1
|
Rai SK, Du W, Zhang J, Yu H, Deng Y, Fei P. Somatic gene mutations involved in DNA damage response/Fanconi anemia signaling are tissue- and cell-type specific in human solid tumors. Front Med (Lausanne) 2024; 11:1462810. [PMID: 39421870 PMCID: PMC11483370 DOI: 10.3389/fmed.2024.1462810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/28/2024] [Indexed: 10/19/2024] Open
Abstract
With significant advancements in the study of DNA Damage Response (DDR) and Fanconi Anemia (FA) signaling, we previously introduced the term "FA signaling" to encompass "all signaling transductions involving one or more FA proteins." This network has now evolved into the largest cellular defense network, integrating over 30 key players, including ATM, ATR, BLM, HRR6, RAD18, FANCA, FANCB, FANCC, BRCA2, FANCD2, FANCE, FANCF, FANCG, FANCI, BRIP1, FANCL, FANCM, PALB2, RAD51C, SLX4, ERCC4, RAD51, BRCA1, UBE2T, XRCC2, MAD2L2, RFWD3, FAAP20, FAAP24, FAAP100, and CENPX. This system responds to both endogenous and exogenous cellular insults. However, the mutational signatures associated with this defense mechanism in non-FA human cancers have not been extensively explored. In this study, we report that different types of human cancers are characterized by distinct somatically mutated genes related to DDR/FA signaling, each accompanied by a unique spectrum of potential driver mutations. For example, in pan-cancer samples, ATM emerges as the most frequently mutated gene (5%) among the 31 genes analyzed, with the highest number of potential driver mutations (1714), followed by BRCA2 (4% with 970 putative driver mutations). However, this pattern is not universal across specific cancer types. For example, FANCT is the most frequently mutated gene in breast (14%) and liver (4%) cancers. In addition, the alteration frequency of DDR/FA signaling due to these mutations exceeds 70% in a subtype of prostate cancer, with each subtype of brain, breast, lung, and prostate cancers displaying distinct patterns of gene alteration frequency. Furthermore, these gene alteration patterns significantly impact patient survival and disease-free periods. Collectively, our findings not only enhance our understanding of cancer development and progression but also have significant implications for cancer patient care and prognosis, particularly in the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Sudhir Kumar Rai
- University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI, United States
- John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Wei Du
- Division of Malignant Hematology and Medical Oncology, University of Pittsburgh School of Medicine, UPMC Hillma Cancer Center, Pittsburgh, PA, United States
| | - Jun Zhang
- Department of Pathology and Laboratory Medicine, Mayo Clinic, Arizona Campus, Phoenix, AZ, United States
| | - Herbert Yu
- University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI, United States
| | - Youping Deng
- University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI, United States
- John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Peiwen Fei
- University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI, United States
| |
Collapse
|
2
|
Zhao J, Zhang Y, Li W, Yao M, Liu C, Zhang Z, Wang C, Wang X, Meng K. Research progress of the Fanconi anemia pathway and premature ovarian insufficiency†. Biol Reprod 2023; 109:570-585. [PMID: 37669135 DOI: 10.1093/biolre/ioad110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/25/2023] [Accepted: 09/02/2023] [Indexed: 09/07/2023] Open
Abstract
The Fanconi anemia pathway is a key pathway involved in the repair of deoxyribonucleic acidinterstrand crosslinking damage, which chiefly includes the following four modules: lesion recognition, Fanconi anemia core complex recruitment, FANCD2-FANCI complex monoubiquitination, and downstream events (nucleolytic incision, translesion synthesis, and homologous recombination). Mutations or deletions of multiple Fanconi anemia genes in this pathway can damage the interstrand crosslinking repair pathway and disrupt primordial germ cell development and oocyte meiosis, thereby leading to abnormal follicular development. Premature ovarian insufficiency is a gynecological clinical syndrome characterized by amenorrhea and decreased fertility due to decreased oocyte pool, accelerated follicle atresia, and loss of ovarian function in women <40 years old. Furthermore, in recent years, several studies have detected mutations in the Fanconi anemia gene in patients with premature ovarian insufficiency. In addition, some patients with Fanconi anemia exhibit symptoms of premature ovarian insufficiency and infertility. The Fanconi anemia pathway and premature ovarian insufficiency are closely associated.
