1
|
Djorić D, Atkinson SN, Kristich CJ. Reciprocal regulation of enterococcal cephalosporin resistance by products of the autoregulated yvcJ-glmR-yvcL operon enhances fitness during cephalosporin exposure. PLoS Genet 2024; 20:e1011215. [PMID: 38512984 PMCID: PMC10986989 DOI: 10.1371/journal.pgen.1011215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 04/02/2024] [Accepted: 03/06/2024] [Indexed: 03/23/2024] Open
Abstract
Enterococci are commensal members of the gastrointestinal tract and also major nosocomial pathogens. They possess both intrinsic and acquired resistance to many antibiotics, including intrinsic resistance to cephalosporins that target bacterial cell wall synthesis. These antimicrobial resistance traits make enterococcal infections challenging to treat. Moreover, prior therapy with antibiotics, including broad-spectrum cephalosporins, promotes enterococcal proliferation in the gut, resulting in dissemination to other sites of the body and subsequent infection. As a result, a better understanding of mechanisms of cephalosporin resistance is needed to enable development of new therapies to treat or prevent enterococcal infections. We previously reported that flow of metabolites through the peptidoglycan biosynthesis pathway is one determinant of enterococcal cephalosporin resistance. One factor that has been implicated in regulating flow of metabolites into cell wall biosynthesis pathways of other Gram-positive bacteria is GlmR. In enterococci, GlmR is encoded as the middle gene of a predicted 3-gene operon along with YvcJ and YvcL, whose functions are poorly understood. Here we use genetics and biochemistry to investigate the function of the enterococcal yvcJ-glmR-yvcL gene cluster. Our results reveal that YvcL is a DNA-binding protein that regulates expression of the yvcJ-glmR-yvcL operon in response to cell wall stress. YvcJ and GlmR bind UDP-GlcNAc and reciprocally regulate cephalosporin resistance in E. faecalis, and binding of UDP-GlcNAc by YvcJ appears essential for its activity. Reciprocal regulation by YvcJ/GlmR is essential for fitness during exposure to cephalosporin stress. Additionally, our results indicate that enterococcal GlmR likely acts by a different mechanism than the previously studied GlmR of Bacillus subtilis, suggesting that the YvcJ/GlmR regulatory module has evolved unique targets in different species of bacteria.
Collapse
Affiliation(s)
- Dušanka Djorić
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Samantha N. Atkinson
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Center for Microbiome Research, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Christopher J. Kristich
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
2
|
Qiu X, Hu XM, Tang XX, Huang CH, Jian HH, Lin DH. Metabolic adaptations of Microbacterium sediminis YLB-01 in deep-sea high-pressure environments. Appl Microbiol Biotechnol 2024; 108:170. [PMID: 38265689 DOI: 10.1007/s00253-023-12906-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 01/25/2024]
Abstract
The deep-sea environment is an extremely difficult habitat for microorganisms to survive in due to its intense hydrostatic pressure. However, the mechanisms by which these organisms adapt to such extreme conditions remain poorly understood. In this study, we investigated the metabolic adaptations of Microbacterium sediminis YLB-01, a cold and stress-tolerant microorganism isolated from deep-sea sediments, in response to high-pressure conditions. YLB-01 cells were cultured at normal atmospheric pressure and 28 ℃ until they reached the stationary growth phase. Subsequently, the cells were exposed to either normal pressure or high pressure (30 MPa) at 4 ℃ for 7 days. Using NMR-based metabolomic and proteomic analyses of YLB-01 cells exposed to high-pressure conditions, we observed significant metabolic changes in several metabolic pathways, including amino acid, carbohydrate, and lipid metabolism. In particular, the high-pressure treatment stimulates cell division and triggers the accumulation of UDP-glucose, a critical factor in cell wall formation. This finding highlights the adaptive strategies used by YLB-01 cells to survive in the challenging high-pressure environments of the deep sea. Specifically, we discovered that YLB-01 cells regulate amino acid metabolism, promote carbohydrate metabolism, enhance cell wall synthesis, and improve cell membrane fluidity in response to high pressure. These adaptive mechanisms play essential roles in supporting the survival and growth of YLB-01 in high-pressure conditions. Our study offers valuable insights into the molecular mechanisms underlying the metabolic adaptation of deep-sea microorganisms to high-pressure environments. KEY POINTS: • NMR-based metabolomic and proteomic analyses were conducted on Microbacterium sediminis YLB-01 to investigate the significant alterations in several metabolic pathways in response to high-pressure treatment. • YLB-01 cells used adaptive strategies (such as regulated amino acid metabolism, promoted carbohydrate metabolism, enhanced cell wall synthesis, and improved cell membrane fluidity) to survive in the challenging high-pressure environment of the deep sea. • High-pressure treatment stimulated cell division and triggered the accumulation of UDP-glucose, a critical factor in cell wall formation, in Microbacterium sediminis YLB-01 cells.
