1
|
Skobeleva K, Wang G, Kaznacheyeva E. STIM Proteins: The Gas and Brake of Calcium Entry in Neurons. Neurosci Bull 2024:10.1007/s12264-024-01272-5. [PMID: 39266936 DOI: 10.1007/s12264-024-01272-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/22/2024] [Indexed: 09/14/2024] Open
Abstract
Stromal interaction molecules (STIM)s are Ca2+ sensors in internal Ca2+ stores of the endoplasmic reticulum. They activate the store-operated Ca2+ channels, which are the main source of Ca2+ entry in non-excitable cells. Moreover, STIM proteins interact with other Ca2+ channel subunits and active transporters, making STIMs an important intermediate molecule in orchestrating a wide variety of Ca2+ influxes into excitable cells. Nevertheless, little is known about the role of STIM proteins in brain functioning. Being involved in many signaling pathways, STIMs replenish internal Ca2+ stores in neurons and mediate synaptic transmission and neuronal excitability. Ca2+ dyshomeostasis is a signature of many pathological conditions of the brain, including neurodegenerative diseases, injuries, stroke, and epilepsy. STIMs play a role in these disturbances not only by supporting abnormal store-operated Ca2+ entry but also by regulating Ca2+ influx through other channels. Here, we review the present knowledge of STIMs in neurons and their involvement in brain pathology.
Collapse
Affiliation(s)
- Ksenia Skobeleva
- Laboratory of Ion Channels of Cell Membranes, Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, Russia, 194064
| | - Guanghui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Elena Kaznacheyeva
- Laboratory of Ion Channels of Cell Membranes, Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, Russia, 194064.
| |
Collapse
|
2
|
Saint-Martin Willer A, Montani D, Capuano V, Antigny F. Orai1/STIMs modulators in pulmonary vascular diseases. Cell Calcium 2024; 121:102892. [PMID: 38735127 DOI: 10.1016/j.ceca.2024.102892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/27/2024] [Accepted: 04/23/2024] [Indexed: 05/14/2024]
Abstract
Calcium (Ca2+) is a secondary messenger that regulates various cellular processes. However, Ca2+ mishandling could lead to pathological conditions. Orai1 is a Ca2+channel contributing to the store-operated calcium entry (SOCE) and plays a critical role in Ca2+ homeostasis in several cell types. Dysregulation of Orai1 contributed to severe combined immune deficiency syndrome, some cancers, pulmonary arterial hypertension (PAH), and other cardiorespiratory diseases. During its activation process, Orai1 is mainly regulated by stromal interacting molecule (STIM) proteins, especially STIM1; however, many other regulatory partners have also been recently described. Increasing knowledge about these regulatory partners provides a better view of the downstream signalling pathways of SOCE and offers an excellent opportunity to decipher Orai1 dysregulation in these diseases. These proteins participate in other cellular functions, making them attractive therapeutic targets. This review mainly focuses on Orai1 regulatory partners in the physiological and pathological conditions of the pulmonary circulation and inflammation.
Collapse
Affiliation(s)
- Anaïs Saint-Martin Willer
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999 Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - David Montani
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999 Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Le Plessis-Robinson, France; Assistance Publique - Hôpitaux de Paris (AP-HP), Service de Pneumologie et Soins Intensifs Respiratoires, Centre de Référence de l'Hypertension Pulmonaire, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Véronique Capuano
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999 Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Le Plessis-Robinson, France; Hôptal Marie Lannelongue, Groupe Hospitalier Paris Saint-Joseph, Le Plessis-Robinson, France
| | - Fabrice Antigny
- Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999 Hypertension pulmonaire: Physiopathologie et Innovation Thérapeutique, Hôpital Marie Lannelongue, Le Plessis-Robinson, France.
| |
Collapse
|
3
|
Manning D, Barrett-Jolley R, Evans RL, Dart C. TRPC1 channel clustering during store-operated Ca 2+ entry in keratinocytes. Front Physiol 2023; 14:1141006. [PMID: 36950299 PMCID: PMC10025536 DOI: 10.3389/fphys.2023.1141006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Skin is the largest organ in the human body with ∼95% of its surface made up of keratinocytes. These cells maintain a healthy skin barrier through regulated differentiation driven by Ca2+-transcriptional coupling. Many important skin conditions arise from disruption of this process although not all stages are fully understood. We know that elevated extracellular Ca2+ at the skin surface is detected by keratinocyte Gαq-coupled receptors that signal to empty endoplasmic reticulum Ca2+ stores. Orai channel store-operated Ca2+ entry (SOCE) and Ca2+ influx via "canonical" transient receptor potential (TRPC)-composed channels then activates transcription factors that drive differentiation. While STIM-mediated activation of Orai channels following store depletion is well defined, how TRPC channels are activated is less clear. Multiple modes of TRPC channel activation have been proposed, including 1) independent TRPC activation by STIM, 2) formation of Orai-TRPC-STIM complexes, and 3) the insertion of constitutively-active TRPC channels into the membrane during SOCE. To help distinguish between these models, we used high-resolution microscopy of intact keratinocyte (HaCaT) cells and immunogold transmission electron microscopy (TEM) of HaCaT plasma membrane sheets. Our data shows no evidence of significant insertion of Orai1 or TRPC subunits into the membrane during SOCE. Analysis of transmission electron microscopy data shows that during store-depletion and SOCE, Orai1 and TRPC subunits form separate membrane-localized clusters that migrate towards each other. This clustering of TRPC channel subunits in keratinocytes may support the formation of TRPC-STIM interactions at ER-plasma membrane junctions that are distinct from Orai-STIM junctions.