Collapse
Affiliation(s)
- Jingyu Zhao
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Yixin Zhang
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Wenbo Li
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Mengmeng Yao
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Chuqi Liu
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Zihan Zhang
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Caiqin Wang
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Xiaomei Wang
- College of Basic Medicine, Jining Medical University, Jining, China
| | - Kai Meng
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| |
Collapse
|
3
|
Wang D, Lin D, Feng G, Yang X, Deng L, Li P, Zhang Z, Zhang W, Guo Y, Wang Y, Fu S, Zhang N. Impact of chronic benzene poisoning on aberrant mitochondrial DNA methylation: A prospective observational study. Front Public Health 2023; 11:990051. [PMID: 36817889 PMCID: PMC9937586 DOI: 10.3389/fpubh.2023.990051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Benzene is used as an industrial solvent, which may result in chronic benzene poisoning (CBP). Several studies suggested that CBP was associated with mitochondrial epigenetic regulation. This study aimed to explore the potential relation between CBP and mitochondrial DNA (mtDNA) methylation. This prospective observational study enrolled CBP patients admitted to Shenzhen Prevention and Treatment Center for Occupational Diseases hospital and healthy individuals between 2018 and 2021. The white blood cell (WBC), red blood cell (RBC), hemoglobin (HB), and platelet (PLT) counts and mtDNA methylation levels were measured using blood flow cytometry and targeted bisulfite sequencing, respectively. A total of 90 participants were recruited, including 30 cases of CBP (20 females, mean age 43.0 ± 8.0 years) and 60 healthy individuals (42 females, mean age 43.5 ± 11.5 years). This study detected 168 mitochondrial methylation sites >0 in all study subjects. The mtDNA methylation levels in the CBP cases were lower than the healthy individuals [median ± interquartile-range (IQR), 25th percentile, 75th percentile: (1.140 ± 0.570, 0.965, 1.535)% vs. median ± IQR, 25th percentile, 75th percentile: (1.705 ± 0.205,1.240,2.445)%, P < 0.05]. Additionally, the spearman correlation analysis showed that the mtDNA methylation levels were positively correlated with the counts of circulating leukocytes [WBC (r = 0.048, P = 0.036)] and platelets [PLT (r = 0.129, P < 0.01)]. We provided solid evidence of association between CBP and aberrant mtDNA methylation.
Collapse
Affiliation(s)
- Dianpeng Wang
- Medical Laboratory, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China,*Correspondence: Dianpeng Wang ✉
| | - Dafeng Lin
- Medical Laboratory, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Gangquan Feng
- Medical Laboratory College, Hebei North University in China, Zhangjiakou, Hebei, China
| | - Xiangli Yang
- Medical Laboratory, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Lidan Deng
- Medical Laboratory, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Peimao Li
- Medical Laboratory, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Zhimin Zhang
- Medical Laboratory, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Wen Zhang
- Medical Laboratory, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Yan Guo
- Medical Laboratory, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Yue Wang
- Medical Laboratory College, Hebei North University in China, Zhangjiakou, Hebei, China
| | - Song Fu
- Medical Laboratory College, Hebei North University in China, Zhangjiakou, Hebei, China
| | - Naixing Zhang
- Medical Laboratory, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China,Naixing Zhang ✉
| |
Collapse
|
4
|
Chihanga T, Vicente-Muñoz S, Ruiz-Torres S, Pal B, Sertorio M, Andreassen PR, Khoury R, Mehta P, Davies SM, Lane AN, Romick-Rosendale LE, Wells SI. Head and Neck Cancer Susceptibility and Metabolism in Fanconi Anemia. Cancers (Basel) 2022; 14:cancers14082040. [PMID: 35454946 PMCID: PMC9025423 DOI: 10.3390/cancers14082040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 02/06/2023] Open
Abstract
Fanconi anemia (FA) is a rare inherited, generally autosomal recessive syndrome, but it displays X-linked or dominant negative inheritance for certain genes. FA is characterized by a deficiency in DNA damage repair that results in bone marrow failure, and in an increased risk for various epithelial tumors, most commonly squamous cell carcinomas of the head and neck (HNSCC) and of the esophagus, anogenital tract and skin. Individuals with FA exhibit increased human papilloma virus (HPV) prevalence. Furthermore, a subset of anogenital squamous cell carcinomas (SCCs) in FA harbor HPV sequences and FA-deficient laboratory models reveal molecular crosstalk between HPV and FA proteins. However, a definitive role for HPV in HNSCC development in the FA patient population is unproven. Cellular metabolism plays an integral role in tissue homeostasis, and metabolic deregulation is a known hallmark of cancer progression that supports uncontrolled proliferation, tumor development and metastatic dissemination. The metabolic consequences of FA deficiency in keratinocytes and associated impact on the development of SCC in the FA population is poorly understood. Herein, we review the current literature on the metabolic consequences of FA deficiency and potential effects of resulting metabolic reprogramming on FA cancer phenotypes.
Collapse
Affiliation(s)
- Tafadzwa Chihanga
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (T.C.); (S.R.-T.); (B.P.)
| | - Sara Vicente-Muñoz
- Department of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (S.V.-M.); (L.E.R.-R.)
| | - Sonya Ruiz-Torres
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (T.C.); (S.R.-T.); (B.P.)
| | - Bidisha Pal
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (T.C.); (S.R.-T.); (B.P.)
| | - Mathieu Sertorio
- Department of Radiation Oncology, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA;
| | - Paul R. Andreassen
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Ruby Khoury
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (R.K.); (P.M.); (S.M.D.)
| | - Parinda Mehta
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (R.K.); (P.M.); (S.M.D.)
| | - Stella M. Davies
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (R.K.); (P.M.); (S.M.D.)
| | - Andrew N. Lane
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA;
| | - Lindsey E. Romick-Rosendale
- Department of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (S.V.-M.); (L.E.R.-R.)
| | - Susanne I. Wells
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (T.C.); (S.R.-T.); (B.P.)
- Correspondence: ; Tel.: +1-513-636-5986
| |
Collapse
|
5
|
A Multidrug Approach to Modulate the Mitochondrial Metabolism Impairment and Relative Oxidative Stress in Fanconi Anemia Complementation Group A. Metabolites 2021; 12:metabo12010006. [PMID: 35050128 PMCID: PMC8777953 DOI: 10.3390/metabo12010006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 12/18/2021] [Indexed: 12/12/2022] Open
Abstract
Fanconi Anemia (FA) is a rare recessive genetic disorder characterized by aplastic anemia due to a defective DNA repair system. In addition, dysfunctional energy metabolism, lipid droplets accumulation, and unbalanced oxidative stress are involved in FA pathogenesis. Thus, to modulate the altered metabolism, Fanc-A lymphoblast cell lines were treated with quercetin, a flavonoid compound, C75 (4-Methylene-2-octyl-5-oxotetrahydrofuran-3-carboxylic acid), a fatty acid synthesis inhibitor, and rapamycin, an mTOR inhibitor, alone or in combination. As a control, isogenic FA cell lines corrected with the functional Fanc-A gene were used. Results showed that: (i) quercetin recovered the energy metabolism efficiency, reducing oxidative stress; (ii) C75 caused the lipid accumulation decrement and a slight oxidative stress reduction, without improving the energy metabolism; (iii) rapamycin reduced the aerobic metabolism and the oxidative stress, without increasing the energy status. In addition, all molecules reduce the accumulation of DNA double-strand breaks. Two-by-two combinations of the three drugs showed an additive effect compared with the action of the single molecule. Specifically, the quercetin/C75 combination appeared the most efficient in the mitochondrial and lipid metabolism improvement and in oxidative stress production reduction, while the quercetin/rapamycin combination seemed the most efficient in the DNA breaks decrement. Thus, data reported herein suggest that FA is a complex and multifactorial disease, and a multidrug strategy is necessary to correct the metabolic alterations.
Collapse
|
6
|
Allkanjari K, Baldock RA. Beyond base excision repair: an evolving picture of mitochondrial DNA repair. Biosci Rep 2021; 41:BSR20211320. [PMID: 34608928 PMCID: PMC8527207 DOI: 10.1042/bsr20211320] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 12/11/2022] Open
Abstract
Mitochondria are highly specialised organelles required for key cellular processes including ATP production through cellular respiration and controlling cell death via apoptosis. Unlike other organelles, mitochondria contain their own DNA genome which encodes both protein and RNA required for cellular respiration. Each cell may contain hundreds to thousands of copies of the mitochondrial genome, which is essential for normal cellular function - deviation of mitochondrial DNA (mtDNA) copy number is associated with cellular ageing and disease. Furthermore, mtDNA lesions can arise from both endogenous or exogenous sources and must either be tolerated or corrected to preserve mitochondrial function. Importantly, replication of damaged mtDNA can lead to stalling and introduction of mutations or genetic loss, mitochondria have adapted mechanisms to repair damaged DNA. These mechanisms rely on nuclear-encoded DNA repair proteins that are translocated into the mitochondria. Despite the presence of many known nuclear DNA repair proteins being found in the mitochondrial proteome, it remains to be established which DNA repair mechanisms are functional in mammalian mitochondria. Here, we summarise the existing and emerging research, alongside examining proteomic evidence, demonstrating that mtDNA damage can be repaired using Base Excision Repair (BER), Homologous Recombination (HR) and Microhomology-mediated End Joining (MMEJ). Critically, these repair mechanisms do not operate in isolation and evidence for interplay between pathways and repair associated with replication is discussed. Importantly, characterising non-canonical functions of key proteins and understanding the bespoke pathways used to tolerate, repair or bypass DNA damage will be fundamental in fully understanding the causes of mitochondrial genome mutations and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Kathrin Allkanjari
- Formerly: Solent University Southampton, East Park Terrace, Southampton, SO14 0YN, UK
| | - Robert A. Baldock
- School of Natural and Social Sciences, University of Gloucestershire, Francis Close Hall, Swindon Road, Cheltenham GL50 4AZ, UK
| |
Collapse
|
7
|
Helbling-Leclerc A, Garcin C, Rosselli F. Beyond DNA repair and chromosome instability-Fanconi anaemia as a cellular senescence-associated syndrome. Cell Death Differ 2021; 28:1159-1173. [PMID: 33723374 PMCID: PMC8026967 DOI: 10.1038/s41418-021-00764-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/17/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
Fanconi anaemia (FA) is the most frequent inherited bone marrow failure syndrome, due to mutations in genes encoding proteins involved in replication fork protection, DNA interstrand crosslink repair and replication rescue through inducing double-strand break repair and homologous recombination. Clinically, FA is characterised by aplastic anaemia, congenital defects and cancer predisposition. In in vitro studies, FA cells presented hallmarks defining senescent cells, including p53-p21 axis activation, altered telomere length, mitochondrial dysfunction, chromatin alterations, and a pro-inflammatory status. Senescence is a programme leading to proliferation arrest that is involved in different physiological contexts, such as embryogenesis, tissue remodelling and repair and guarantees tumour suppression activity. However, senescence can become a driving force for developmental abnormalities, aging and cancer. Herein, we summarise the current knowledge in the field to highlight the mutual relationships between FA and senescence that lead us to consider FA not only as a DNA repair and chromosome fragility syndrome but also as a "senescence syndrome".
Collapse
Affiliation(s)
- Anne Helbling-Leclerc
- grid.14925.3b0000 0001 2284 9388UMR9019-CNRS, Gustave Roussy, Villejuif, Cedex France ,grid.460789.40000 0004 4910 6535Université Paris-Saclay, Orsay, France ,Equipe labellisée “La Ligue Contre le Cancer”, Villejuif, France
| | - Cécile Garcin
- grid.14925.3b0000 0001 2284 9388UMR9019-CNRS, Gustave Roussy, Villejuif, Cedex France ,grid.460789.40000 0004 4910 6535Université Paris-Saclay, Orsay, France ,Equipe labellisée “La Ligue Contre le Cancer”, Villejuif, France
| | - Filippo Rosselli
- grid.14925.3b0000 0001 2284 9388UMR9019-CNRS, Gustave Roussy, Villejuif, Cedex France ,grid.460789.40000 0004 4910 6535Université Paris-Saclay, Orsay, France ,Equipe labellisée “La Ligue Contre le Cancer”, Villejuif, France
| |
Collapse
|
8
|
FANCD2 modulates the mitochondrial stress response to prevent common fragile site instability. Commun Biol 2021; 4:127. [PMID: 33514811 PMCID: PMC7846573 DOI: 10.1038/s42003-021-01647-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 12/29/2020] [Indexed: 12/16/2022] Open
Abstract
Common fragile sites (CFSs) are genomic regions frequently involved in cancer-associated rearrangements. Most CFSs lie within large genes, and their instability involves transcription- and replication-dependent mechanisms. Here, we uncover a role for the mitochondrial stress response pathway in the regulation of CFS stability in human cells. We show that FANCD2, a master regulator of CFS stability, dampens the activation of the mitochondrial stress response and prevents mitochondrial dysfunction. Genetic or pharmacological activation of mitochondrial stress signaling induces CFS gene expression and concomitant relocalization to CFSs of FANCD2. FANCD2 attenuates CFS gene transcription and promotes CFS gene stability. Mechanistically, we demonstrate that the mitochondrial stress-dependent induction of CFS genes is mediated by ubiquitin-like protein 5 (UBL5), and that a UBL5-FANCD2 dependent axis regulates the mitochondrial UPR in human cells. We propose that FANCD2 coordinates nuclear and mitochondrial activities to prevent genome instability.
Collapse
|
9
|
Pagano G, Tiano L, Pallardó FV, Lyakhovich A, Mukhopadhyay SS, Di Bartolomeo P, Zatterale A, Trifuoggi M. Re-definition and supporting evidence toward Fanconi Anemia as a mitochondrial disease: Prospects for new design in clinical management. Redox Biol 2021; 40:101860. [PMID: 33445068 PMCID: PMC7806517 DOI: 10.1016/j.redox.2021.101860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 12/24/2022] Open
Abstract
Fanconi anemia (FA) has been investigated since early studies based on two definitions, namely defective DNA repair and proinflammatory condition. The former definition has built up the grounds for FA diagnosis as excess sensitivity of patients’ cells to xenobiotics as diepoxybutane and mitomycin C, resulting in typical chromosomal abnormalities. Another line of studies has related FA phenotype to a prooxidant state, as detected by both in vitro and ex vivo studies. The discovery that the FA group G (FANCG) protein is found in mitochondria (Mukhopadhyay et al., 2006) has been followed by an extensive line of studies providing evidence for multiple links between other FA gene products and mitochondrial dysfunction. The fact that FA proteins are encoded by nuclear, not mitochondrial DNA does not prevent these proteins to hamper mitochondrial function, as it is recognized that most mitochondrial proteins are of nuclear origin. This body of evidence supporting a central role of mitochondrial dysfunction, along with redox imbalance in FA, should lead to the re-definition of FA as a mitochondrial disease. A body of literature has demonstrated the beneficial effects of mitochondrial cofactors, such as α-lipoic acid, coenzyme Q10, and carnitine on patients affected by mitochondrial diseases. Altogether, this re-definition of FA as a mitochondrial disease and the prospect use of mitochondrial nutrients may open new gateways toward mitoprotective strategies for FA patients. These strategies are expected to mitigate the mitochondrial dysfunction and prooxidant state in FA patients, and potentially protect transplanted FA patients from post-transplantation malignancies.
Collapse
Affiliation(s)
- Giovanni Pagano
- Department of Chemical Sciences, Federico II Naples University, I-80126, Naples, Italy.
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnical University of Marche, I-60121, Ancona, Italy
| | - Federico V Pallardó
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia-INCLIVA, CIBERER, E-46010, Valencia, Spain
| | - Alex Lyakhovich
- Institute of Molecular Biology and Biophysics of the "Federal Research Center of Fundamental and Translational Medicine", 630117, Novosibirsk, Russia
| | - Sudit S Mukhopadhyay
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, 713209, India
| | | | | | - Marco Trifuoggi
- Department of Chemical Sciences, Federico II Naples University, I-80126, Naples, Italy
| |
Collapse
|
10
|
Abad E, Samino S, Grodzicki RL, Pagano G, Trifuoggi M, Graifer D, Potesil D, Zdrahal Z, Yanes O, Lyakhovich A. Identification of metabolic changes leading to cancer susceptibility in Fanconi anemia cells. