1
|
Martina M, Zayas A, Portis E, Di Nardo G, Polli MF, Comino C, Gilardi G, Martin E, Acquadro A. The Dark Side of the pollen: BSA-seq identified genomic regions linked to male sterility in globe artichoke. BMC PLANT BIOLOGY 2024; 24:415. [PMID: 38760683 PMCID: PMC11100218 DOI: 10.1186/s12870-024-05119-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/08/2024] [Indexed: 05/19/2024]
Abstract
Globe artichoke (Cynara cardunculus var. scolymus; 2n = 2x = 34) is a food crop consumed for its immature flower heads. Traditionally, globe artichoke varietal types are vegetatively propagated. However, seed propagation makes it possible to treat the crop as annual, increasing field uniformity and reducing farmers costs, as well as pathogens diffusion. Despite globe artichoke's significant agricultural value and the critical role of heterosis in the development of superior varieties, the production of hybrids remains challenging without a reliable system for large-scale industrial seed production. Male sterility (MS) presents a promising avenue for overcoming these challenges by simplifying the hybridization process and enabling cost-effective seed production. However, within the Cynara genus, genic male sterility has been linked to three recessive loci in globe artichoke, with no definitive genetic mechanism elucidated to date. A 250 offsprings F2 population, derived from a cross between a MS globe artichoke and a male fertile (MF) cultivated cardoon (C. cardunculus var. altilis) and fitting a monogenic segregation model (3:1), was analyzed through BSA-seq, aiming at the identification of genomic regions/genes affecting male sterility. Four QTL regions were identified on chromosomes 4, 12, and 14. By analyzing the sequence around the highest pick on chromosome 14, a cytochrome P450 (CYP703A2) was identified, carrying a deleterious substitution (R/Q) fixed in the male sterile parent. A single dCAPS marker was developed around this SNP, allowing the discrimination between MS and MF genotypes within the population, suitable for applications in plant breeding programs. A 3D model of the protein was generated by homology modeling, revealing that the mutated amino acid is part of a highly conserved motif crucial for protein folding.
Collapse
Affiliation(s)
- Matteo Martina
- DISAFA, Plant Genetics and Breeding, University of Turin, Turin, Italy
| | - Aldana Zayas
- IICAR (Instituto de Investigaciones en Ciencias Agrarias de Rosario), CONICET, Campo Exp. J.F. Villarino, Zavalla, Santa Fe, Argentina
| | - Ezio Portis
- DISAFA, Plant Genetics and Breeding, University of Turin, Turin, Italy
| | - Giovanna Di Nardo
- DBIOS, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | | | - Cinzia Comino
- DISAFA, Plant Genetics and Breeding, University of Turin, Turin, Italy
| | - Gianfranco Gilardi
- DBIOS, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Eugenia Martin
- IICAR (Instituto de Investigaciones en Ciencias Agrarias de Rosario), CONICET, Campo Exp. J.F. Villarino, Zavalla, Santa Fe, Argentina.
| | - Alberto Acquadro
- DISAFA, Plant Genetics and Breeding, University of Turin, Turin, Italy.
| |
Collapse
|
2
|
Feiden T, Valduga E, Zeni J, Steffens J. Bioactive Compounds from Artichoke and Application Potential. Food Technol Biotechnol 2023; 61:312-327. [PMID: 38022879 PMCID: PMC10666951 DOI: 10.17113/ftb.61.03.23.8038] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 07/12/2023] [Indexed: 12/01/2023] Open
Abstract
Cynara cardunculus L. var. scolymus, known as the artichoke, originated in the Mediterranean region and is now cultivated in several countries. The artichoke has leaves, a stem, and a head, also called a floral capitulum, covered with green and pointed bracts. It is rich in polyphenols, flavonoids, anthocyanins, phenolic compounds, inulin, coumarins, terpenes, dietary fibre, enzymes, polysaccharides, minerals and vitamins, and therefore has a wide range of uses, including in the food industry, medicine and biofuels. Several studies have shown that artichokes have properties such as antioxidant, anti-inflammatory, antimicrobial, anticancer, hypocholesterolaemic, anti-HIV, cardioprotective, hepatoprotective and lipid-lowering effects. The aim of this study is to provide a literature review on the phytochemical composition, bioactivity and applications, focusing on the methods of extraction, purification and concentration of enzymes present in artichoke.
Collapse
Affiliation(s)
- Thais Feiden
- Food Engineering Department, Universidade Regional Integrada do Alto Uruguai e das Missões (URI), Erechim, Av. Sete de Setembro 1621, 99709-910 Erechim, RS, Brazil
| | - Eunice Valduga
- Food Engineering Department, Universidade Regional Integrada do Alto Uruguai e das Missões (URI), Erechim, Av. Sete de Setembro 1621, 99709-910 Erechim, RS, Brazil
| | - Jamile Zeni
- Food Engineering Department, Universidade Regional Integrada do Alto Uruguai e das Missões (URI), Erechim, Av. Sete de Setembro 1621, 99709-910 Erechim, RS, Brazil
| | - Juliana Steffens
- Food Engineering Department, Universidade Regional Integrada do Alto Uruguai e das Missões (URI), Erechim, Av. Sete de Setembro 1621, 99709-910 Erechim, RS, Brazil
| |
Collapse
|
3
|
Pompili V, Mazzocchi E, Moglia A, Acquadro A, Comino C, Rotino GL, Lanteri S. Structural and expression analysis of polyphenol oxidases potentially involved in globe artichoke (C. cardunculus var. scolymus L.) tissue browning. Sci Rep 2023; 13:12288. [PMID: 37516733 PMCID: PMC10387078 DOI: 10.1038/s41598-023-38874-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 07/16/2023] [Indexed: 07/31/2023] Open
Abstract
Globe artichoke capitula are susceptible to browning due to oxidation of phenols caused by the activity of polyphenol oxidases (PPOs), this reduces their suitability for fresh or processed uses. A genome-wide analysis of the globe artichoke PPO gene family was performed. Bioinformatics analyses identified eleven PPOs and their genomic and amino acidic features were annotated. Cis-acting element analysis identified a gene regulatory and functional profile associated to plant growth and development as well as stress response. For some PPOs, phylogenetic analyses revealed a structural and functional conservation with different Asteraceae PPOs, while the allelic variants of the eleven PPOs investigated across four globe artichoke varietal types identified several SNP/Indel variants, some of which having impact on gene translation. By RTqPCR were assessed the expression patterns of PPOs in plant tissues and in vitro calli characterized by different morphologies. Heterogeneous PPO expression profiles were observed and three of them (PPO6, 7 and 11) showed a significant increase of transcripts in capitula tissues after cutting. Analogously, the same three PPOs were significantly up-regulated in calli showing a brown phenotype due to oxidation of phenols. Our results lay the foundations for a future application of gene editing aimed at disabling the three PPOs putatively involved in capitula browning.
