open
Abstract
The eukaryotic cytosolic chaperonin, t-complex polypeptide 1 (TCP-1) ring complex or TRiC, is responsible for folding a tenth of the proteins in the cell. TRiC is a double-ringed barrel with each ring composed of eight different CCT (chaperonin containing TCP-1) subunits. In order for the subunits to assemble together into mature TRiC, which is believed to contain one and only one of each of these subunits per ring, they must be translated from different chromosomes, correctly folded and assembled. When expressed alone in Escherichia coli, the subunits CCT4 and CCT5, interestingly, form TRiC-like homo-oligomeric rings. To explore potential subunit-subunit interactions, we co-expressed these homo-oligomerizing CCT4 and CCT5 subunits or the archaeal chaperonin Mm-Cpn (Methanococcus maripaludis chaperonin) with CCT1-8, one at a time. We found that CCT5 shifted all of the CCT subunits, with the exception of CCT6, into double-barrel TRiC-like complexes, while CCT4 only interacted with CCT5 and CCT8 to form chaperonin rings. We hypothesize that these specific interactions may be due to the formation of hetero-oligomers in E. coli, although more work is needed for validation. We also observed the interaction of CCT5 and Mm-Cpn with smaller fragments of the CCT subunits, confirming their intrinsic chaperone activity. Based on this hetero-oligomer data, we propose that TRiC assembly relies on subunit exchange with some stable homo-oligomers, possibly CCT5, as base assembly units. Eventually, analysis of CCT arrangement in various tissues and at different developmental times is anticipated to provide additional insight on TRiC assembly and CCT subunit composition.
Collapse
Affiliation(s)
- Oksana A. Sergeeva
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA USA
- Global Health Institute, School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Cameron Haase-Pettingell
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA USA
- Computer Science and Artificial Intelligence (CSAIL), Massachusetts Institute of Technology, Cambridge, MA USA
| | - Jonathan A. King
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA USA
| |
Collapse
|
17
|
Scalia F, Marino Gammazza A, Conway de Macario E, Macario AJL, Cappello F. Myelin Pathology: Involvement of Molecular Chaperones and the Promise of Chaperonotherapy. Brain Sci 2019; 9:brainsci9110297. [PMID: 31671529 PMCID: PMC6896170 DOI: 10.3390/brainsci9110297] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/23/2019] [Accepted: 10/27/2019] [Indexed: 11/27/2022] Open
Abstract
The process of axon myelination involves various proteins including molecular chaperones. Myelin alteration is a common feature in neurological diseases due to structural and functional abnormalities of one or more myelin proteins. Genetic proteinopathies may occur either in the presence of a normal chaperoning system, which is unable to assist the defective myelin protein in its folding and migration, or due to mutations in chaperone genes, leading to functional defects in assisting myelin maturation/migration. The latter are a subgroup of genetic chaperonopathies causing demyelination. In this brief review, we describe some paradigmatic examples pertaining to the chaperonins Hsp60 (HSPD1, or HSP60, or Cpn60) and CCT (chaperonin-containing TCP-1). Our aim is to make scientists and physicians aware of the possibility and advantages of classifying patients depending on the presence or absence of a chaperonopathy. In turn, this subclassification will allow the development of novel therapeutic strategies (chaperonotherapy) by using molecular chaperones as agents or targets for treatment.
Collapse
Affiliation(s)
- Federica Scalia
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy.
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy.
| | - Antonella Marino Gammazza
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy.
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy.
| | - Everly Conway de Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy.
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA.
| | - Alberto J L Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy.
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA.
| | - Francesco Cappello
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy.
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy.