Collapse
Affiliation(s)
- Declan Manning
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Richard Barrett-Jolley
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Richard L. Evans
- Unilever Research & Development, Port Sunlight Laboratory, Wirral, United Kingdom
| | - Caroline Dart
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- *Correspondence: Caroline Dart,
| |
Collapse
|
4
|
Jia X, Chen X, Gao C, Wang H, Yang C, Jiang LH, Fan Y. Functional cooperation between IK Ca and TRPC1 channels regulates serum-induced vascular smooth muscle cell proliferation via mediating Ca 2+ influx and ERK1/2 activation. Cell Prolif 2022; 56:e13385. [PMID: 36562293 PMCID: PMC10068941 DOI: 10.1111/cpr.13385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
The increased proliferation of vascular smooth muscle cells (VSMCs) contributes to the pathogenesis of vascular diseases. The intermediate conductance calcium-activated potassium (IKCa ) channel plays a critical role in VSMC proliferation by raising the intracellular calcium concentration ([Ca2+ ]i ), but the underlying mechanism is still not unclear. Here we investigated the cooperation between IKCa and transient receptor potential canonical 1 (TRPC1) channels in mediating extracellular Ca2+ entry, which in turn activates downstream Ca2+ signalling in the regulation of VSMC proliferation using serum-induced cell proliferation model. Serum-induced cell proliferation was accompanied with up-regulation of IKCa expression and an increase in [Ca2+ ]i . Serum-induced cell proliferation and increase in [Ca2+ ]i were suppressed by IKCa inhibition with TRAM-34 or IKCa knockdown. Serum-induced cell proliferation was strongly reduced by the removal of extracellular Ca2+ with EGTA or intracellular Ca2+ with BAPTA-AM and, additionally, by TRPC1 knockdown. Moreover, the increase in [Ca2+ ]i induced by serum or by IKCa activation with 1-EBIO was attenuated by TRPC1 knockdown. Finally, serum induced ERK1/2 activation, which was attenuated by treatment with TRAM-34 or BAPTA-AM, as well as TRPC1 knockdown. Consistently, serum-induced cell proliferation was suppressed by ERK1/2 inhibition with PD98059. Taken together, these results suggest that the IKCa and TRPC1 channels cooperate in mediating Ca2+ influx that activates the ERK1/2 pathway to promote cell proliferation, thus providing new mechanistic insights into VSMC proliferation.
Collapse
Affiliation(s)
- Xiaoling Jia
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, China
| | - Xinlan Chen
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, China
| | - Chao Gao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, China
| | - Haikun Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, China
| | - Chengxi Yang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, China
| | - Lin-Hua Jiang
- Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, and Department of Physiology and Pathophysiology, Xinxiang Medical University, Xinxiang, China.,A4245-Transplantation, Immunology and Inflammation, Faculty of Medicine, University of Tours, Tours, France.,School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, China
| |
Collapse
|
5
|
Zhang Z, Wang L, Zhan Y, Xie C, Xiang Y, Chen D, Wu Y. Clinical value and expression of Homer 1, homocysteine, S-adenosyl-l-homocysteine, fibroblast growth factors 23 in coronary heart disease. BMC Cardiovasc Disord 2022; 22:215. [PMID: 35546659 PMCID: PMC9097103 DOI: 10.1186/s12872-022-02554-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 03/07/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND This study aimed to explore clinical value and expression of Homer 1, S-adenosyl-l-homocysteine (SAH), homocysteine (Hcy), fibroblast growth factors (FGF) 23 in coronary heart disease (CHD). METHODS From March 2020 to April 2021, a total of 137 patients with CHD and 138 healthy subjects who came to our hospital for physical examination and had no cardiovascular disease were retrospectively enrolled, and they were assigned to the CHD group and the control group, respectively. Patients in the CHD group were divided into stable angina pectoris (SAP) group (n = 48), unstable angina pectoris (UAP) group (n = 46), and acute myocardial infarction (AMI) group (n = 43) according to clinical characteristics for subgroup analysis. The degree of coronary artery stenosis was assessed by Gensini score, which is a reliable assessment tool for the severity of coronary artery disease. The levels of Homer 1, SAH, Hcy, and FGF 23 were tested and compared. Spearman correlation analysis was used to analyze the correlation between serum Homer1, SAH, Hcy, FGF23 levels and Gensini score, and multivariate unconditional Logistic regression was used to analyze the risk factors of coronary heart disease. RESULTS Demographic characteristics of each group were comparable (P > 0.05). The body mass index (BMI), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), triglyceride (TG), and glucose levels of the SAP group, UAP group and AMI group were significantly higher than those of the control group, and the number of patients with smoking, alcohol consumption, hypertension, and diabetes history was significantly more than that of the control group, respectively (P < 0.05). The level of high-density lipoprotein cholesterol (HDL-C) of each subgroup was significantly lower than the control group (P < 0.05). The above indicators showed no significant difference among three subgroups (P > 0.05). Serum SAH, Hcy, Homer1 and FGF23 levels in each subgroup were significantly higher than those in control group (P < 0.05). And above indicators in SAP group and UAP group were significantly lower than those in AMI group (P < 0.05), and the levels of above indicators in SAP group were significantly lower than those in UAP group (P < 0.05). The results of Spearman correlation analysis showed that serum Homer1, FGF23, SAH, Hcy levels were positively correlated with Gensini score (r = 0.376, 0.623, 0.291, 0.372, all P < 0.01). Multivariate logistic regression analysis showed that smoking, hypertension, diabetes, alcohol consumption, obesity, HDL-C, FGF23, SAH, Hcy, Homer 1 were independent risk factors for coronary heart disease. CONCLUSION The levels of FGF23, SAH, Hcy, and Homer1 tend to increase in patients with CHD compared with normal population, and the more severe the disease, the higher the levels, which has certain reference value for the clinical diagnosis of CHD and the evaluation and monitoring of the disease.
Collapse
Affiliation(s)
- Zhixin Zhang
- Department of Cardiology, Renmin Hospital, Hubei University of Medicine, No. 39 Chaoyang Middle Road, Shiyan, 442000, Hubei, China
| | - Lin Wang
- Department of Cardiology, Renmin Hospital, Hubei University of Medicine, No. 39 Chaoyang Middle Road, Shiyan, 442000, Hubei, China
| | - Yu Zhan
- Department of Cardiology, Renmin Hospital, Hubei University of Medicine, No. 39 Chaoyang Middle Road, Shiyan, 442000, Hubei, China
| | - Cui Xie
- Department of Cardiology, Renmin Hospital, Hubei University of Medicine, No. 39 Chaoyang Middle Road, Shiyan, 442000, Hubei, China
| | - Yang Xiang
- Department of Cardiology, Renmin Hospital, Hubei University of Medicine, No. 39 Chaoyang Middle Road, Shiyan, 442000, Hubei, China
| | - Dan Chen
- Department of Cardiology, Renmin Hospital, Hubei University of Medicine, No. 39 Chaoyang Middle Road, Shiyan, 442000, Hubei, China
| | - You Wu
- Department of Cardiology, Renmin Hospital, Hubei University of Medicine, No. 39 Chaoyang Middle Road, Shiyan, 442000, Hubei, China.