Collapse
Affiliation(s)
- Xu Qiu
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Xiao-Min Hu
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Xi-Xiang Tang
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China.
| | - Cai-Hua Huang
- Research and Communication Center of Exercise and Health, Xiamen University of Technology, Xiamen, China
| | - Hua-Hua Jian
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Dong-Hai Lin
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.
| |
Collapse
|
3
|
Pensinger DA, Gutierrez KV, Smith HB, Vincent WJB, Stevenson DS, Black KA, Perez-Medina KM, Dillard JP, Rhee KY, Amador-Noguez D, Huynh TN, Sauer JD. Listeria monocytogenes GlmR Is an Accessory Uridyltransferase Essential for Cytosolic Survival and Virulence. mBio 2023; 14:e0007323. [PMID: 36939339 PMCID: PMC10128056 DOI: 10.1128/mbio.00073-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/14/2023] [Indexed: 03/21/2023] Open
Abstract
The cytosol of eukaryotic host cells is an intrinsically hostile environment for bacteria. Understanding how cytosolic pathogens adapt to and survive in the cytosol is critical to developing novel therapeutic interventions against these pathogens. The cytosolic pathogen Listeria monocytogenes requires glmR (previously known as yvcK), a gene of unknown function, for resistance to cell-wall stress, cytosolic survival, inflammasome avoidance, and, ultimately, virulence in vivo. In this study, a genetic suppressor screen revealed that blocking utilization of UDP N-acetylglucosamine (UDP-GlcNAc) by a nonessential wall teichoic acid decoration pathway restored resistance to lysozyme and partially restored virulence of ΔglmR mutants. In parallel, metabolomic analysis revealed that ΔglmR mutants are impaired in the production of UDP-GlcNAc, an essential peptidoglycan and wall teichoic acid (WTA) precursor. We next demonstrated that purified GlmR can directly catalyze the synthesis of UDP-GlcNAc from GlcNAc-1P and UTP, suggesting that it is an accessory uridyltransferase. Biochemical analysis of GlmR orthologues suggests that uridyltransferase activity is conserved. Finally, mutational analysis resulting in a GlmR mutant with impaired catalytic activity demonstrated that uridyltransferase activity was essential to facilitate cell-wall stress responses and virulence in vivo. Taken together, these studies indicate that GlmR is an evolutionary conserved accessory uridyltransferase required for cytosolic survival and virulence of L. monocytogenes. IMPORTANCE Bacterial pathogens must adapt to their host environment in order to cause disease. The cytosolic bacterial pathogen Listeria monocytogenes requires a highly conserved protein of unknown function, GlmR (previously known as YvcK), to survive in the host cytosol. GlmR is important for resistance to some cell-wall stresses and is essential for virulence. The ΔglmR mutant is deficient in production of an essential cell-wall metabolite, UDP-GlcNAc, and suppressors that increase metabolite levels also restore virulence. Purified GlmR can directly catalyze the synthesis of UDP-GlcNAc, and this enzymatic activity is conserved in both Bacillus subtilis and Staphylococcus aureus. These results highlight the importance of accessory cell wall metabolism enzymes in responding to cell-wall stress in a variety of Gram-positive bacteria.