| |
Collapse
|
18
|
Berger J, Berger S, Li M, Jacoby AS, Arner A, Bavi N, Stewart AG, Currie PD. In Vivo Function of the Chaperonin TRiC in α-Actin Folding during Sarcomere Assembly. Cell Rep 2019; 22:313-322. [PMID: 29320728 DOI: 10.1016/j.celrep.2017.12.069] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 09/11/2017] [Accepted: 12/19/2017] [Indexed: 12/14/2022] Open
Abstract
The TCP-1 ring complex (TRiC) is a multi-subunit group II chaperonin that assists nascent or misfolded proteins to attain their native conformation in an ATP-dependent manner. Functional studies in yeast have suggested that TRiC is an essential and generalized component of the protein-folding machinery of eukaryotic cells. However, TRiC's involvement in specific cellular processes within multicellular organisms is largely unknown because little validation of TRiC function exists in animals. Our in vivo analysis reveals a surprisingly specific role of TRiC in the biogenesis of skeletal muscle α-actin during sarcomere assembly in myofibers. TRiC acts at the sarcomere's Z-disk, where it is required for efficient assembly of actin thin filaments. Binding of ATP specifically by the TRiC subunit Cct5 is required for efficient actin folding in vivo. Furthermore, mutant α-actin isoforms that result in nemaline myopathy in patients obtain their pathogenic conformation via this function of TRiC.
Collapse
Affiliation(s)
- Joachim Berger
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; Victoria Node, EMBL Australia, Clayton, VIC 3800, Australia.
| | - Silke Berger
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; Victoria Node, EMBL Australia, Clayton, VIC 3800, Australia
| | - Mei Li
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; Victoria Node, EMBL Australia, Clayton, VIC 3800, Australia; Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Arie S Jacoby
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; Victoria Node, EMBL Australia, Clayton, VIC 3800, Australia
| | - Anders Arner
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Navid Bavi
- Department of Physiology, School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Alastair G Stewart
- Molecular, Structural and Computational Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; Victoria Node, EMBL Australia, Clayton, VIC 3800, Australia.
| |
Collapse
|
19
|
Identification of an allosteric network that influences assembly and function of group II chaperonins. Nat Struct Mol Biol 2019; 24:683-684. [PMID: 28880864 DOI: 10.1038/nsmb.3459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Structural and functional analysis of the role of the chaperonin CCT in mTOR complex assembly. Nat Commun 2019; 10:2865. [PMID: 31253771 PMCID: PMC6599039 DOI: 10.1038/s41467-019-10781-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/01/2019] [Indexed: 01/01/2023] Open
Abstract
The mechanistic target of rapamycin (mTOR) kinase forms two multi-protein signaling complexes, mTORC1 and mTORC2, which are master regulators of cell growth, metabolism, survival and autophagy. Two of the subunits of these complexes are mLST8 and Raptor, β-propeller proteins that stabilize the mTOR kinase and recruit substrates, respectively. Here we report that the eukaryotic chaperonin CCT plays a key role in mTORC assembly and signaling by folding both mLST8 and Raptor. A high resolution (4.0 Å) cryo-EM structure of the human mLST8-CCT intermediate isolated directly from cells shows mLST8 in a near-native state bound to CCT deep within the folding chamber between the two CCT rings, and interacting mainly with the disordered N- and C-termini of specific CCT subunits of both rings. These findings describe a unique function of CCT in mTORC assembly and a distinct binding site in CCT for mLST8, far from those found for similar β-propeller proteins. β-propeller domains are an important class of folding substrates for the eukaryotic cytosolic chaperonin CTT. Here the authors find that CTT contributes to the folding and assembly of two β-propeller proteins from mTOR complexes, mLST8 and Raptor, and determine the 4.0 Å cryoEM structure of a human mLST8-CCT intermediate that shows mLST8 in a near-native state.
Collapse
|
21
|
Liu L, Yi J, Ray WK, Vu LT, Helm RF, Siegel PB, Cline MA, Gilbert ER. Fasting differentially alters the hypothalamic proteome of chickens from lines with the propensity to be anorexic or obese. Nutr Diabetes 2019; 9:13. [PMID: 30931934 PMCID: PMC6443654 DOI: 10.1038/s41387-019-0081-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 02/27/2019] [Accepted: 03/12/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The hypothalamus is the ultimate modulator of appetite and energy balance and therefore sensitive to changes in nutritional state. Chicks from lines selected for low (LWS) and high (HWS) body weight are hypophagic and compulsive eaters, respectively, and differ in their propensity to become obese and in their hypothalamic mRNA response to fasting. METHODS As fasting-induced changes in hypothalamic proteins are unknown, we investigated the hypothalamic proteomes of 5-day old LWS and HWS chicks in the fed and fasted states using a label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS) approach. RESULTS A total of 744 proteins were identified in the chicken hypothalamus, and 268 differentially abundant proteins were identified among four pairwise comparisons. Ninety-five proteins were associated with the response to fasting in HWS chicks, and 23 proteins were associated with the response to fasting in LWS chicks. Fasting-responsive proteins in HWS chicks were significantly enriched in ATP metabolic processes, glyoxylate/dicarboxylate metabolism, and ribosome function. There was no enrichment for any pathways in LWS chicks in response to fasting. In the fasted and fed states, 159 and 119 proteins differed between HWS and LWS, respectively. Oxidative phosphorylation, citric acid cycle, and carbon metabolism were the main pathways associated with differences between the two lines of chicks. Enzymes associated with metabolic pathways differed between HWS and LWS in both nutritional states, including fumarase, aspartate aminotransferase, mitochondrial GOT2, 3-hydroxyisobutyrate dehydrogenase, chondrogenesis associated lipocalin, sialic acid synthase, arylamine N-acetyltransferase, pineal gland isozyme NAT-3, and succinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial. CONCLUSIONS These results provide insights into the hypothalamic metabolic pathways that are affected by nutritional status and the regulation of appetite and eating behavior.