| |
Collapse
|
6
|
Zhou Z, Li K, Liu J, Zhang H, Fan Y, Chen Y, Han H, Yang J, Liu Y. Expression Profile Analysis to Identify Circular RNA Expression Signatures in Muscle Development of Wu'an Goat Longissimus Dorsi Tissues. Front Vet Sci 2022; 9:833946. [PMID: 35518637 PMCID: PMC9062782 DOI: 10.3389/fvets.2022.833946] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
The growth and development of skeletal muscle is a physiological process regulated by a variety of genes and signaling pathways. As a posttranscriptional regulatory factor, circRNA plays a certain regulatory role in the development of animal skeletal muscle in the form of a miRNA sponge. However, the role of circRNAs in muscle development and growth in goats is still unclear. In our study, apparent differences in muscle fibers in Wu'an goats of different ages was firstly detected by hematoxylin-eosin (HE) staining, the circRNA expression profiles of longissimus dorsi muscles from 1-month-old (mon1) and 9-month-old (mon9) goats were screened by RNA-seq and verified by RT-qPCR. The host genes of differentially expressed (DE) circRNAs were predicted, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes analyses (KEGG) of host genes with DE circRNAs were performed to explore the functions of circRNAs. The circRNA-miRNA-mRNA networks were then constructed using Cytoscape software. Ten significantly differentially expressed circRNAs were also verified in the mon1 and mon9 groups by RT-qPCR. Luciferase Reporter Assay was used to verify the binding site between circRNA and its targeted miRNA. The results showed that a total of 686 DE circRNAs were identified between the mon9 and mon1 groups, of which 357 were upregulated and 329 were downregulated. Subsequently, the 467 host genes of DE circRNAs were predicted using Find_circ and CIRI software. The circRNA-miRNA-mRNA network contained 201 circRNAs, 85 miRNAs, and 581 mRNAs; the host mRNAs were associated with "muscle fiber development" and "AMPK signaling pathway" and were enriched in the FoxO signaling pathway. Competing endogenous RNA (ceRNA) network analysis showed that novel_circ_0005314, novel_circ_0005319, novel_circ_0009256, novel_circ_0009845, novel_circ_0005934 and novel_circ_0000134 may play important roles in skeletal muscle growth and development between the mon9 and mon1 groups. Luciferase Reporter Assay confirmed the combination between novel_circ_0005319 and chi-miR-199a-5p, novel_circ_0005934 and chi-miR-450-3p and novel_circ_0000134 and chi-miR-655. Our results provide specific information related to goat muscle development and a reference for the goat circRNA profile.
Collapse
Affiliation(s)
- Zuyang Zhou
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Kunyu Li
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Jiannan Liu
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Hui Zhang
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Yekai Fan
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Yulin Chen
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Haiyin Han
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Junqi Yang
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Yufang Liu
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| |
Collapse
|
7
|
Collins HE, Zhang D, Chatham JC. STIM and Orai Mediated Regulation of Calcium Signaling in Age-Related Diseases. FRONTIERS IN AGING 2022; 3:876785. [PMID: 35821821 PMCID: PMC9261457 DOI: 10.3389/fragi.2022.876785] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/30/2022] [Indexed: 01/19/2023]
Abstract
Tight spatiotemporal regulation of intracellular Ca2+ plays a critical role in regulating diverse cellular functions including cell survival, metabolism, and transcription. As a result, eukaryotic cells have developed a wide variety of mechanisms for controlling Ca2+ influx and efflux across the plasma membrane as well as Ca2+ release and uptake from intracellular stores. The STIM and Orai protein families comprising of STIM1, STIM2, Orai1, Orai2, and Orai3, are evolutionarily highly conserved proteins that are core components of all mammalian Ca2+ signaling systems. STIM1 and Orai1 are considered key players in the regulation of Store Operated Calcium Entry (SOCE), where release of Ca2+ from intracellular stores such as the Endoplasmic/Sarcoplasmic reticulum (ER/SR) triggers Ca2+ influx across the plasma membrane. SOCE, which has been widely characterized in non-excitable cells, plays a central role in Ca2+-dependent transcriptional regulation. In addition to their role in Ca2+ signaling, STIM1 and Orai1 have been shown to contribute to the regulation of metabolism and mitochondrial function. STIM and Orai proteins are also subject to redox modifications, which influence their activities. Considering their ubiquitous expression, there has been increasing interest in the roles of STIM and Orai proteins in excitable cells such as neurons and myocytes. While controversy remains as to the importance of SOCE in excitable cells, STIM1 and Orai1 are essential for cellular homeostasis and their disruption is linked to various diseases associated with aging such as cardiovascular disease and neurodegeneration. The recent identification of splice variants for most STIM and Orai isoforms while complicating our understanding of their function, may also provide insight into some of the current contradictions on their roles. Therefore, the goal of this review is to describe our current understanding of the molecular regulation of STIM and Orai proteins and their roles in normal physiology and diseases of aging, with a particular focus on heart disease and neurodegeneration.
Collapse
Affiliation(s)
- Helen E. Collins
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Dingguo Zhang
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at Birmingham, Birmingham, AL, United States
| | - John C. Chatham
- Division of Molecular and Cellular Pathology, Department of PathologyUniversity of Alabama at Birmingham, Birmingham, AL, United States,*Correspondence: John C. Chatham,
| |
Collapse
|
8
|
Wu XQ, Su N, Fei Z, Fei F. Homer signaling pathways as effective therapeutic targets for ischemic and traumatic brain injuries and retinal lesions. Neural Regen Res 2021; 17:1454-1461. [PMID: 34916418 PMCID: PMC8771115 DOI: 10.4103/1673-5374.330588] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Ischemic and traumatic insults to the central nervous system account for most serious acute and fatal brain injuries and are usually characterized by primary and secondary damage. Secondary damage presents the greatest challenge for medical staff; however, there are currently few effective therapeutic targets for secondary damage. Homer proteins are postsynaptic scaffolding proteins that have been implicated in ischemic and traumatic insults to the central nervous system. Homer signaling can exert either positive or negative effects during such insults, depending on the specific subtype of Homer protein. Homer 1b/c couples with other proteins to form postsynaptic densities, which form the basis of synaptic transmission, while Homer1a expression can be induced by harmful external factors. Homer 1c is used as a unique biomarker to reveal alterations in synaptic connectivity before and during the early stages of apoptosis in retinal ganglion cells, mediated or affected by extracellular or intracellular signaling or cytoskeletal processes. This review summarizes the structural features, related signaling pathways, and diverse roles of Homer proteins in physiological and pathological processes. Upregulating Homer1a or downregulating Homer1b/c may play a neuroprotective role in secondary brain injuries. Homer also plays an important role in the formation of photoreceptor synapses. These findings confirm the neuroprotective effects of Homer, and support the future design of therapeutic drug targets or gene therapies for ischemic and traumatic brain injuries and retinal disorders based on Homer proteins.