Collapse
Affiliation(s)
- Daniel A. Pensinger
- Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Kimberly V. Gutierrez
- Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Hans B. Smith
- Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - William J. B. Vincent
- Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - David S. Stevenson
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | | | - Krizia M. Perez-Medina
- Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Joseph P. Dillard
- Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Kyu Y. Rhee
- Weill Cornell Medical College, New York, New York, USA
| | - Daniel Amador-Noguez
- Microbiology Doctoral Training Program, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - TuAnh N. Huynh
- Microbiology Doctoral Training Program, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Food Science, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - John-Demian Sauer
- Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin—Madison, Madison, Wisconsin, USA
| |
Collapse
|
4
|
Galinier A, Delan-Forino C, Foulquier E, Lakhal H, Pompeo F. Recent Advances in Peptidoglycan Synthesis and Regulation in Bacteria. Biomolecules 2023; 13:biom13050720. [PMID: 37238589 DOI: 10.3390/biom13050720] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Bacteria must synthesize their cell wall and membrane during their cell cycle, with peptidoglycan being the primary component of the cell wall in most bacteria. Peptidoglycan is a three-dimensional polymer that enables bacteria to resist cytoplasmic osmotic pressure, maintain their cell shape and protect themselves from environmental threats. Numerous antibiotics that are currently used target enzymes involved in the synthesis of the cell wall, particularly peptidoglycan synthases. In this review, we highlight recent progress in our understanding of peptidoglycan synthesis, remodeling, repair, and regulation in two model bacteria: the Gram-negative Escherichia coli and the Gram-positive Bacillus subtilis. By summarizing the latest findings in this field, we hope to provide a comprehensive overview of peptidoglycan biology, which is critical for our understanding of bacterial adaptation and antibiotic resistance.
Collapse
Affiliation(s)
- Anne Galinier
- Laboratoire de Chimie Bactérienne, UMR 7283, Institut de Microbiologie de la Méditerranée, CNRS/Aix-Marseille Univ, 31 Chemin Joseph Aiguier, 13009 Marseille, France
| | - Clémentine Delan-Forino
- Laboratoire de Chimie Bactérienne, UMR 7283, Institut de Microbiologie de la Méditerranée, CNRS/Aix-Marseille Univ, 31 Chemin Joseph Aiguier, 13009 Marseille, France
| | - Elodie Foulquier
- Laboratoire de Chimie Bactérienne, UMR 7283, Institut de Microbiologie de la Méditerranée, CNRS/Aix-Marseille Univ, 31 Chemin Joseph Aiguier, 13009 Marseille, France
| | - Hakima Lakhal
- Laboratoire de Chimie Bactérienne, UMR 7283, Institut de Microbiologie de la Méditerranée, CNRS/Aix-Marseille Univ, 31 Chemin Joseph Aiguier, 13009 Marseille, France
| | - Frédérique Pompeo
- Laboratoire de Chimie Bactérienne, UMR 7283, Institut de Microbiologie de la Méditerranée, CNRS/Aix-Marseille Univ, 31 Chemin Joseph Aiguier, 13009 Marseille, France
| |
Collapse
|
5
|
Zhang A, Lebrun R, Espinosa L, Galinier A, Pompeo F. PrkA is an ATP-dependent protease that regulates sporulation in Bacillus subtilis. J Biol Chem 2022; 298:102436. [PMID: 36041628 PMCID: PMC9512850 DOI: 10.1016/j.jbc.2022.102436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/18/2022] Open
Abstract
In Bacillus subtilis, sporulation is a sequential and highly regulated process. Phosphorylation events by histidine kinases are key points in the phosphorelay that initiates sporulation, but serine/threonine protein kinases also play important auxiliary roles in this regulation. PrkA has been proposed to be a serine protein kinase expressed during the initiation of sporulation and involved in this differentiation process. Additionally, the role of PrkA in sporulation has been previously proposed to be mediated via the transition phase regulator ScoC, which in turn regulates the transcriptional factor σK and its regulon. However, the kinase activity of PrkA has not been clearly demonstrated, and neither its autophosphorylation nor phosphorylated substrates have been unambiguously established in B. subtilis. We demonstrated here that PrkA regulation of ScoC is likely indirect. Following bioinformatic homology searches, we revealed sequence similarities of PrkA with the ATPases associated with diverse cellular activities ATP-dependent Lon protease family. Here, we showed that PrkA is indeed able to hydrolyze α-casein, an exogenous substrate of Lon proteases, in an ATP-dependent manner. We also showed that this ATP-dependent protease activity is essential for PrkA function in sporulation since mutation in the Walker A motif leads to a sporulation defect. Furthermore, we found that PrkA protease activity is tightly regulated by phosphorylation events involving one of the Ser/Thr protein kinases of B. subtilis, PrkC. Taken together, our results clarify the key role of PrkA in the complex process of B. subtilis sporulation.