Collapse
Affiliation(s)
- Lingbin Liu
- College of Animal Science and Technology, Southwest University, Chongqing, P.R. China
| | - Jiaqing Yi
- Virginia Tech, Department of Animal and Poultry Sciences, Blacksburg, VA, USA
| | - W Keith Ray
- Virginia Tech, Department of Biochemistry, Blacksburg, VA, USA
| | - Lucas T Vu
- Virginia Tech, Department of Chemical Engineering, Blacksburg, VA, USA
| | - Richard F Helm
- Virginia Tech, Department of Biochemistry, Blacksburg, VA, USA
| | - Paul B Siegel
- Virginia Tech, Department of Animal and Poultry Sciences, Blacksburg, VA, USA
| | - Mark A Cline
- Virginia Tech, Department of Animal and Poultry Sciences, Blacksburg, VA, USA
| | - Elizabeth R Gilbert
- Virginia Tech, Department of Animal and Poultry Sciences, Blacksburg, VA, USA.
| |
Collapse
|
22
|
Conway de Macario E, Yohda M, Macario AJL, Robb FT. Bridging human chaperonopathies and microbial chaperonins. Commun Biol 2019; 2:103. [PMID: 30911678 PMCID: PMC6420498 DOI: 10.1038/s42003-019-0318-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 01/15/2019] [Indexed: 12/19/2022] Open
Abstract
Chaperonins are molecular chaperones that play critical physiological roles, but they can be pathogenic. Malfunctional chaperonins cause chaperonopathies of great interest within various medical specialties. Although the clinical-genetic aspects of many chaperonopathies are known, the molecular mechanisms causing chaperonin failure and tissue lesions are poorly understood. Progress is necessary to improve treatment, and experimental models that mimic the human situation provide a promising solution. We present two models: one prokaryotic (the archaeon Pyrococcus furiosus) with eukaryotic-like chaperonins and one eukaryotic (Chaetomium thermophilum), both convenient for isolation-study of chaperonins, and report illustrative results pertaining to a pathogenic mutation of CCT5.
Collapse
Affiliation(s)
- Everly Conway de Macario
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Columbus Center, Baltimore, MD USA
| | - Masafumi Yohda
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Koganei, Tokyo Japan
| | - Alberto J. L. Macario
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Columbus Center, Baltimore, MD USA
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Frank T. Robb
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Columbus Center, Baltimore, MD USA
- Institute for Bioscience and Biotechnology Research (IBBR), Rockville, MD USA
| |
Collapse
|
23
|
Young RM, Hawkins TA, Cavodeassi F, Stickney HL, Schwarz Q, Lawrence LM, Wierzbicki C, Cheng BYL, Luo J, Ambrosio EM, Klosner A, Sealy IM, Rowell J, Trivedi CA, Bianco IH, Allende ML, Busch-Nentwich EM, Gestri G, Wilson SW. Compensatory growth renders Tcf7l1a dispensable for eye formation despite its requirement in eye field specification. eLife 2019; 8:e40093. [PMID: 30777146 PMCID: PMC6380838 DOI: 10.7554/elife.40093] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 01/26/2019] [Indexed: 12/18/2022] Open
Abstract
The vertebrate eye originates from the eye field, a domain of cells specified by a small number of transcription factors. In this study, we show that Tcf7l1a is one such transcription factor that acts cell-autonomously to specify the eye field in zebrafish. Despite the much-reduced eye field in tcf7l1a mutants, these fish develop normal eyes revealing a striking ability of the eye to recover from a severe early phenotype. This robustness is not mediated through genetic compensation at neural plate stage; instead, the smaller optic vesicle of tcf7l1a mutants shows delayed neurogenesis and continues to grow until it achieves approximately normal size. Although the developing eye is robust to the lack of Tcf7l1a function, it is sensitised to the effects of additional mutations. In support of this, a forward genetic screen identified mutations in hesx1, cct5 and gdf6a, which give synthetically enhanced eye specification or growth phenotypes when in combination with the tcf7l1a mutation.