Collapse
Affiliation(s)
- Xiu-Quan Wu
- Department of Neurosurgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Ning Su
- Department of Radiation Oncology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Zhou Fei
- Department of Neurosurgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Fei Fei
- Department of Ophthalmology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
9
|
Shawer H, Norman K, Cheng CW, Foster R, Beech DJ, Bailey MA. ORAI1 Ca 2+ Channel as a Therapeutic Target in Pathological Vascular Remodelling. Front Cell Dev Biol 2021; 9:653812. [PMID: 33937254 PMCID: PMC8083964 DOI: 10.3389/fcell.2021.653812] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/08/2021] [Indexed: 12/21/2022] Open
Abstract
In the adult, vascular smooth muscle cells (VSMC) are normally physiologically quiescent, arranged circumferentially in one or more layers within blood vessel walls. Remodelling of native VSMC to a proliferative state for vascular development, adaptation or repair is driven by platelet-derived growth factor (PDGF). A key effector downstream of PDGF receptors is store-operated calcium entry (SOCE) mediated through the plasma membrane calcium ion channel, ORAI1, which is activated by the endoplasmic reticulum (ER) calcium store sensor, stromal interaction molecule-1 (STIM1). This SOCE was shown to play fundamental roles in the pathological remodelling of VSMC. Exciting transgenic lineage-tracing studies have revealed that the contribution of the phenotypically-modulated VSMC in atherosclerotic plaque formation is more significant than previously appreciated, and growing evidence supports the relevance of ORAI1 signalling in this pathologic remodelling. ORAI1 has also emerged as an attractive potential therapeutic target as it is accessible to extracellular compound inhibition. This is further supported by the progression of several ORAI1 inhibitors into clinical trials. Here we discuss the current knowledge of ORAI1-mediated signalling in pathologic vascular remodelling, particularly in the settings of atherosclerotic cardiovascular diseases (CVDs) and neointimal hyperplasia, and the recent developments in our understanding of the mechanisms by which ORAI1 coordinates VSMC phenotypic remodelling, through the activation of key transcription factor, nuclear factor of activated T-cell (NFAT). In addition, we discuss advances in therapeutic strategies aimed at the ORAI1 target.
Collapse
Affiliation(s)
- Heba Shawer
- School of Medicine, The Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Katherine Norman
- School of Medicine, The Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom.,School of Chemistry, University of Leeds, Leeds, United Kingdom
| | - Chew W Cheng
- School of Medicine, The Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Richard Foster
- School of Medicine, The Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom.,School of Chemistry, University of Leeds, Leeds, United Kingdom
| | - David J Beech
- School of Medicine, The Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Marc A Bailey
- School of Medicine, The Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
10
|
Shapovalov G, Gordienko D, Prevarskaya N. Store operated calcium channels in cancer progression. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 363:123-168. [PMID: 34392928 DOI: 10.1016/bs.ircmb.2021.02.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent decades cancer emerged as one of the leading causes of death in the developed countries, with some types of cancer contributing to the top 10 causes of death on the list of the World Health Organization. Carcinogenesis, a malignant transformation causing formation of tumors in normal tissues, is associated with changes in the cell cycle caused by suppression of signaling pathways leading to cell death and facilitation of those enhancing proliferation. Further progression of cancer, during which benign tumors acquire more aggressive phenotypes, is characterized by metastatic dissemination through the body driven by augmented motility and invasiveness of cancer cells. All these processes are associated with alterations in calcium homeostasis in cancer cells, which promote their proliferation, motility and invasion, and dissuade cell death or cell cycle arrest. Remodeling of store-operated calcium entry (SOCE), one of the major pathways regulating intracellular Ca2+ concentration ([Ca2+]i), manifests a key event in many of these processes. This review systematizes current knowledge on the mechanisms recruiting SOCE-related proteins in carcinogenesis and cancer progression.
Collapse
Affiliation(s)
- George Shapovalov
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channels Science and Therapeutics, Department of Biology, Faculty of Science and Technologiesa, University of Lille, Villeneuve d'Ascq, France.
| | - Dmitri Gordienko
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channels Science and Therapeutics, Department of Biology, Faculty of Science and Technologiesa, University of Lille, Villeneuve d'Ascq, France
| | - Natalia Prevarskaya
- Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channels Science and Therapeutics, Department of Biology, Faculty of Science and Technologiesa, University of Lille, Villeneuve d'Ascq, France
| |
Collapse
|
11
|
Cui X, Liang H, Hao C, Jing X. Liraglutide preconditioning attenuates myocardial ischemia/ reperfusion injury via homer1 activation. Aging (Albany NY) 2021; 13:6625-6633. [PMID: 33535171 PMCID: PMC7993747 DOI: 10.18632/aging.202429] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/11/2020] [Indexed: 05/27/2023]
Abstract
Myocardial infarction (MI) is one of most common cardiovascular diseases, and ischemia/reperfusion (I/R) injury is one of the risk factors for severe myocardial injury and dysfunction, even leading to high mortality of myocardial infarction. Liraglutide, a novel glucagon-like peptide 1 (GLP-1) analogue, has been reported to reduce cardiac rupture and infarct size and improve cardiac function in normal and diabetic rodents, however, the mechanisms of liraglutide on cardiomyocytes is not clear. The current research was designed to investigate the hypothesis that liraglutide would protect cardiomyocytes through regulating homer1 expression under hypoxia/reoxygenation (H/R) condition. The results of the present study indicated liraglutide reduced hypoxia-reoxygenation induced cell death and attenuated intracellular calcium overload in H9C2 cardiomyocytes under H/R condition. Moreover, liraglutide significantly increased the Homer1 protein expression, and this protection might be related to Homer1-dependent regulation of endoplasmic reticulum (ER) calcium homeostasis. Taken together, liraglutide protects H9C2 cell against H/R induced cell injury, and this protective effect may inhibit intracellular calcium overload to some extent, through Homer1-dependent regulation of ER calcium homeostasis.
Collapse
Affiliation(s)
- Xiangrong Cui
- Reproductive Medicine Center, Shanxi Maternal and Child Health Care Hospital, Affiliated of Shanxi Medical University, Taiyuan 030001, China
| | - Hongping Liang
- Clinical Laboratory, Shanxi Provincial People’s Hospital, Affiliated of Shanxi Medical University, Taiyuan 030001, China
| | - Chonghua Hao
- Clinical Laboratory, Shanxi Provincial People’s Hospital, Affiliated of Shanxi Medical University, Taiyuan 030001, China
| | - Xuan Jing
- Clinical Laboratory, Shanxi Provincial People’s Hospital, Affiliated of Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
12
|
Berlansky S, Humer C, Sallinger M, Frischauf I. More Than Just Simple Interaction between STIM and Orai Proteins: CRAC Channel Function Enabled by a Network of Interactions with Regulatory Proteins. Int J Mol Sci 2021; 22:E471. [PMID: 33466526 PMCID: PMC7796502 DOI: 10.3390/ijms22010471] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/29/2020] [Accepted: 12/29/2020] [Indexed: 12/27/2022] Open
Abstract
The calcium-release-activated calcium (CRAC) channel, activated by the release of Ca2+ from the endoplasmic reticulum (ER), is critical for Ca2+ homeostasis and active signal transduction in a plethora of cell types. Spurred by the long-sought decryption of the molecular nature of the CRAC channel, considerable scientific effort has been devoted to gaining insights into functional and structural mechanisms underlying this signalling cascade. Key players in CRAC channel function are the Stromal interaction molecule 1 (STIM1) and Orai1. STIM1 proteins span through the membrane of the ER, are competent in sensing luminal Ca2+ concentration, and in turn, are responsible for relaying the signal of Ca2+ store-depletion to pore-forming Orai1 proteins in the plasma membrane. A direct interaction of STIM1 and Orai1 allows for the re-entry of Ca2+ from the extracellular space. Although much is already known about the structure, function, and interaction of STIM1 and Orai1, there is growing evidence that CRAC under physiological conditions is dependent on additional proteins to function properly. Several auxiliary proteins have been shown to regulate CRAC channel activity by means of direct interactions with STIM1 and/or Orai1, promoting or hindering Ca2+ influx in a mechanistically diverse manner. Various proteins have also been identified to exert a modulatory role on the CRAC signalling cascade although inherently lacking an affinity for both STIM1 and Orai1. Apart from ubiquitously expressed representatives, a subset of such regulatory mechanisms seems to allow for a cell-type-specific control of CRAC channel function, considering the rather restricted expression patterns of the specific proteins. Given the high functional and clinical relevance of both generic and cell-type-specific interacting networks, the following review shall provide a comprehensive summary of regulators of the multilayered CRAC channel signalling cascade. It also includes proteins expressed in a narrow spectrum of cells and tissues that are often disregarded in other reviews of similar topics.
Collapse
Affiliation(s)
| | | | | | - Irene Frischauf
- Institute of Biophysics, Johannes Kepler University, 4020 Linz, Austria; (S.B.); (C.H.); (M.S.)
| |
Collapse
|
13
|
Liu X, Pan Z. Store-Operated Calcium Entry in the Cardiovascular System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1349:303-333. [DOI: 10.1007/978-981-16-4254-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Nomura A, Yokoe S, Tomoda K, Nakagawa T, Martin-Romero FJ, Asahi M. Fluctuation in O-GlcNAcylation inactivates STIM1 to reduce store-operated calcium ion entry via down-regulation of Ser 621 phosphorylation. J Biol Chem 2020; 295:17071-17082. [PMID: 33023909 PMCID: PMC7863906 DOI: 10.1074/jbc.ra120.014271] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 10/02/2020] [Indexed: 12/11/2022] Open
Abstract
Stromal interaction molecule 1 (STIM1) plays a pivotal role in store-operated Ca2+ entry (SOCE), an essential mechanism in cellular calcium signaling and in maintaining cellular calcium balance. Because O-GlcNAcylation plays pivotal roles in various cellular function, we examined the effect of fluctuation in STIM1 O-GlcNAcylation on SOCE activity. We found that both increase and decrease in STIM1 O-GlcNAcylation impaired SOCE activity. To determine the molecular basis, we established STIM1-knockout HEK293 (STIM1-KO-HEK) cells using the CRISPR/Cas9 system and transfected STIM1 WT (STIM1-KO-WT-HEK), S621A (STIM1-KO-S621A-HEK), or T626A (STIM1-KO-T626A-HEK) cells. Using these cells, we examined the possible O-GlcNAcylation sites of STIM1 to determine whether the sites were O-GlcNAcylated. Co-immunoprecipitation analysis revealed that Ser621 and Thr626 were O-GlcNAcylated and that Thr626 was O-GlcNAcylated in the steady state but Ser621 was not. The SOCE activity in STIM1-KO-S621A-HEK and STIM1-KO-T626A-HEK cells was lower than that in STIM1-KO-WT-HEK cells because of reduced phosphorylation at Ser621 Treatment with the O-GlcNAcase inhibitor Thiamet G or O-GlcNAc transferase (OGT) transfection, which increases O-GlcNAcylation, reduced SOCE activity, whereas treatment with the OGT inhibitor ST045849 or siOGT transfection, which decreases O-GlcNAcylation, also reduced SOCE activity. Decrease in SOCE activity due to increase and decrease in O-GlcNAcylation was attributable to reduced phosphorylation at Ser621 These data suggest that both decrease in O-GlcNAcylation at Thr626 and increase in O-GlcNAcylation at Ser621 in STIM1 lead to impairment of SOCE activity through decrease in Ser621 phosphorylation. Targeting STIM1 O-GlcNAcylation could provide a promising treatment option for the related diseases, such as neurodegenerative diseases.
Collapse
Affiliation(s)
- Atsuo Nomura
- Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Osaka, Japan
| | - Shunichi Yokoe
- Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Osaka, Japan
| | - Kiichiro Tomoda
- Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Osaka, Japan
| | - Takatoshi Nakagawa
- Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Osaka, Japan
| | - Francisco Javier Martin-Romero
- Department of Biochemistry and Molecular Biology, School of Life Sciences and Institute of Molecular Pathology Biomarkers, University of Extremadura, Badajoz, Spain
| | - Michio Asahi
- Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Osaka, Japan.
| |
Collapse
|
15
|
TRPC and TRPV Channels' Role in Vascular Remodeling and Disease. Int J Mol Sci 2020; 21:ijms21176125. [PMID: 32854408 PMCID: PMC7503586 DOI: 10.3390/ijms21176125] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/19/2020] [Accepted: 08/23/2020] [Indexed: 12/15/2022] Open
Abstract
Transient receptor potentials (TRPs) are non-selective cation channels that are widely expressed in vascular beds. They contribute to the Ca2+ influx evoked by a wide spectrum of chemical and physical stimuli, both in endothelial and vascular smooth muscle cells. Within the superfamily of TRP channels, different isoforms of TRPC (canonical) and TRPV (vanilloid) have emerged as important regulators of vascular tone and blood flow pressure. Additionally, several lines of evidence derived from animal models, and even from human subjects, highlighted the role of TRPC and TRPV in vascular remodeling and disease. Dysregulation in the function and/or expression of TRPC and TRPV isoforms likely regulates vascular smooth muscle cells switching from a contractile to a synthetic phenotype. This process contributes to the development and progression of vascular disorders, such as systemic and pulmonary arterial hypertension, atherosclerosis and restenosis. In this review, we provide an overview of the current knowledge on the implication of TRPC and TRPV in the physiological and pathological processes of some frequent vascular diseases.