Collapse
Affiliation(s)
- Ao Zhang
- Laboratoire de Chimie Bactérienne, UMR 7283, IMM, CNRS, Aix-Marseille Université, Marseille, France
| | - Régine Lebrun
- Plateforme Protéomique de l'IMM, Marseille Protéomique (MaP), CNRS FR 3479, Aix-Marseille Université, Marseille, France
| | - Leon Espinosa
- Laboratoire de Chimie Bactérienne, UMR 7283, IMM, CNRS, Aix-Marseille Université, Marseille, France
| | - Anne Galinier
- Laboratoire de Chimie Bactérienne, UMR 7283, IMM, CNRS, Aix-Marseille Université, Marseille, France
| | - Frédérique Pompeo
- Laboratoire de Chimie Bactérienne, UMR 7283, IMM, CNRS, Aix-Marseille Université, Marseille, France.
| |
Collapse
|
6
|
El Qaidi S, Scott NE, Hays MP, Hardwidge PR. Arginine glycosylation regulates UDP-GlcNAc biosynthesis in Salmonella enterica. Sci Rep 2022; 12:5293. [PMID: 35351940 PMCID: PMC8964723 DOI: 10.1038/s41598-022-09276-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/21/2022] [Indexed: 12/27/2022] Open
Abstract
The Salmonella enterica SseK1 protein is a type three secretion system effector that glycosylates host proteins during infection on specific arginine residues with N-acetyl glucosamine (GlcNAc). SseK1 also Arg-glycosylates endogenous bacterial proteins and we thus hypothesized that SseK1 activities might be integrated with regulating the intrabacterial abundance of UPD-GlcNAc, the sugar-nucleotide donor used by this effector. After searching for new SseK1 substrates, we found that SseK1 glycosylates arginine residues in the dual repressor-activator protein NagC, leading to increased DNA-binding affinity and enhanced expression of the NagC-regulated genes glmU and glmS. SseK1 also glycosylates arginine residues in GlmR, a protein that enhances GlmS activity. This Arg-glycosylation improves the ability of GlmR to enhance GlmS activity. We also discovered that NagC is a direct activator of glmR expression. Salmonella lacking SseK1 produce significantly reduced amounts of UDP-GlcNAc as compared with Salmonella expressing SseK1. Overall, we conclude that SseK1 up-regulates UDP-GlcNAc synthesis both by enhancing the DNA-binding activity of NagC and by increasing GlmS activity through GlmR glycosylation. Such regulatory activities may have evolved to maintain sufficient levels of UDP-GlcNAc for both bacterial cell wall precursors and for SseK1 to modify other bacterial and host targets in response to environmental changes and during infection.
Collapse
Affiliation(s)
- Samir El Qaidi
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne Within the Peter Doherty Institute for Infection and Immunity, Melbourne, 3000, Australia
| | - Michael P Hays
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA
| | - Philip R Hardwidge
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
7
|
Liang C, Rios-Miguel AB, Jarick M, Neurgaonkar P, Girard M, François P, Schrenzel J, Ibrahim ES, Ohlsen K, Dandekar T. Staphylococcusaureus Transcriptome Data and Metabolic Modelling Investigate the Interplay of Ser/Thr Kinase PknB, Its Phosphatase Stp, the glmR/yvcK Regulon and the cdaA Operon for Metabolic Adaptation. Microorganisms 2021; 9:microorganisms9102148. [PMID: 34683468 PMCID: PMC8537086 DOI: 10.3390/microorganisms9102148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 01/17/2023] Open
Abstract
Serine/threonine kinase PknB and its corresponding phosphatase Stp are important regulators of many cell functions in the pathogen S. aureus. Genome-scale gene expression data of S. aureus strain NewHG (sigB+) elucidated their effect on physiological functions. Moreover, metabolic modelling from these data inferred metabolic adaptations. We compared wild-type to deletion strains lacking pknB, stp or both. Ser/Thr phosphorylation of target proteins by PknB switched amino acid catabolism off and gluconeogenesis on to provide the cell with sufficient components. We revealed a significant impact of PknB and Stp on peptidoglycan, nucleotide and aromatic amino acid synthesis, as well as catabolism involving aspartate transaminase. Moreover, pyrimidine synthesis was dramatically impaired by stp deletion but only slightly by functional loss of PknB. In double knockouts, higher activity concerned genes involved in peptidoglycan, purine and aromatic amino acid synthesis from glucose but lower activity of pyrimidine synthesis from glucose compared to the wild type. A second transcriptome dataset from S. aureus NCTC 8325 (sigB−) validated the predictions. For this metabolic adaptation, PknB was found to interact with CdaA and the yvcK/glmR regulon. The involved GlmR structure and the GlmS riboswitch were modelled. Furthermore, PknB phosphorylation lowered the expression of many virulence factors, and the study shed light on S. aureus infection processes.