Collapse
Affiliation(s)
- Valerio Pompili
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università degli Studi di Torino, Largo Paolo Braccini 2, 10095, Grugliasco, Torino, Italy.
| | - Elena Mazzocchi
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università degli Studi di Torino, Largo Paolo Braccini 2, 10095, Grugliasco, Torino, Italy
| | - Andrea Moglia
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università degli Studi di Torino, Largo Paolo Braccini 2, 10095, Grugliasco, Torino, Italy
| | - Alberto Acquadro
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università degli Studi di Torino, Largo Paolo Braccini 2, 10095, Grugliasco, Torino, Italy
| | - Cinzia Comino
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università degli Studi di Torino, Largo Paolo Braccini 2, 10095, Grugliasco, Torino, Italy
| | | | - Sergio Lanteri
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università degli Studi di Torino, Largo Paolo Braccini 2, 10095, Grugliasco, Torino, Italy.
| |
Collapse
|
4
|
Rau D, Attene G, Rodriguez M, Baghino L, Pisanu AB, Sanna D, Acquadro A, Portis E, Comino C. The Population Structure of a Globe Artichoke Worldwide Collection, as Revealed by Molecular and Phenotypic Analyzes. FRONTIERS IN PLANT SCIENCE 2022; 13:898740. [PMID: 35865281 PMCID: PMC9294547 DOI: 10.3389/fpls.2022.898740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/13/2022] [Indexed: 05/27/2023]
Abstract
The knowledge of the organization of the domesticated gene pool of crop species is an essential requirement to understand crop evolution, to rationalize conservation programs, and to support practical decisions in plant breeding. Here, we integrate simple sequence repeat (SSR) analysis and phenotypic characterization to investigate a globe artichoke collection that comprises most of the varieties cultivated worldwide. We show that the cultivated gene pool of globe artichoke includes five distinct genetic groups associated with the major phenotypic typologies: Catanesi (which based on our analysis corresponds to Violetti di Provenza), Spinosi, Violetti di Toscana, Romaneschi, and Macau. We observed that 17 and 11% of the molecular and phenotypic variance, respectively, is between these groups, while within groups, strong linkage disequilibrium and heterozygote excess are evident. The divergence between groups for quantitative traits correlates with the average broad-sense heritability within the groups. The phenotypic divergence between groups for both qualitative and quantitative traits is strongly and positively correlated with SSR divergence (FST) between groups. All this implies a low population size and strong bottleneck effects, and indicates a long history of clonal propagation and selection during the evolution of the domesticated gene pool of globe artichoke. Moreover, the comparison between molecular and phenotypic population structures suggests that harvest time, plant architecture (i.e., plant height, stem length), leaf spininess, head morphology (i.e., head shape, bract shape, spininess) together with the number of heads per plant were the main targets of selection during the evolution of the cultivated germplasm. We emphasize our findings in light of the potential exploitation of this collection for association mapping studies.
Collapse
Affiliation(s)
- Domenico Rau
- Dipartimento di Agraria, Sezione di Agronomia, Coltivazioni Erbacee e Genetica (SACEG), Università degli Studi di Sassari, Sassari, Italy
| | - Giovanna Attene
- Dipartimento di Agraria, Sezione di Agronomia, Coltivazioni Erbacee e Genetica (SACEG), Università degli Studi di Sassari, Sassari, Italy
| | - Monica Rodriguez
- Dipartimento di Agraria, Sezione di Agronomia, Coltivazioni Erbacee e Genetica (SACEG), Università degli Studi di Sassari, Sassari, Italy
| | - Limbo Baghino
- Agenzia AGRIS Sardegna (Servizio Ricerca sui Sistemi Colturali Erbacei, Settore Innovazione dei Modelli Gestionali e Studio Della Biodiversità Nelle Colture Intensive), Oristano, Italy
| | - Anna Barbara Pisanu
- Agenzia AGRIS Sardegna (Servizio Ricerca sui Sistemi Colturali Erbacei, Settore Innovazione dei Modelli Gestionali e Studio Della Biodiversità Nelle Colture Intensive), Oristano, Italy
| | - Davide Sanna
- Agenzia AGRIS Sardegna (Servizio Ricerca sui Sistemi Colturali Erbacei, Settore Innovazione dei Modelli Gestionali e Studio Della Biodiversità Nelle Colture Intensive), Oristano, Italy
| | - Alberto Acquadro
- Dipartimento di Scienze Agrarie, Forestali ed Alimentari (DISAFA), Genetica Vegetale (Plant Genetics), Università degli Studi di Torino, Turin, Italy
| | - Ezio Portis
- Dipartimento di Scienze Agrarie, Forestali ed Alimentari (DISAFA), Genetica Vegetale (Plant Genetics), Università degli Studi di Torino, Turin, Italy
| | - Cinzia Comino
- Dipartimento di Scienze Agrarie, Forestali ed Alimentari (DISAFA), Genetica Vegetale (Plant Genetics), Università degli Studi di Torino, Turin, Italy
| |
Collapse
|
5
|
Paolo D, Locatelli F, Cominelli E, Pirona R, Pozzo S, Graziani G, Ritieni A, De Palma M, Docimo T, Tucci M, Sparvoli F. Towards a Cardoon ( Cynara cardunculus var. altilis)-Based Biorefinery: A Case Study of Improved Cell Cultures via Genetic Modulation of the Phenylpropanoid Pathway. Int J Mol Sci 2021; 22:ijms222111978. [PMID: 34769407 PMCID: PMC8584892 DOI: 10.3390/ijms222111978] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 12/13/2022] Open
Abstract
Cultivated cardoon (Cynara cardunculus var. altilis L.) is a promising candidate species for the development of plant cell cultures suitable for large-scale biomass production and recovery of nutraceuticals. We set up a protocol for Agrobacterium tumefaciens-mediated transformation, which can be used for the improvement of cardoon cell cultures in a frame of biorefinery. As high lignin content determines lower saccharification yields for the biomass, we opted for a biotechnological approach, with the purpose of reducing lignin content; we generated transgenic lines overexpressing the Arabidopsis thaliana MYB4 transcription factor, a known repressor of lignin/flavonoid biosynthesis. Here, we report a comprehensive characterization, including metabolic and transcriptomic analyses of AtMYB4 overexpression cardoon lines, in comparison to wild type, underlining favorable traits for their use in biorefinery. Among these, the improved accessibility of the lignocellulosic biomass to degrading enzymes due to depletion of lignin content, the unexpected increased growth rates, and the valuable nutraceutical profiles, in particular for hydroxycinnamic/caffeoylquinic and fatty acids profiles.