Collapse
|
16
|
Canonical transient receptor potential 6 channel deficiency promotes smooth muscle cells dedifferentiation and increased proliferation after arterial injury. JVS Vasc Sci 2020; 1:136-150. [PMID: 33554153 PMCID: PMC7861475 DOI: 10.1016/j.jvssci.2020.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Objective Previous studies showed the benefit of canonical transient receptor potential 6 (TRPC6) channel deficiency in promoting endothelial healing of arterial injuries in hypercholesterolemic animals. Long-term studies utilizing a carotid wire-injury model were undertaken in wild-type (WT) and TRPC6-/- mice to determine the effects of TRPC6 on phenotypic modulation of vascular smooth muscle cells (SMC) and neointimal hyperplasia. We hypothesized that TRPC6 was essential in the maintenance or reexpression of a differentiated SMC phenotype and minimized luminal stenosis following arterial injury. Methods The common carotid arteries (CCA) of WT and TRPC6-/- mice were evaluated at baseline and 4 weeks after wire injury. At baseline, CCA of TRPC6-/- mice had reduced staining of MYH11 and SM22, fewer elastin lamina, luminal dilation, and wall thinning. After carotid wire injury, TRPC6-/- mice developed significantly more pronounced luminal stenosis compared with WT mice. Injured TRPC6-/- CCA demonstrated increased medial/intimal cell number and active cell proliferation when compared with WT CCA. Immunohistochemistry suggested that expression of contractile biomarkers in medial SMC were essentially at baseline levels in WT CCA at 28 days after wire injury. By contrast, at 28 days after injury medial SMC from TRPC6-/- CCA showed a significant decrease in the expression of contractile biomarkers relative to baseline levels. To assess the role of TRPC6 in systemic arterial SMC phenotype modulation, SMC were harvested from thoracic aortae of WT and TRPC6-/- mice and were characterized. TRPC6-/- SMC showed enhanced proliferation and migration in response to serum stimulation. Expression of contractile phenotype biomarkers, MYH11 and SM22, was attenuated in TRPC6-/- SMC. siRNA-mediated TRPC6 deficiency inhibited contractile biomarker expression in a mouse SMC line. Conclusions These results suggest that TRPC6 contributes to the restoration or maintenance of arterial SMC contractile phenotype following injury. Understanding the role of TRPC6 in phenotypic modulation may lead to mechanism-based therapies for attenuation of IH. After endovascular intervention and open vascular surgery, vascular smooth muscle cells (VSMC) undergo a coordinated reprogramming of gene expression to facilitate arterial healing. Down regulation of VSMC-specific contractile biomarkers (eg, SM22 and MYH11) and induction of pathways that promote cell proliferation, migration, and matrix synthesis are hallmarks of this phenotypic switch. Dysregulated phenotypic switching leads to the development of neointimal hyperplasia and vascular restenosis. Identifying pathways that regulate or constrain VSMC phenotypic modulation, therefore, has the potential to decrease neointimal hyperplasia and improve outcomes after vascular intervention. In this study, we demonstrate that depletion of the non-voltage-gated cation channel TRPC6 promotes phenotypic switching and loss of contractile biomarkers in systemic arterial VSMC. TRPC6-/- mice developed significantly more pronounced luminal stenosis compared with wild-type mice after carotid wire injury. These results suggest that TRPC6 contributes to the restoration or maintenance of contractile phenotype in VSMC after injury. Understanding the role of TRPC6 in phenotypic switching may lead to mechanism-based therapies to mitigate restenosis.
Collapse
|
17
|
Reibring CG, Hallberg K, Linde A, Gritli-Linde A. Distinct and Overlapping Expression Patterns of the Homer Family of Scaffolding Proteins and Their Encoding Genes in Developing Murine Cephalic Tissues. Int J Mol Sci 2020; 21:ijms21041264. [PMID: 32070057 PMCID: PMC7072945 DOI: 10.3390/ijms21041264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 02/06/2023] Open
Abstract
In mammals Homer1, Homer2 and Homer3 constitute a family of scaffolding proteins with key roles in Ca2+ signaling and Ca2+ transport. In rodents, Homer proteins and mRNAs have been shown to be expressed in various postnatal tissues and to be enriched in brain. However, whether the Homers are expressed in developing tissues is hitherto largely unknown. In this work, we used immunohistochemistry and in situ hybridization to analyze the expression patterns of Homer1, Homer2 and Homer3 in developing cephalic structures. Our study revealed that the three Homer proteins and their encoding genes are expressed in a wide range of developing tissues and organs, including the brain, tooth, eye, cochlea, salivary glands, olfactory and respiratory mucosae, bone and taste buds. We show that although overall the three Homers exhibit overlapping distribution patterns, the proteins localize at distinct subcellular domains in several cell types, that in both undifferentiated and differentiated cells Homer proteins are concentrated in puncta and that the vascular endothelium is enriched with Homer3 mRNA and protein. Our findings suggest that Homer proteins may have differential and overlapping functions and are expected to be of value for future research aiming at deciphering the roles of Homer proteins during embryonic development.
Collapse
Affiliation(s)
- Claes-Göran Reibring
- Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska Academy at the University of Gothenburg, SE-40530 Göteborg, Sweden; (C.-G.R.); (K.H.); (A.L.)
- Public Dental Service, Region Västra Götaland, SE-45131 Uddevalla, Sweden
| | - Kristina Hallberg
- Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska Academy at the University of Gothenburg, SE-40530 Göteborg, Sweden; (C.-G.R.); (K.H.); (A.L.)
| | - Anders Linde
- Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska Academy at the University of Gothenburg, SE-40530 Göteborg, Sweden; (C.-G.R.); (K.H.); (A.L.)
| | - Amel Gritli-Linde
- Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska Academy at the University of Gothenburg, SE-40530 Göteborg, Sweden; (C.-G.R.); (K.H.); (A.L.)
- Correspondence: ; Tel.: +46-31-7863392
| |
Collapse
|
18
|
Elzamzamy OM, Penner R, Hazlehurst LA. The Role of TRPC1 in Modulating Cancer Progression. Cells 2020; 9:cells9020388. [PMID: 32046188 PMCID: PMC7072717 DOI: 10.3390/cells9020388] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/02/2020] [Accepted: 02/03/2020] [Indexed: 12/22/2022] Open
Abstract
Calcium ions (Ca2+) play an important role as second messengers in regulating a plethora of physiological and pathological processes, including the progression of cancer. Several selective and non-selective Ca2+-permeable ion channels are implicated in mediating Ca2+ signaling in cancer cells. In this review, we are focusing on TRPC1, a member of the TRP protein superfamily and a potential modulator of store-operated Ca2+ entry (SOCE) pathways. While TRPC1 is ubiquitously expressed in most tissues, its dysregulated activity may contribute to the hallmarks of various types of cancers, including breast cancer, pancreatic cancer, glioblastoma multiforme, lung cancer, hepatic cancer, multiple myeloma, and thyroid cancer. A range of pharmacological and genetic tools have been developed to address the functional role of TRPC1 in cancer. Interestingly, the unique role of TRPC1 has elevated this channel as a promising target for modulation both in terms of pharmacological inhibition leading to suppression of tumor growth and metastasis, as well as for agonistic strategies eliciting Ca2+ overload and cell death in aggressive metastatic tumor cells.
Collapse
Affiliation(s)
- Osama M Elzamzamy
- Clinical and Translational Sciences Institute, School of Medicine, West Virginia University, Morgantown, WV 26506, USA;
| | - Reinhold Penner
- The Queen’s Medical Center and University of Hawaii, Honolulu, HI 96813, USA;
| | - Lori A Hazlehurst
- Pharmaceutical Sciences, School of Pharmacy and WVU Cancer Institute, West Virginia University, Morganton, WV 26506, USA
- Correspondence: ; Tel.: +1-304-293-3398
| |
Collapse
|
19
|
Wang H, Cheng X, Tian J, Xiao Y, Tian T, Xu F, Hong X, Zhu MX. TRPC channels: Structure, function, regulation and recent advances in small molecular probes. Pharmacol Ther 2020; 209:107497. [PMID: 32004513 DOI: 10.1016/j.pharmthera.2020.107497] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/14/2020] [Indexed: 02/08/2023]
Abstract
Transient receptor potential canonical (TRPC) channels constitute a group of receptor-operated calcium-permeable nonselective cation channels of the TRP superfamily. The seven mammalian TRPC members, which can be further divided into four subgroups (TRPC1, TRPC2, TRPC4/5, and TRPC3/6/7) based on their amino acid sequences and functional similarities, contribute to a broad spectrum of cellular functions and physiological roles. Studies have revealed complexity of their regulation involving several components of the phospholipase C pathway, Gi and Go proteins, and internal Ca2+ stores. Recent advances in cryogenic electron microscopy have provided several high-resolution structures of TRPC channels. Growing evidence demonstrates the involvement of TRPC channels in diseases, particularly the link between genetic mutations of TRPC6 and familial focal segmental glomerulosclerosis. Because TRPCs were discovered by the molecular identity first, their pharmacology had lagged behind. This is rapidly changing in recent years owning to great efforts from both academia and industry. A number of potent tool compounds from both synthetic and natural products that selective target different subtypes of TRPC channels have been discovered, including some preclinical drug candidates. This review will cover recent advancements in the understanding of TRPC channel regulation, structure, and discovery of novel TRPC small molecular probes over the past few years, with the goal of facilitating drug discovery for the study of TRPCs and therapeutic development.
Collapse
Affiliation(s)
- Hongbo Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education; Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| | - Xiaoding Cheng
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Jinbin Tian
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yuling Xiao
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Tian Tian
- Innovation Center for Traditional Tibetan Medicine Modernization and Quality Control, Medical College, Department of Chemistry and Environmental Science, School of Science, Tibet University, Lhasa 850000, China
| | - Fuchun Xu
- Innovation Center for Traditional Tibetan Medicine Modernization and Quality Control, Medical College, Department of Chemistry and Environmental Science, School of Science, Tibet University, Lhasa 850000, China
| | - Xuechuan Hong
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China; Innovation Center for Traditional Tibetan Medicine Modernization and Quality Control, Medical College, Department of Chemistry and Environmental Science, School of Science, Tibet University, Lhasa 850000, China.
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
20
|
TRPC Channels in the SOCE Scenario. Cells 2020; 9:cells9010126. [PMID: 31948094 PMCID: PMC7016597 DOI: 10.3390/cells9010126] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/29/2019] [Accepted: 12/31/2019] [Indexed: 11/29/2022] Open
Abstract
Transient receptor potential (TRP) proteins form non-selective Ca2+ permeable channels that contribute to the modulation of a number of physiological functions in a variety of cell types. Since the identification of TRP proteins in Drosophila, it is well known that these channels are activated by stimuli that induce PIP2 hydrolysis. The canonical TRP (TRPC) channels have long been suggested to be constituents of the store-operated Ca2+ (SOC) channels; however, none of the TRPC channels generate Ca2+ currents that resemble ICRAC. STIM1 and Orai1 have been identified as the components of the Ca2+ release-activated Ca2+ (CRAC) channels and there is a body of evidence supporting that STIM1 is able to gate Orai1 and TRPC1 in order to mediate non-selective cation currents named ISOC. STIM1 has been found to interact to and activate Orai1 and TRPC1 by different mechanisms and the involvement of TRPC1 in store-operated Ca2+ entry requires both STIM1 and Orai1. In addition to the participation of TRPC1 in the ISOC currents, TRPC1 and other TRPC proteins might play a relevant role modulating Orai1 channel function. This review summarizes the functional role of TRPC channels in the STIM1–Orai1 scenario.
Collapse
|
21
|
Avila-Medina J, Mayoral-González I, Galeano-Otero I, Redondo PC, Rosado JA, Smani T. Pathophysiological Significance of Store-Operated Calcium Entry in Cardiovascular and Skeletal Muscle Disorders and Angiogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:489-504. [PMID: 31646522 DOI: 10.1007/978-3-030-12457-1_19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Store-Operated Ca2+ Entry (SOCE) is an important Ca2+ influx pathway expressed by several excitable and non-excitable cell types. SOCE is recognized as relevant signaling pathway not only for physiological process, but also for its involvement in different pathologies. In fact, independent studies demonstrated the implication of essential protein regulating SOCE, such as STIM, Orai and TRPCs, in different pathogenesis and cell disorders, including cardiovascular disease, muscular dystrophies and angiogenesis. Compelling evidence showed that dysregulation in the function and/or expression of isoforms of STIM, Orai or TRPC play pivotal roles in cardiac hypertrophy and heart failure, vascular remodeling and hypertension, skeletal myopathies, and angiogenesis. In this chapter, we summarized the current knowledge concerning the mechanisms underlying abnormal SOCE and its involvement in some diseases, as well as, we discussed the significance of STIM, Orai and TRPC isoforms as possible therapeutic targets for the treatment of angiogenesis, cardiovascular and skeletal muscle diseases.