Collapse
Affiliation(s)
- Chunguang Liang
- Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, 97074 Würzburg, Germany; (C.L.); (A.B.R.-M.); (P.N.)
| | - Ana B. Rios-Miguel
- Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, 97074 Würzburg, Germany; (C.L.); (A.B.R.-M.); (P.N.)
- Department of Environmental Microbiology, Institute of Water and Wetland Research, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Marcel Jarick
- Institute for Molecular Infection Biology, Josef-Schneider-Straße 2/D15, University of Würzburg, 97080 Würzburg, Germany; (M.J.); (E.S.I.)
| | - Priya Neurgaonkar
- Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, 97074 Würzburg, Germany; (C.L.); (A.B.R.-M.); (P.N.)
| | - Myriam Girard
- Genomic Research Laboratory, Service of Infectious Diseases, University of Geneva Hospitals, CH-1211 Geneva 14, Switzerland; (M.G.); (P.F.); (J.S.)
| | - Patrice François
- Genomic Research Laboratory, Service of Infectious Diseases, University of Geneva Hospitals, CH-1211 Geneva 14, Switzerland; (M.G.); (P.F.); (J.S.)
| | - Jacques Schrenzel
- Genomic Research Laboratory, Service of Infectious Diseases, University of Geneva Hospitals, CH-1211 Geneva 14, Switzerland; (M.G.); (P.F.); (J.S.)
| | - Eslam S. Ibrahim
- Institute for Molecular Infection Biology, Josef-Schneider-Straße 2/D15, University of Würzburg, 97080 Würzburg, Germany; (M.J.); (E.S.I.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Knut Ohlsen
- Institute for Molecular Infection Biology, Josef-Schneider-Straße 2/D15, University of Würzburg, 97080 Würzburg, Germany; (M.J.); (E.S.I.)
- Correspondence: (K.O.); (T.D.); Tel.: +49-931-31-82155 (K.O.); +49-931-31-84551 (T.D.)
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, 97074 Würzburg, Germany; (C.L.); (A.B.R.-M.); (P.N.)
- Correspondence: (K.O.); (T.D.); Tel.: +49-931-31-82155 (K.O.); +49-931-31-84551 (T.D.)
| |
Collapse
|
8
|
Sun L, Rogiers G, Michiels CW. The Natural Antimicrobial trans-Cinnamaldehyde Interferes with UDP-N-Acetylglucosamine Biosynthesis and Cell Wall Homeostasis in Listeria monocytogenes. Foods 2021; 10:foods10071666. [PMID: 34359536 PMCID: PMC8307235 DOI: 10.3390/foods10071666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 01/07/2023] Open
Abstract
Trans-cinnamaldehyde (t-CIN), an antimicrobial compound from cinnamon essential oil, is of interest because it inhibits various foodborne pathogens. In the present work, we investigated the antimicrobial mechanisms of t-CIN in Listeria monocytogenes using a previously isolated yvcK::Himar1 transposon mutant which shows hypersensitivity to t-CIN. Time-lapse microscopy revealed that t-CIN induces a bulging cell shape followed by lysis in the mutant. Complementation with wild-type yvcK gene completely restored the tolerance of yvcK::Himar1 strain to t-CIN and the cell morphology. Suppressor mutants which partially reversed the t-CIN sensitivity of the yvcK::Himar1 mutant were isolated from evolutionary experiments. Three out of five suppression mutations were in the glmU-prs operon and in nagR, which are linked to the biosynthesis of the peptidoglycan precursor uridine-diphosphate-N-acetylglucosamine (UDP-GlcNAc). GlmU catalyzes the last two steps of UDP-GlcNAc biosynthesis and NagR represses the uptake and utilization of N-acetylglucosamine. Feeding N-acetylglucosamine or increasing the production of UDP-GlcNAc synthetic enzymes fully or partially restored the t-CIN tolerance of the yvcK mutant. Together, these results suggest that YvcK plays a pivotal role in diverting substrates to UDP-GlcNAc biosynthesis in L. monocytogenes and that t-CIN interferes with this pathway, leading to a peptidoglycan synthesis defect.