Collapse
Affiliation(s)
- Dario Paolo
- National Research Council—Institute of Agricultural Biology and Biotechnology (CNR-IBBA), Via Edoardo Bassini 15, 20133 Milano, Italy; (F.L.); (E.C.); (R.P.); (S.P.)
- Correspondence: (D.P.); (F.S.); Tel.: +39-0223699407 (D.P.); +39-0223699435 (F.S.)
| | - Franca Locatelli
- National Research Council—Institute of Agricultural Biology and Biotechnology (CNR-IBBA), Via Edoardo Bassini 15, 20133 Milano, Italy; (F.L.); (E.C.); (R.P.); (S.P.)
| | - Eleonora Cominelli
- National Research Council—Institute of Agricultural Biology and Biotechnology (CNR-IBBA), Via Edoardo Bassini 15, 20133 Milano, Italy; (F.L.); (E.C.); (R.P.); (S.P.)
| | - Raul Pirona
- National Research Council—Institute of Agricultural Biology and Biotechnology (CNR-IBBA), Via Edoardo Bassini 15, 20133 Milano, Italy; (F.L.); (E.C.); (R.P.); (S.P.)
| | - Sara Pozzo
- National Research Council—Institute of Agricultural Biology and Biotechnology (CNR-IBBA), Via Edoardo Bassini 15, 20133 Milano, Italy; (F.L.); (E.C.); (R.P.); (S.P.)
| | - Giulia Graziani
- Department of Pharmacy—University of Naples Federico II (UNINA), Via Domenico Montesano 49, 80131 Naples, Italy; (G.G.); (A.R.)
| | - Alberto Ritieni
- Department of Pharmacy—University of Naples Federico II (UNINA), Via Domenico Montesano 49, 80131 Naples, Italy; (G.G.); (A.R.)
| | - Monica De Palma
- National Research Council—Institute of Bioscience and Bioresources (CNR-IBBR), Via Università 133, 80055 Portici, Italy; (M.D.P.); (T.D.); (M.T.)
| | - Teresa Docimo
- National Research Council—Institute of Bioscience and Bioresources (CNR-IBBR), Via Università 133, 80055 Portici, Italy; (M.D.P.); (T.D.); (M.T.)
| | - Marina Tucci
- National Research Council—Institute of Bioscience and Bioresources (CNR-IBBR), Via Università 133, 80055 Portici, Italy; (M.D.P.); (T.D.); (M.T.)
| | - Francesca Sparvoli
- National Research Council—Institute of Agricultural Biology and Biotechnology (CNR-IBBA), Via Edoardo Bassini 15, 20133 Milano, Italy; (F.L.); (E.C.); (R.P.); (S.P.)
- Correspondence: (D.P.); (F.S.); Tel.: +39-0223699407 (D.P.); +39-0223699435 (F.S.)
| |
Collapse
|
6
|
Baştabak B, Gödekmerdan E, Koçar G. A holistic approach to soil contamination and sustainable phytoremediation with energy crops in the Aegean Region of Turkey. CHEMOSPHERE 2021; 276:130192. [PMID: 33740653 DOI: 10.1016/j.chemosphere.2021.130192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/23/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
The objective of this current review article is to evaluate the current knowledge of the contaminated soil in the study area based on reports and the results of previous experimental studies in the literature and to discuss the feasibility of phytoremediation with biofuel production using energy crops. The results indicated that the soil contamination was related mainly to the thermal power plant and mining activities in Kütahya, high industrial activity in İzmir, heavy metal and radioactive pollution in Manisa and Muğla. Moreover, the sources of the contamination are geothermal resources and transportation in Aydın and Denizli, respectively. However, soil pollution in Afyonkarahisar and Uşak provinces has not been discussed due to a lack of detailed reports and data in the literature. Besides, energy crops such as Zea mays, Ricinus communis, and Gossypium hirsitum were identified as appropriate candidates for İzmir, Denizli, Manisa, and Aydın due to being resistant to the arid climate. In Muğla province, Eucalyptus grandis and Eucalyptus bicostata can be cultivated because of having adaptation to moderate climatic conditions. Ricinus communis and Helianthus annuus were determined to be very suitable energy crops for the phytoremediation of many heavy metals in Kütahya. The review promotes the development of economic, environmental, and social benefits to regain the contaminated areas through phytoremediation. The findings of the study are important for creating sustainable solutions for remediation of polluted soils in Turkey, as well as for shedding light on the process of establishing appropriate policies to make soils contaminated suitable for agriculture.
Collapse
Affiliation(s)
- Benginur Baştabak
- Ege University, Biomass Energy Systems and Technologies Application and Research Center, İzmir, Turkey.
| | - Elif Gödekmerdan
- Ege University, Biomass Energy Systems and Technologies Application and Research Center, İzmir, Turkey.
| | - Günnur Koçar
- Ege University, Biomass Energy Systems and Technologies Application and Research Center, İzmir, Turkey.
| |
Collapse
|
7
|
Pavese V, Cavalet Giorsa E, Barchi L, Acquadro A, Torello Marinoni D, Portis E, James Lucas S, Botta R. Whole-genome assembly of Corylus avellana cv'Tonda Gentile delle Langhe' using linked-reads (10X Genomics). G3-GENES GENOMES GENETICS 2021; 11:6272584. [PMID: 33964151 PMCID: PMC8495946 DOI: 10.1093/g3journal/jkab152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/20/2021] [Indexed: 01/01/2023]
Abstract
The European hazelnut (Corylus avellana L.; 2n = 2x = 22) is a worldwide economically important tree nut that is cross-pollinated due to sporophytic incompatibility. Therefore, any individual plant is highly heterozygous. Cultivars are clonally propagated using mound layering, rooted suckers, and micropropagation. In recent years, the interest in this crop has increased, due to a growing demand related to the recognized health benefits of nut consumption. C. avellana cv “Tonda Gentile delle Langhe” (“TGdL”) is well-known for its high kernel quality, and the premium price paid for this cultivar is an economic benefit for producers in northern Italy. Assembly of a high-quality genome is a difficult task in many plant species because of the high level of heterozygosity. We assembled a chromosome-level genome sequence of “TGdL” with a two-step approach. First, 10X Genomics Chromium Technology was used to create a high-quality sequence, which was then assembled into scaffolds with cv “Tombul” genome as the reference. Eleven pseudomolecules were obtained, corresponding to 11 chromosomes. A total of 11,046 scaffolds remained unplaced, representing 11% of the genome (46,504,161 bp). Gene prediction, performed with Maker-P software, identified 27,791 genes (AED ≤0.4 and 92% of BUSCO completeness), whose function was analyzed with BlastP and InterProScan software. To characterize “TGdL” specific genetic mechanisms, Orthofinder was used to detect orthologs between hazelnut and closely related species. The “TGdL” genome sequence is expected to be a powerful tool to understand hazelnut genetics and allow detection of markers/genes for important traits to be used in targeted breeding programs.
Collapse
Affiliation(s)
- Vera Pavese
- Dipartimento di Scienze Agrarie, Forestali e Alimentari-DISAFA, Università degli Studi di Torino, Largo Paolo Braccini 2, Grugliasco, 10095 Torino, Italy
| | - Emile Cavalet Giorsa
- Dipartimento di Scienze Agrarie, Forestali e Alimentari-DISAFA, Università degli Studi di Torino, Largo Paolo Braccini 2, Grugliasco, 10095 Torino, Italy
| | - Lorenzo Barchi
- Dipartimento di Scienze Agrarie, Forestali e Alimentari-DISAFA, Università degli Studi di Torino, Largo Paolo Braccini 2, Grugliasco, 10095 Torino, Italy
| | - Alberto Acquadro
- Dipartimento di Scienze Agrarie, Forestali e Alimentari-DISAFA, Università degli Studi di Torino, Largo Paolo Braccini 2, Grugliasco, 10095 Torino, Italy
| | - Daniela Torello Marinoni
- Dipartimento di Scienze Agrarie, Forestali e Alimentari-DISAFA, Università degli Studi di Torino, Largo Paolo Braccini 2, Grugliasco, 10095 Torino, Italy
| | - Ezio Portis
- Dipartimento di Scienze Agrarie, Forestali e Alimentari-DISAFA, Università degli Studi di Torino, Largo Paolo Braccini 2, Grugliasco, 10095 Torino, Italy
| | - Stuart James Lucas
- Sabanci University SUNUM Nanotechnology Research and Application Centre, Istanbul, Turkey
| | - Roberto Botta
- Dipartimento di Scienze Agrarie, Forestali e Alimentari-DISAFA, Università degli Studi di Torino, Largo Paolo Braccini 2, Grugliasco, 10095 Torino, Italy
| |
Collapse
|
8
|
Active Packaging-Releasing System with Foeniculum vulgare Essential Oil for the Quality Preservation of Ready-to-Cook (RTC) Globe Artichoke Slices. Foods 2021; 10:foods10030517. [PMID: 33801354 PMCID: PMC8001857 DOI: 10.3390/foods10030517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/08/2021] [Accepted: 02/20/2021] [Indexed: 01/05/2023] Open
Abstract
Two globe artichoke genotypes, “Spinoso sardo” and “Opera F1”, have been processed as ready-to-cook (RTC) slices and refrigerated at 4 °C for 12 days (i) to evaluate the suitability to be processed as RTC slices; (ii) to evaluate the effect of a Foeniculum vulgare essential oil (EO) emitter, within an active package system, to delay quality decay, thus extending shelf life; (iii) to estimate the impact of EO emitter on the sensory profile of the RTC slices after cooking. Results revealed that both globe artichoke genotypes possess a good attitude to be processed as RTC product. “Opera F1” showed the best performances for color parameters, texture and chemical indexes, while “Spinoso sardo” showed lower mass loss (ML) over the storage time. The addition of EO emitter slowed down the consumption of O2, better preserved texture when compared to the control and more effectively control polyphenol oxidase (PPO) activity and antioxidants’ retention during the cold storage. Microbial counts in control globe artichoke RTC slices were significantly higher than those packed with EO emitter, confirming the inhibiting role played by EO of F. vulgare. In addition, the EO emitter did not influence negatively the sensory profile of RTC globe artichoke slices after microwave cooking.
Collapse
|
9
|
Yu Z, Zhang G, Teixeira da Silva JA, Li M, Zhao C, He C, Si C, Zhang M, Duan J. Genome-wide identification and analysis of DNA methyltransferase and demethylase gene families in Dendrobium officinale reveal their potential functions in polysaccharide accumulation. BMC PLANT BIOLOGY 2021; 21:21. [PMID: 33407149 PMCID: PMC7789594 DOI: 10.1186/s12870-020-02811-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 12/22/2020] [Indexed: 05/30/2023]
Abstract
BACKGROUND DNA methylation is a conserved and important epigenetic modification involved in the regulation of numerous biological processes, including plant development, secondary metabolism, and response to stresses. However, no information is available regarding the identification of cytosine-5 DNA methyltransferase (C5-MTase) and DNA demethylase (dMTase) genes in the orchid Dendrobium officinale. RESULTS In this study, we performed a genome-wide analysis of DoC5-MTase and DodMTase gene families in D. officinale. Integrated analysis of conserved motifs, gene structures and phylogenetic analysis showed that eight DoC5-MTases were divided into four subfamilies (DoCMT, DoDNMT, DoDRM, DoMET) while three DodMTases were divided into two subfamilies (DoDML3, DoROS1). Multiple cis-acting elements, especially stress-responsive and hormone-responsive ones, were found in the promoter region of DoC5-MTase and DodMTase genes. Furthermore, we investigated the expression profiles of DoC5-MTase and DodMTase in 10 different tissues, as well as their transcript abundance under abiotic stresses (cold and drought) and at the seedling stage, in protocorm-like bodies, shoots, and plantlets. Interestingly, most DoC5-MTases were downregulated whereas DodMTases were upregulated by cold stress. At the seedling stage, DoC5-MTase expression decreased as growth proceeded, but DodMTase expression increased. CONCLUSIONS These results provide a basis for elucidating the role of DoC5-MTase and DodMTase in secondary metabolite production and responses to abiotic stresses in D. officinale.