Collapse
Affiliation(s)
- Javier Avila-Medina
- Department of Medical Physiology and Biophysics, University of Seville, Sevilla, Spain
- Institute of Biomedicine of Seville (IBiS), University Hospital of Virgen del Rocío/CSIC/University of Seville, Sevilla, Spain
| | - Isabel Mayoral-González
- Department of Medical Physiology and Biophysics, University of Seville, Sevilla, Spain
- Institute of Biomedicine of Seville (IBiS), University Hospital of Virgen del Rocío/CSIC/University of Seville, Sevilla, Spain
- Department of Surgery, University of Seville, Sevilla, Spain
| | - Isabel Galeano-Otero
- Department of Medical Physiology and Biophysics, University of Seville, Sevilla, Spain
- Institute of Biomedicine of Seville (IBiS), University Hospital of Virgen del Rocío/CSIC/University of Seville, Sevilla, Spain
| | - Pedro C Redondo
- Department of Physiology, Cell Physiology Research Group and Institute of Molecular Pathology Biomarkers, University of Extremadura, Cáceres, Spain
| | - Juan A Rosado
- Department of Physiology, Cell Physiology Research Group and Institute of Molecular Pathology Biomarkers, University of Extremadura, Cáceres, Spain
| | - Tarik Smani
- Department of Medical Physiology and Biophysics, University of Seville, Sevilla, Spain.
- Institute of Biomedicine of Seville (IBiS), University Hospital of Virgen del Rocío/CSIC/University of Seville, Sevilla, Spain.
- CIBERCV, Madrid, Spain.
| |
Collapse
|
22
|
Shalygin AV, Ryazantseva MA, Glushankova LN, Gusev KO, Kolesnikov DO, Vigont VA, Skopin AY, Skobeleva KV, Kaznacheeva EV. Homer 1a Induces Calcium Channel Activation, but Does Not Change Their Properties in A431 Cells. Bull Exp Biol Med 2018; 165:272-275. [PMID: 29923011 DOI: 10.1007/s10517-018-4146-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Indexed: 11/25/2022]
Abstract
Store-operated channels activated in response to intracellular calcium store depletion represent the main pathway of calcium entry from the extracellular space in nonelectroexcitable cells. Adapter proteins organize the components of this system into integral complex. We studied the influence of adapter proteins of the Homer family on endogenous store-operated calcium Imin channels in A431 cells. Monomeric Homer 1a proteins increase activity of Imin channels, but did not modulate their electrophysiological properties. Recombinant Homer 1c protein did not block the induced calcium currents.
Collapse
Affiliation(s)
- A V Shalygin
- Laboratory of Cell Membrane Ionic Channels, Institute of Cytology of Russian Academy of Sciences, St. Petersburg, Russia.
| | - M A Ryazantseva
- Laboratory of Cell Membrane Ionic Channels, Institute of Cytology of Russian Academy of Sciences, St. Petersburg, Russia
| | - L N Glushankova
- Laboratory of Cell Membrane Ionic Channels, Institute of Cytology of Russian Academy of Sciences, St. Petersburg, Russia
| | - K O Gusev
- Laboratory of Cell Membrane Ionic Channels, Institute of Cytology of Russian Academy of Sciences, St. Petersburg, Russia
| | - D O Kolesnikov
- Laboratory of Cell Membrane Ionic Channels, Institute of Cytology of Russian Academy of Sciences, St. Petersburg, Russia
| | - V A Vigont
- Laboratory of Cell Membrane Ionic Channels, Institute of Cytology of Russian Academy of Sciences, St. Petersburg, Russia
| | - A Yu Skopin
- Laboratory of Cell Membrane Ionic Channels, Institute of Cytology of Russian Academy of Sciences, St. Petersburg, Russia
| | - K V Skobeleva
- Laboratory of Cell Membrane Ionic Channels, Institute of Cytology of Russian Academy of Sciences, St. Petersburg, Russia
| | - E V Kaznacheeva
- Laboratory of Cell Membrane Ionic Channels, Institute of Cytology of Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
23
|
Secondo A, Bagetta G, Amantea D. On the Role of Store-Operated Calcium Entry in Acute and Chronic Neurodegenerative Diseases. Front Mol Neurosci 2018; 11:87. [PMID: 29623030 PMCID: PMC5874322 DOI: 10.3389/fnmol.2018.00087] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/06/2018] [Indexed: 12/22/2022] Open
Abstract
In both excitable and non-excitable cells, calcium (Ca2+) signals are maintained by a highly integrated process involving store-operated Ca2+ entry (SOCE), namely the opening of plasma membrane (PM) Ca2+ channels following the release of Ca2+ from intracellular stores. Upon depletion of Ca2+ store, the stromal interaction molecule (STIM) senses Ca2+ level reduction and migrates from endoplasmic reticulum (ER)-like sites to the PM where it activates the channel proteins Orai and/or the transient receptor potential channels (TRPC) prompting Ca2+ refilling. Accumulating evidence suggests that SOCE dysregulation may trigger perturbation of intracellular Ca2+ signaling in neurons, glia or hematopoietic cells, thus participating to the pathogenesis of diverse neurodegenerative diseases. Under acute conditions, such as ischemic stroke, neuronal SOCE can either re-establish Ca2+ homeostasis or mediate Ca2+ overload, thus providing a non-excitotoxic mechanism of ischemic neuronal death. The dualistic role of SOCE in brain ischemia is further underscored by the evidence that it also participates to endothelial restoration and to the stabilization of intravascular thrombi. In Parkinson's disease (PD) models, loss of SOCE triggers ER stress and dysfunction/degeneration of dopaminergic neurons. Disruption of neuronal SOCE also underlies Alzheimer's disease (AD) pathogenesis, since both in genetic mouse models and in human sporadic AD brain samples, reduced SOCE contributes to synaptic loss and cognitive decline. Unlike the AD setting, in the striatum from Huntington's disease (HD) transgenic mice, an increased STIM2 expression causes elevated synaptic SOCE that was suggested to underlie synaptic loss in medium spiny neurons. Thus, pharmacological inhibition of SOCE is beneficial to synapse maintenance in HD models, whereas the same approach may be anticipated to be detrimental to cortical and hippocampal pyramidal neurons. On the other hand, up-regulation of SOCE may be beneficial during AD. These intriguing findings highlight the importance of further mechanistic studies to dissect the molecular pathways, and their corresponding targets, involved in synaptic dysfunction and neuronal loss during aging and neurodegenerative diseases.
Collapse
Affiliation(s)
- Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Napoli, Italy
| | - Giacinto Bagetta
- Department of Pharmacy, Health and Nutritional Sciences, Section of Preclinical and Translational Pharmacology, University of Calabria, Cosenza, Italy
| | - Diana Amantea
- Department of Pharmacy, Health and Nutritional Sciences, Section of Preclinical and Translational Pharmacology, University of Calabria, Cosenza, Italy
| |
Collapse
|