Collapse
Affiliation(s)
- Rodrigo M Young
- Department of Cell and Developmental BiologyUniversity College LondonLondonUnited Kingdom
| | - Thomas A Hawkins
- Department of Cell and Developmental BiologyUniversity College LondonLondonUnited Kingdom
| | - Florencia Cavodeassi
- Department of Cell and Developmental BiologyUniversity College LondonLondonUnited Kingdom
| | - Heather L Stickney
- Department of Cell and Developmental BiologyUniversity College LondonLondonUnited Kingdom
| | - Quenten Schwarz
- Department of Cell and Developmental BiologyUniversity College LondonLondonUnited Kingdom
| | - Lisa M Lawrence
- Department of Cell and Developmental BiologyUniversity College LondonLondonUnited Kingdom
| | - Claudia Wierzbicki
- Department of Cell and Developmental BiologyUniversity College LondonLondonUnited Kingdom
| | - Bowie YL Cheng
- Department of Cell and Developmental BiologyUniversity College LondonLondonUnited Kingdom
| | - Jingyuan Luo
- Department of Cell and Developmental BiologyUniversity College LondonLondonUnited Kingdom
| | | | - Allison Klosner
- Department of Cell and Developmental BiologyUniversity College LondonLondonUnited Kingdom
| | - Ian M Sealy
- Wellcome Sanger InstituteWellcome Genome CampusHinxtonUnited Kingdom
- Department of MedicineUniversity of CambridgeCambridgeUnited Kingdom
| | - Jasmine Rowell
- Department of Cell and Developmental BiologyUniversity College LondonLondonUnited Kingdom
| | - Chintan A Trivedi
- Department of Cell and Developmental BiologyUniversity College LondonLondonUnited Kingdom
| | - Isaac H Bianco
- Department of Cell and Developmental BiologyUniversity College LondonLondonUnited Kingdom
| | - Miguel L Allende
- Center for Genome RegulationFacultad de Ciencias, Universidad de ChileSantiagoChile
| | - Elisabeth M Busch-Nentwich
- Wellcome Sanger InstituteWellcome Genome CampusHinxtonUnited Kingdom
- Department of MedicineUniversity of CambridgeCambridgeUnited Kingdom
| | - Gaia Gestri
- Department of Cell and Developmental BiologyUniversity College LondonLondonUnited Kingdom
| | - Stephen W Wilson
- Department of Cell and Developmental BiologyUniversity College LondonLondonUnited Kingdom
| |
Collapse
|
24
|
Abstract
The eukaryotic group II chaperonin TRiC/CCT assists the folding of 10% of cytosolic proteins including many key structural and regulatory proteins. TRiC plays an essential role in maintaining protein homeostasis, and dysfunction of TRiC is closely related to human diseases including cancer and neurodegenerative diseases. TRiC consists of eight paralogous subunits, each of which plays a specific role in the assembly, allosteric cooperativity, and substrate recognition and folding of this complex macromolecular machine. TRiC-mediated substrate folding is regulated through its ATP-driven conformational changes. In recent years, progresses have been made on the structure, subunit arrangement, conformational cycle, and substrate folding of TRiC. Additionally, accumulating evidences also demonstrate the linkage between TRiC oligomer or monomer and diseases. In this review, we focus on the TRiC structure itself, TRiC assisted substrate folding, TRiC and disease, and the potential therapeutic application of TRiC in various diseases.