Collapse
|
9
|
Galinier A, Foulquier E, Pompeo F. Metabolic Control of Cell Elongation and Cell Division in Bacillus subtilis. Front Microbiol 2021; 12:697930. [PMID: 34248920 PMCID: PMC8270655 DOI: 10.3389/fmicb.2021.697930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/31/2021] [Indexed: 11/18/2022] Open
Abstract
To survive and adapt to changing nutritional conditions, bacteria must rapidly modulate cell cycle processes, such as doubling time or cell size. Recent data have revealed that cellular metabolism is a central regulator of bacterial cell cycle. Indeed, proteins that can sense precursors or metabolites or enzymes, in addition to their enzymatic activities involved in metabolism, were shown to directly control cell cycle processes in response to changes in nutrient levels. Here we focus on cell elongation and cell division in the Gram-positive rod-shaped bacterium Bacillus subtilis and we report evidences linking these two cellular processes to environmental nutritional availability and thus metabolic cellular status.
Collapse
Affiliation(s)
- Anne Galinier
- Laboratoire de Chimie Bactérienne, UMR 7283, CNRS/Aix-Marseille Université, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Elodie Foulquier
- Laboratoire de Chimie Bactérienne, UMR 7283, CNRS/Aix-Marseille Université, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Frédérique Pompeo
- Laboratoire de Chimie Bactérienne, UMR 7283, CNRS/Aix-Marseille Université, Institut de Microbiologie de la Méditerranée, Marseille, France
| |
Collapse
|
10
|
Sachla AJ, Helmann JD. Resource sharing between central metabolism and cell envelope synthesis. Curr Opin Microbiol 2021; 60:34-43. [PMID: 33581378 PMCID: PMC7988295 DOI: 10.1016/j.mib.2021.01.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/18/2021] [Accepted: 01/27/2021] [Indexed: 12/14/2022]
Abstract
Synthesis of the bacterial cell envelope requires a regulated partitioning of resources from central metabolism. Here, we consider the key metabolic junctions that provide the precursors needed to assemble the cell envelope. Peptidoglycan synthesis requires redirection of a glycolytic intermediate, fructose-6-phosphate, into aminosugar biosynthesis by the highly regulated branchpoint enzyme GlmS. MurA directs the downstream product, UDP-GlcNAc, specifically into peptidoglycan synthesis. Other shared resources required for cell envelope synthesis include the isoprenoid carrier lipid undecaprenyl phosphate and amino acids required for peptidoglycan cross-bridges. Assembly of the envelope requires a sharing of limited resources between competing cellular pathways and may additionally benefit from scavenging of metabolites released from neighboring cells or the formation of symbiotic relationships with a host.
Collapse
Affiliation(s)
- Ankita J Sachla
- Department of Microbiology, Cornell University, 370 Wing Hall, Wing Drive, Ithaca, NY 14853-8101, USA
| | - John D Helmann
- Department of Microbiology, Cornell University, 370 Wing Hall, Wing Drive, Ithaca, NY 14853-8101, USA.
| |
Collapse
|
11
|
Uridine diphosphate N-acetylglucosamine orchestrates the interaction of GlmR with either YvcJ or GlmS in Bacillus subtilis. Sci Rep 2020; 10:15938. [PMID: 32994436 PMCID: PMC7525490 DOI: 10.1038/s41598-020-72854-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
In bacteria, glucosamine-6-phosphate (GlcN6P) synthase, GlmS, is an enzyme required for the synthesis of Uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), a precursor of peptidoglycan. In Bacillus subtilis, an UDP-GlcNAc binding protein, GlmR (formerly YvcK), essential for growth on non-glycolytic carbon sources, has been proposed to stimulate GlmS activity; this activation could be antagonized by UDP-GlcNAc. Using purified proteins, we demonstrate that GlmR directly stimulates GlmS activity and the presence of UDP-GlcNAc (at concentrations above 0.1 mM) prevents this regulation. We also showed that YvcJ, whose gene is associated with yvcK (glmR), interacts with GlmR in an UDP-GlcNAc dependent manner. Strains producing GlmR variants unable to interact with YvcJ show decreased transformation efficiency similar to that of a yvcJ null mutant. We therefore propose that, depending on the intracellular concentration of UDP-GlcNAc, GlmR interacts with either YvcJ or GlmS. When UDP-GlcNAc concentration is high, this UDP-sugar binds to YvcJ and to GlmR, blocking the stimulation of GlmS activity and driving the interaction between GlmR and YvcJ to probably regulate the cellular role of the latter. When the UDP-GlcNAc level is low, GlmR does not interact with YvcJ and thus does not regulate its cellular role but interacts with GlmS to stimulate its activity.
Collapse
|
12
|
Jeong YC, Lee KS. A proposed carbon-utilization and virulence protein A, CuvA (Rv1422), from Mycobacterium tuberculosis H37Rv: crystallization, X-ray diffraction analysis and ligand binding. Acta Crystallogr F Struct Biol Commun 2020; 76:314-319. [PMID: 32627747 PMCID: PMC7336361 DOI: 10.1107/s2053230x20008626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 06/26/2020] [Indexed: 11/10/2022] Open
Abstract
Mycobacterium tuberculosis possesses the ability to undergo physiological adaptations in order to persist during the prolonged course of infection despite the active immune response of the host and in order to overcome multiple environmental changes. Previous studies have proposed that M. tuberculosis CuvA (Rv1422; MtCuvA) might play a critical role in the adaptation of the bacterium to environmental changes, such as nutrient utilization and alteration of the growth rate. However, the detailed function of MtCuvA still remains unclear owing to a lack of structural information. To better understand its role in host adaptation, MtCuvA was purified to homogeneity and was crystallized for the first time using the hanging-drop vapor-diffusion method. The crystal of MtCuvA diffracted to a resolution of 2.1 Å and belonged to the orthorhombic space group P212121, with unit-cell parameters a = 47.27, b = 170.93, c = 178.10 Å. The calculated Matthews coefficient (VM) was 2.4 Å3 Da-1, with a solvent content of 48.02%, and thus four molecules appeared to be present in the asymmetric unit. Moreover, it is reported that MtCuvA can bind to the cell-wall precursor components uridine diphosphate (UDP)-glucose and UDP-N-acetylglucosamine.
Collapse
Affiliation(s)
- Yoon Chae Jeong
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Republic of Korea
| | - Ki Seog Lee
- Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan, Busan 46252, Republic of Korea
| |
Collapse
|
13
|
Coussement P, Bauwens D, Peters G, Maertens J, De Mey M. Mapping and refactoring pathway control through metabolic and protein engineering: The hexosamine biosynthesis pathway. Biotechnol Adv 2020; 40:107512. [DOI: 10.1016/j.biotechadv.2020.107512] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/07/2019] [Accepted: 09/30/2019] [Indexed: 01/14/2023]
|
14
|
Patel V, Black KA, Rhee KY, Helmann JD. Bacillus subtilis PgcA moonlights as a phosphoglucosamine mutase in support of peptidoglycan synthesis. PLoS Genet 2019; 15:e1008434. [PMID: 31589605 PMCID: PMC6797236 DOI: 10.1371/journal.pgen.1008434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/17/2019] [Accepted: 09/18/2019] [Indexed: 01/25/2023] Open
Abstract
Phosphohexomutase superfamily enzymes catalyze the reversible intramolecular transfer of a phosphoryl moiety on hexose sugars. Bacillus subtilis phosphoglucomutase PgcA catalyzes the reversible interconversion of glucose 6-phosphate (Glc-6-P) and glucose 1-phosphate (Glc-1-P), a precursor of UDP-glucose (UDP-Glc). B. subtilis phosphoglucosamine mutase (GlmM) is a member of the same enzyme superfamily that converts glucosamine 6-phosphate (GlcN-6-P) to glucosamine 1-phosphate (GlcN-1-P), a precursor of the amino sugar moiety of peptidoglycan. Here, we present evidence that B. subtilis PgcA possesses activity as a phosphoglucosamine mutase that contributes to peptidoglycan biosynthesis. This activity was made genetically apparent by the synthetic lethality of pgcA with glmR, a positive regulator of amino sugar biosynthesis, which can be specifically suppressed by overproduction of GlmM. A gain-of-function mutation in a substrate binding loop (PgcA G47S) increases this secondary activity and suppresses a glmR mutant. Our results demonstrate that bacterial phosphoglucomutases may possess secondary phosphoglucosamine mutase activity, and that this dual activity may provide some level of functional redundancy for the essential peptidoglycan biosynthesis pathway.
Collapse
Affiliation(s)
- Vaidehi Patel
- Department of Microbiology, Cornell University, Ithaca, NY, United States of America
| | - Katherine A. Black
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, United States of America
| | - Kyu Y. Rhee
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, United States of America
| | - John D. Helmann
- Department of Microbiology, Cornell University, Ithaca, NY, United States of America
- * E-mail:
| |
Collapse
|
15
|
Pompeo F, Rismondo J, Gründling A, Galinier A. Investigation of the phosphorylation of Bacillus subtilis LTA synthases by the serine/threonine kinase PrkC. Sci Rep 2018; 8:17344. [PMID: 30478337 PMCID: PMC6255753 DOI: 10.1038/s41598-018-35696-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/08/2018] [Indexed: 11/08/2022] Open
Abstract
Bacillus subtilis possesses four lipoteichoic acid synthases LtaS, YfnI, YvgJ and YqgS involved in the synthesis of cell wall. The crystal structure of the extracellular domain of LtaS revealed a phosphorylated threonine and YfnI was identified in two independent phosphoproteome studies. Here, we show that the four LTA synthases can be phosphorylated in vitro by the Ser/Thr kinase PrkC. Phosphorylation neither affects the export/release of YfnI nor its substrate binding. However, we observed that a phosphomimetic form of YfnI was active whereas its phosphoablative form was inactive. The phenotypes of the strains deleted for prkC or prpC (coding for a phosphatase) are fairly similar to those of the strains producing the phosphoablative or phosphomimetic YfnI proteins. Clear evidence proving that PrkC phosphorylates YfnI in vivo is still missing but our data suggest that the activity of all LTA synthases may be regulated by phosphorylation. Nonetheless, their function is non-redundant in cell. Indeed, the deletion of either ltaS or yfnI gene could restore a normal growth and shape to a ΔyvcK mutant strain but this was not the case for yvgJ or yqgS. The synthesis of cell wall must then be highly regulated to guarantee correct morphogenesis whatever the growth conditions.
Collapse
Affiliation(s)
| | - Jeanine Rismondo
- Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW72AZ, UK
| | - Angelika Gründling
- Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW72AZ, UK
| | | |
Collapse
|
16
|
Patel V, Wu Q, Chandrangsu P, Helmann JD. A metabolic checkpoint protein GlmR is important for diverting carbon into peptidoglycan biosynthesis in Bacillus subtilis. PLoS Genet 2018; 14:e1007689. [PMID: 30248093 PMCID: PMC6171935 DOI: 10.1371/journal.pgen.1007689] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 10/04/2018] [Accepted: 09/11/2018] [Indexed: 12/18/2022] Open
Abstract
The Bacillus subtilis GlmR (formerly YvcK) protein is essential for growth on gluconeogenic carbon sources. Mutants lacking GlmR display a variety of phenotypes suggestive of impaired cell wall synthesis including antibiotic sensitivity, aberrant cell morphology and lysis. To define the role of GlmR, we selected suppressor mutations that ameliorate the sensitivity of a glmR null mutant to the beta-lactam antibiotic cefuroxime or restore growth on gluconeogenic carbon sources. Several of the resulting suppressors increase the expression of the GlmS and GlmM proteins that catalyze the first two committed steps in the diversion of carbon from central carbon metabolism into peptidoglycan biosynthesis. Chemical complementation studies indicate that the absence of GlmR can be overcome by provision of cells with N-acetylglucosamine (GlcNAc), even under conditions where GlcNAc cannot re-enter central metabolism and serve as a carbon source for growth. Our results indicate that GlmR facilitates the diversion of carbon from the central metabolite fructose-6-phosphate, which is limiting in cells growing on gluconeogenic carbon sources, into peptidoglycan biosynthesis. Our data suggest that GlmR stimulates GlmS activity, and we propose that this activation is antagonized by the known GlmR ligand and peptidoglycan intermediate UDP-GlcNAc. Thus, GlmR presides over a new mechanism for the regulation of carbon partitioning between central metabolism and peptidoglycan biosynthesis.
Collapse
Affiliation(s)
- Vaidehi Patel
- Cornell University, Department of Microbiology, Ithaca, NY, United States of America
| | - Qun Wu
- Cornell University, Department of Microbiology, Ithaca, NY, United States of America
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Pete Chandrangsu
- Cornell University, Department of Microbiology, Ithaca, NY, United States of America
| | - John D. Helmann
- Cornell University, Department of Microbiology, Ithaca, NY, United States of America
- * E-mail:
| |
Collapse
|