Collapse
Affiliation(s)
- Zhenming Yu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650 China
| | - Guihua Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
| | - Jaime A. Teixeira da Silva
- Independent researcher, P. O. Box 7, Miki-cho post office, Ikenobe 3011-2, Miki-cho, Kagawa-ken 761-0799 Japan
| | - Mingzhi Li
- Biodata Biotechnology Co. Ltd, Hefei, 230031 China
| | - Conghui Zhao
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
| | - Chunmei He
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
| | - Can Si
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
| | - Mingze Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
| | - Jun Duan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650 China
| |
Collapse
|
10
|
"Mind the Gap": Hi-C Technology Boosts Contiguity of the Globe Artichoke Genome in Low-Recombination Regions. G3-GENES GENOMES GENETICS 2020; 10:3557-3564. [PMID: 32817122 PMCID: PMC7534446 DOI: 10.1534/g3.120.401446] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Globe artichoke (Cynara cardunculus var. scolymus; 2n2x=34) is cropped largely in the Mediterranean region, being Italy the leading world producer; however, over time, its cultivation has spread to the Americas and China. In 2016, we released the first (v1.0) globe artichoke genome sequence (http://www.artichokegenome.unito.it/). Its assembly was generated using ∼133-fold Illumina sequencing data, covering 725 of the 1,084 Mb genome, of which 526 Mb (73%) were anchored to 17 chromosomal pseudomolecules. Based on v1.0 sequencing data, we generated a new genome assembly (v2.0), obtained from a Hi-C (Dovetail) genomic library, and which improves the scaffold N50 from 126 kb to 44.8 Mb (∼356-fold increase) and N90 from 29 kb to 17.8 Mb (∼685-fold increase). While the L90 of the v1.0 sequence included 6,123 scaffolds, the new v2.0 just 15 super-scaffolds, a number close to the haploid chromosome number of the species. The newly generated super-scaffolds were assigned to pseudomolecules using reciprocal blast procedures. The cumulative size of unplaced scaffolds in v2.0 was reduced of 165 Mb, increasing to 94% the anchored genome sequence. The marked improvement is mainly attributable to the ability of the proximity ligation-based approach to deal with both heterochromatic (e.g.: peri-centromeric) and euchromatic regions during the assembly procedure, which allowed to physically locate low recombination regions. The new high-quality reference genome enhances the taxonomic breadth of the data available for comparative plant genomics and led to a new accurate gene prediction (28,632 genes), thus promoting the map-based cloning of economically important genes.
Collapse
|
11
|
Zayed A, Farag MA. Valorization, extraction optimization and technology advancements of artichoke biowastes: Food and non-food applications. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109883] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Puglia GD, Prjibelski AD, Vitale D, Bushmanova E, Schmid KJ, Raccuia SA. Hybrid transcriptome sequencing approach improved assembly and gene annotation in Cynara cardunculus (L.). BMC Genomics 2020; 21:317. [PMID: 32819282 PMCID: PMC7441626 DOI: 10.1186/s12864-020-6670-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 03/13/2020] [Indexed: 12/11/2022] Open
Abstract
Background The investigation of transcriptome profiles using short reads in non-model organisms, which lack of well-annotated genomes, is limited by partial gene reconstruction and isoform detection. In contrast, long-reads sequencing techniques revealed their potential to generate complete transcript assemblies even when a reference genome is lacking. Cynara cardunculus var. altilis (DC) (cultivated cardoon) is a perennial hardy crop adapted to dry environments with many industrial and nutraceutical applications due to the richness of secondary metabolites mostly produced in flower heads. The investigation of this species benefited from the recent release of a draft genome, but the transcriptome profile during the capitula formation still remains unexplored. In the present study we show a transcriptome analysis of vegetative and inflorescence organs of cultivated cardoon through a novel hybrid RNA-seq assembly approach utilizing both long and short RNA-seq reads. Results The inclusion of a single Nanopore flow-cell output in a hybrid sequencing approach determined an increase of 15% complete assembled genes and 18% transcript isoforms respect to short reads alone. Among 25,463 assembled unigenes, we identified 578 new genes and updated 13,039 gene models, 11,169 of which were alternatively spliced isoforms. During capitulum development, 3424 genes were differentially expressed and approximately two-thirds were identified as transcription factors including bHLH, MYB, NAC, C2H2 and MADS-box which were highly expressed especially after capitulum opening. We also show the expression dynamics of key genes involved in the production of valuable secondary metabolites of which capitulum is rich such as phenylpropanoids, flavonoids and sesquiterpene lactones. Most of their biosynthetic genes were strongly transcribed in the flower heads with alternative isoforms exhibiting differentially expression levels across the tissues. Conclusions This novel hybrid sequencing approach allowed to improve the transcriptome assembly, to update more than half of annotated genes and to identify many novel genes and different alternatively spliced isoforms. This study provides new insights on the flowering cycle in an Asteraceae plant, a valuable resource for plant biology and breeding in Cynara and an effective method for improving gene annotation.