Collapse
Affiliation(s)
- Mingliang Jin
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Caixuan Liu
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Wenyu Han
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yao Cong
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
- Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
25
|
Abstract
Mitochondria undergo continuous challenges in the course of their life, from their generation to their degradation. These challenges include the management of reactive oxygen species, the proper assembly of mitochondrial respiratory complexes and the need to balance potential mutations in the mitochondrial DNA. The detection of damage and the ability to keep it under control is critical to fine-tune mitochondrial function to the organismal energy needs. In this review, we will analyze the multiple mechanisms that safeguard mitochondrial function in light of in crescendo damage. This sequence of events will include initial defense against excessive reactive oxygen species production, compensation mechanisms by the unfolded protein response (UPRmt), mitochondrial dynamics and elimination by mitophagy.
Collapse
Affiliation(s)
- Miriam Valera-Alberni
- Nestlé Institute of Health Sciences (NIHS), EPFL Innovation Park, 1015 Lausanne.,School of Life Sciences, EPFL, 1015 Lausanne
| | - Carles Canto
- Nestlé Institute of Health Sciences (NIHS), EPFL Innovation Park, 1015 Lausanne.,School of Life Sciences, EPFL, 1015 Lausanne
| |
Collapse
|
26
|
The structure and evolution of eukaryotic chaperonin-containing TCP-1 and its mechanism that folds actin into a protein spring. Biochem J 2018; 475:3009-3034. [DOI: 10.1042/bcj20170378] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 08/16/2018] [Accepted: 08/28/2018] [Indexed: 12/15/2022]
Abstract
Actin is folded to its native state in eukaryotic cytosol by the sequential allosteric mechanism of the chaperonin-containing TCP-1 (CCT). The CCT machine is a double-ring ATPase built from eight related subunits, CCT1–CCT8. Non-native actin interacts with specific subunits and is annealed slowly through sequential binding and hydrolysis of ATP around and across the ring system. CCT releases a folded but soft ATP-G-actin monomer which is trapped 80 kJ/mol uphill on the folding energy surface by its ATP-Mg2+/Ca2+ clasp. The energy landscape can be re-explored in the actin filament, F-actin, because ATP hydrolysis produces dehydrated and more compact ADP-actin monomers which, upon application of force and strain, are opened and closed like the elements of a spring. Actin-based myosin motor systems underpin a multitude of force generation processes in cells and muscles. We propose that the water surface of F-actin acts as a low-binding energy, directional waveguide which is recognized specifically by the myosin lever-arm domain before the system engages to form the tight-binding actomyosin complex. Such a water-mediated recognition process between actin and myosin would enable symmetry breaking through fast, low energy initial binding events. The origin of chaperonins and the subsequent emergence of the CCT–actin system in LECA (last eukaryotic common ancestor) point to the critical role of CCT in facilitating phagocytosis during early eukaryotic evolution and the transition from the bacterial world. The coupling of CCT-folding fluxes to the cell cycle, cell size control networks and cancer are discussed together with directions for further research.
Collapse
|
27
|
Pereira JH, McAndrew RP, Tomaleri GP, Adams PD. Berkeley Screen: a set of 96 solutions for general macromolecular crystallization. J Appl Crystallogr 2017; 50:1352-1358. [PMID: 29021733 PMCID: PMC5627680 DOI: 10.1107/s1600576717011347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/01/2017] [Indexed: 01/29/2023] Open
Abstract
Using statistical analysis of the Biological Macromolecular Crystallization Database, combined with previous knowledge about crystallization reagents, a crystallization screen called the Berkeley Screen has been created. Correlating crystallization conditions and high-resolution protein structures, it is possible to better understand the influence that a particular solution has on protein crystal formation. Ions and small molecules such as buffers and precipitants used in crystallization experiments were identified in electron density maps, highlighting the role of these chemicals in protein crystal packing. The Berkeley Screen has been extensively used to crystallize target proteins from the Joint BioEnergy Institute and the Collaborative Crystallography program at the Berkeley Center for Structural Biology, contributing to several Protein Data Bank entries and related publications. The Berkeley Screen provides the crystallographic community with an efficient set of solutions for general macromolecular crystallization trials, offering a valuable alternative to the existing commercially available screens.
Collapse
Affiliation(s)
- Jose H. Pereira
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
| | - Ryan P. McAndrew
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
| | | | - Paul D. Adams
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
| |
Collapse
|