Collapse
Affiliation(s)
- Giuseppe D Puglia
- Institute for Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Fruwirthstrasse 21, 70599, Stuttgart, Germany. .,Consiglio Nazionale delle Ricerche, Istituto per i Sistemi Agricoli e Forestali del Mediterraneo (CNR-ISAFOM) U.O.S. Catania, Via Empedocle, 58, 95128, Catania, Italy.
| | - Andrey D Prjibelski
- Center for Algorithmic Biotechnology, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Domenico Vitale
- Consiglio Nazionale delle Ricerche, Istituto per i Sistemi Agricoli e Forestali del Mediterraneo (CNR-ISAFOM) U.O.S. Catania, Via Empedocle, 58, 95128, Catania, Italy
| | - Elena Bushmanova
- Center for Algorithmic Biotechnology, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Karl J Schmid
- Institute for Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Fruwirthstrasse 21, 70599, Stuttgart, Germany.
| | - Salvatore A Raccuia
- Consiglio Nazionale delle Ricerche, Istituto per i Sistemi Agricoli e Forestali del Mediterraneo (CNR-ISAFOM) U.O.S. Catania, Via Empedocle, 58, 95128, Catania, Italy
| |
Collapse
|
13
|
A New Intra-Specific and High-Resolution Genetic Map of Eggplant Based on a RIL Population, and Location of QTLs Related to Plant Anthocyanin Pigmentation and Seed Vigour. Genes (Basel) 2020; 11:genes11070745. [PMID: 32635424 PMCID: PMC7397344 DOI: 10.3390/genes11070745] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/16/2022] Open
Abstract
Eggplant is the second most important solanaceous berry-producing crop after tomato. Despite mapping studies based on bi-parental progenies and GWAS approaches having been performed, an eggplant intraspecific high-resolution map is still lacking. We developed a RIL population from the intraspecific cross ‘305E40’, (androgenetic introgressed line carrying the locus Rfo-Sa1 conferring Fusarium resistance) x ‘67/3’ (breeding line whose genome sequence was recently released). One hundred and sixty-three RILs were genotyped by a genotype-by-sequencing (GBS) approach, which allowed us to identify 10,361 polymorphic sites. Overall, 267 Gb of sequencing data were generated and ~773 M Illumina paired end (PE) reads were mapped against the reference sequence. A new linkage map was developed, including 7249 SNPs assigned to the 12 chromosomes and spanning 2169.23 cM, with iaci@liberoan average distance of 0.4 cM between adjacent markers. This was used to elucidate the genetic bases of seven traits related to anthocyanin content in different organs recorded in three locations as well as seed vigor. Overall, from 7 to 17 QTLs (at least one major QTL) were identified for each trait. These results demonstrate that our newly developed map supplies valuable information for QTL fine mapping, candidate gene identification, and the development of molecular markers for marker assisted selection (MAS) of favorable alleles.
Collapse
|
14
|
Whole genome resequencing of four Italian sweet pepper landraces provides insights on sequence variation in genes of agronomic value. Sci Rep 2020; 10:9189. [PMID: 32514106 PMCID: PMC7280500 DOI: 10.1038/s41598-020-66053-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/07/2020] [Indexed: 11/08/2022] Open
Abstract
Sweet pepper (Capsicum annuum L.) is a high value crop and one of the most widely grown vegetables belonging to the Solanaceae family. In addition to commercial varieties and F1 hybrids, a multitude of landraces are grown, whose genetic combination is the result of hundreds of years of random, environmental, and farmer selection. High genetic diversity exists in the landrace gene pool which however has scarcely been studied, thus bounding their cultivation. We re-sequenced four pepper inbred lines, within as many Italian landraces, which representative of as many fruit types: big sized blocky with sunken apex ('Quadrato') and protruding apex or heart shaped ('Cuneo'), elongated ('Corno') and smaller sized sub-spherical ('Tumaticot'). Each genomic sequence was obtained through Illumina platform at coverage ranging from 39 to 44×, and reconstructed at a chromosome scale. About 35.5k genes were predicted in each inbred line, of which 22,017 were shared among them and the reference genome (accession 'CM334'). Distinctive variations in miRNAs, resistance gene analogues (RGAs) and susceptibility genes (S-genes) were detected. A detailed survey of the SNP/Indels occurring in genes affecting fruit size, shape and quality identified the highest frequencies of variation in regulatory regions. Many structural variations were identified as presence/absence variations (PAVs), notably in resistance gene analogues (RGAs) and in the capsanthin/capsorubin synthase (CCS) gene. The large allelic diversity observed in the four inbred lines suggests their potential use as a pre-breeding resource and represents a one-stop resource for C. annuum genomics and a key tool for dissecting the path from sequence variation to phenotype.
Collapse
|
15
|
Cynara cardunculus L.: Outgoing and potential trends of phytochemical, industrial, nutritive and medicinal merits. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103937] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
16
|
Testone G, Sobolev A, Gonnella M, Renna M, Mannina L, Capitani D, Arnesi G, Biancari T, Giannino D. Insights into sucrose pathway of chicory stems by integrative transcriptomic and metabolic analyses. PHYTOCHEMISTRY 2019; 167:112086. [PMID: 31450092 DOI: 10.1016/j.phytochem.2019.112086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 06/21/2019] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
The worldwide-cultivated chicory (Cichorium intybus L.) produces food and beneficial compounds, and young pre-flowering inflorescence stems are newly marketed vegetables. These sink-organs undergo growth by metabolizing sugars of leaf origin; the carbohydrate content and sweetness are crucial aspects for consumers' nutrition and acceptance. NMR profiling of 31 hydrosoluble phytochemicals showed that stem contents varied as influenced by genotype, environment and interaction, and that higher sucrose levels were associated with the sweeter of two landraces. Integrative analyses of metabolic and transcriptomic profile variations allowed the dissection of sucrose pathway. Overall, 427 and 23 unigenes respectively fell into the categories of sucrose metabolism and sugar carriers. Among 10 differentially expressed genes, the 11474/sucrose synthase, 53458/fructokinase, 9306 and 17035/hexokinases, and 20171/SWEET-type genes significantly associated to sugar content variation, and deduced proteins were characterised in silico. Correlation analyses encompassing sugar level variation, expressions of the former genes and of computationally assigned transcription factors (10938/NAC, 14712/bHLH, 40133/TALE and 17846/MIKC) revealed a gene network. The latter was minimally affected by the environment and accomplished with markers, representing a resource for biological studies and breeding.
Collapse
Affiliation(s)
- Giulio Testone
- Institute of Agricultural Biology and Biotechnology - Unit of Rome, National Research Council (CNR), Via Salaria km 29.300, 00015, Monterotondo, Rome, Italy
| | - Anatoly Sobolev
- Institute for Biological Systems, "Annalaura Segre" Magnetic Resonance Laboratory, CNR, Via Salaria Km 29,300, 00015, Monterotondo, Rome, Italy
| | - Maria Gonnella
- Institute of Sciences of Food Production, CNR, Via G. Amendola 122/O, 70126, Bari, Italy
| | - Massimiliano Renna
- Institute of Sciences of Food Production, CNR, Via G. Amendola 122/O, 70126, Bari, Italy; Department of Agricultural and Environmental Science, University of Bari, Via Amendola 165/A, 70126, Bari, Italy
| | - Luisa Mannina
- Institute for Biological Systems, "Annalaura Segre" Magnetic Resonance Laboratory, CNR, Via Salaria Km 29,300, 00015, Monterotondo, Rome, Italy; Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Donatella Capitani
- Institute for Biological Systems, "Annalaura Segre" Magnetic Resonance Laboratory, CNR, Via Salaria Km 29,300, 00015, Monterotondo, Rome, Italy
| | - Giuseppe Arnesi
- Enza Zaden Italia, Strada Statale Aurelia km. 96.400, 01016, Tarquinia, Viterbo, Italy
| | - Tiziano Biancari
- Enza Zaden Italia, Strada Statale Aurelia km. 96.400, 01016, Tarquinia, Viterbo, Italy
| | - Donato Giannino
- Institute of Agricultural Biology and Biotechnology - Unit of Rome, National Research Council (CNR), Via Salaria km 29.300, 00015, Monterotondo, Rome, Italy.
| |
Collapse
|
17
|
Abril D, Mirabal-Gallardo Y, González A, Marican A, Durán-Lara EF, Silva Santos L, Valdés O. Comparison of the Oxidative Stability and Antioxidant Activity of Extra-Virgin Olive Oil and Oils Extracted from Seeds of Colliguaya integerrima and Cynara cardunculus Under Normal Conditions and After Thermal Treatment. Antioxidants (Basel) 2019; 8:E470. [PMID: 31601036 PMCID: PMC6827052 DOI: 10.3390/antiox8100470] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/26/2019] [Accepted: 10/06/2019] [Indexed: 11/16/2022] Open
Abstract
We investigated the potential of two oil extracts from seeds of Colliguaya integerrima (CIO) and Cynara cardunculus (CO) to use as nutritionally edible oils. For this purpose, oil quality was accessed by determining the fatty acid composition, peroxide value, acid value, iodine value, saponification number, phenolic contents, and oxidative stability during thermally induced oxidation of CIO and CO oils and compared to those of extra-virgin olive oil (EVOO). The chemical composition results demonstrated that both oils could be nutritional sources of essential unsaturated fatty acids. Moreover, according to the gravimetric analysis, the main decomposition step occurred in the temperature range of 200-420 °C, showing a similar thermal behavior of EVOO oil. However, CO and EVOO oils showed a higher phenolic content at degradation onset temperature (T0) in contrast with CIO oil. The antioxidant activity of the different studied oils showed a direct correlation with the phenol contents, up to temperatures around 180 °C, where the percentage of free radical scavenging assay for EVOO was higher than CO in contrast with the TPC values. Finally, we analyzed the minor components before and after heating CIO and CO at 180 °C by gas chromatography-mass spectrometry (GC-MS) using library search programs.
Collapse
Affiliation(s)
- Diana Abril
- Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca 3460000, Chile.
| | - Yaneris Mirabal-Gallardo
- Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca 3460000, Chile.
| | - Aymeé González
- Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca 3460000, Chile.
| | - Adolfo Marican
- Chemistry Institute of Natural Resources, University of Talca, P.O. Box 747, Talca 3460000, Chile.
- Bio & NanoMaterials Lab, Drug Delivery and Controlled Release, Universidad de Talca, Talca 3460000, Maule, Chile.
| | - Esteban F Durán-Lara
- Bio & NanoMaterials Lab, Drug Delivery and Controlled Release, Universidad de Talca, Talca 3460000, Maule, Chile.
- Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Maule, Chile.
| | - Leonardo Silva Santos
- Laboratory of Asymmetric Synthesis, Chemistry Institute of Natural Resources, University of Talca, P.O. Box 747, Talca 3460000, Chile.
| | - Oscar Valdés
- Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca 3460000, Chile.
| |
Collapse
|
18
|
Cerruti E, Comino C, Acquadro A, Marconi G, Repetto AM, Pisanu AB, Pilia R, Albertini E, Portis E. Analysis of DNA Methylation Patterns Associated with In Vitro Propagated Globe Artichoke Plants Using an EpiRADseq-Based Approach. Genes (Basel) 2019; 10:E263. [PMID: 30939865 PMCID: PMC6523903 DOI: 10.3390/genes10040263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 01/16/2023] Open
Abstract
Globe artichoke represents one of the main horticultural species of the Mediterranean basin, and 'Spinoso sardo' is the most widespread and economically relevant varietal type in Sardinia, Italy. In the last decades, in vitro culture of meristematic apices has increased the frequency of aberrant plants in open-field production. These off-type phenotypes showed highly pinnate-parted leaves and late inflorescence budding, and emerged from some branches of the true-to-type 'Spinoso sardo' plants. This phenomenon cannot be foreseen and is reversible through generations, suggesting the occurrence of epigenetic alterations. Here, we report an exploratory study on DNA methylation patterns in off-type/true-to-type globe artichoke plants, using a modified EpiRADseq technology, which allowed the identification of 2,897 differentially methylated loci (DML): 1,998 in CG, 458 in CHH, and 441 in CHG methylation contexts of which 720, 88, and 152, respectively, were in coding regions. Most of them appeared involved in primary metabolic processes, mostly linked to photosynthesis, regulation of flower development, and regulation of reproductive processes, coherently with the observed phenotype. Differences in the methylation status of some candidate genes were integrated with transcriptional analysis to test whether these two regulation levels might interplay in the emergence and spread of the 'Spinoso sardo' non-conventional phenotype.
Collapse
Affiliation(s)
- Elisa Cerruti
- Department of Agricultural, Forest and Food Sciences, Plant Genetics and Breeding, University of Torino, 10095 Grugliasco, Italy.
| | - Cinzia Comino
- Department of Agricultural, Forest and Food Sciences, Plant Genetics and Breeding, University of Torino, 10095 Grugliasco, Italy.
| | - Alberto Acquadro
- Department of Agricultural, Forest and Food Sciences, Plant Genetics and Breeding, University of Torino, 10095 Grugliasco, Italy.
| | - Gianpiero Marconi
- Department of Agricultural, Food, and Environmental Sciences, University of Perugia, 06121 Perugia, Italy.
| | - Anna Maria Repetto
- Agris Sardegna-Agenzia Regionale per la Ricerca in Agricoltura-Servizio Ricerca sui Sistemi Colturali Erbacei, 09123 Cagliari, Italy.
| | - Anna Barbara Pisanu
- Agris Sardegna-Agenzia Regionale per la Ricerca in Agricoltura-Servizio Ricerca sui Sistemi Colturali Erbacei, 09123 Cagliari, Italy.
| | - Roberto Pilia
- Agris Sardegna-Agenzia Regionale per la Ricerca in Agricoltura-Servizio Ricerca sui Sistemi Colturali Erbacei, 09123 Cagliari, Italy.
| | - Emidio Albertini
- Department of Agricultural, Food, and Environmental Sciences, University of Perugia, 06121 Perugia, Italy.
| | - Ezio Portis
- Department of Agricultural, Forest and Food Sciences, Plant Genetics and Breeding, University of Torino, 10095 Grugliasco, Italy.
| |
Collapse
|
19
|
Roy NS, Kim JA, Choi AY, Ban YW, Park NI, Park KC, Yang HS, Choi IY, Kim S. RNA-Seq De Novo Assembly and Differential Transcriptome Analysis of Korean Medicinal Herb Cirsium japonicum var. spinossimum. Genomics Inform 2018; 16:e34. [PMID: 30602095 PMCID: PMC6440657 DOI: 10.5808/gi.2018.16.4.e34] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 12/17/2018] [Indexed: 12/20/2022] Open
Abstract
Cirsium japonicum belongs to the Asteraceae or Compositae family and is a medicinal plant in Asia that has a variety of effects, including tumour inhibition, improved immunity with flavones, and antidiabetic and hepatoprotective effects. Silymarin is synthesized by 4-coumaroyl-CoA via both the flavonoid and phenylpropanoid pathways to produce the immediate precursors taxifolin and coniferyl alcohol. Then, the oxidative radicalization of taxifolin and coniferyl alcohol produces silymarin. We identified the expression of genes related to the synthesis of silymarin in C. japonicum in three different tissues, namely, flowers, leaves, and roots, through RNA sequencing. We obtained 51,133 unigenes from transcriptome sequencing by de novo assembly using Trinity v2.1.1, TransDecoder v2.0.1, and CD-HIT v4.6 software. The differentially expressed gene analysis revealed that the expression of genes related to the flavonoid pathway was higher in the flowers, whereas the phenylpropanoid pathway was more highly expressed in the roots. In this study, we established a global transcriptome dataset for C. japonicum. The data shall not only be useful to focus more deeply on the genes related to product medicinal metabolite including flavolignan but also to study the functional genomics for genetic engineering of C. japonicum.
Collapse
Affiliation(s)
- Neha Samir Roy
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon 24341, Korea.,Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon 24341, Korea
| | - Jung-A Kim
- Biological Resources Assessment Division, National Institute of Biological Resources, Incheon 22689, Korea
| | | | - Yong-Wook Ban
- Department of Forest Environmental System, Kangwon National University, Chuncheon 24341, Korea
| | - Nam-Il Park
- Department of Plant Science, Gangneung Wonju National University, Gangneung 25457, Korea
| | - Kyong-Cheul Park
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon 24341, Korea
| | - Hee-Sun Yang
- Biological Resources Assessment Division, National Institute of Biological Resources, Incheon 22689, Korea
| | - Ik-Young Choi
- Department of Agriculture and Life Industry, Kangwon National University, Chuncheon 24341, Korea.,Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon 24341, Korea
| | - Soonok Kim
- Biological Resources Assessment Division, National Institute of Biological Resources, Incheon 22689, Korea
| |
Collapse
|
20
|
Pavan S, Curci PL, Zuluaga DL, Blanco E, Sonnante G. Genotyping-by-sequencing highlights patterns of genetic structure and domestication in artichoke and cardoon. PLoS One 2018; 13:e0205988. [PMID: 30352087 PMCID: PMC6198968 DOI: 10.1371/journal.pone.0205988] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 10/04/2018] [Indexed: 01/07/2023] Open
Abstract
Exploiting the biodiversity of crops and their wild relatives is fundamental for maintaining and increasing food security. The species Cynara cardunculus includes three taxa: the globe artichoke, one of the most important Mediterranean vegetables, the leafy cardoon, and the wild cardoon. In this study, genotyping by sequencing (GBS) was successfully applied to reveal thousands of polymorphisms in a C. cardunculus germplasm collection, including 65 globe artichoke, 9 leafy cardoon, and 21 wild cardoon samples. The collection showed a strong population structure at K = 2, separating the globe artichoke from the leafy and wild cardoon. At higher K values, further substructures were observed, in which the wild cardoon was separated from the leafy cardoon, and the latter included the Spanish wild cardoons, while the wild sample from Portugal was admixed. Moreover, subpopulations within the globe artichoke set were highlighted. Structure analysis restricted to the globe artichoke dataset pointed out genetic differentiation between the ˝Catanesi˝ typology and all the other samples (K = 2). At higher values of K, the separation of the ˝Catanesi˝ group still held true, and green headed landraces from Apulia region, Italy (˝Green Apulian˝) formed a distinct subpopulation. ˝Romaneschi˝ artichoke types fell in a variable group with admixed samples, indicating that they should not be considered as a genetically uniform typology. The results of principal component analysis and Neighbor-Joining hierarchical clustering were consistent with structure results, and in addition provided a measure of genetic relationships among individual genotypes. Both analyses attributed the wild material from Spain and Portugal to the cultivated cardoon group, supporting the idea that this might be indeed a feral form of the leafy cardoon. Different reproductive habit and possibly selective pressure led to a slower LD decay in artichoke compared to cardoon. Genotyping by sequencing has proven a reliable methodology to obtain valuable SNPs and assess population genetics in C. cardunculus.
Collapse
Affiliation(s)
- Stefano Pavan
- Department of Soil, Plant and Food Science, University of Bari ˝Aldo Moro˝, Bari, Italy.,Institute of Biomedical Technologies, National Research Council (CNR), Bari, Italy
| | | | | | | | | |
Collapse
|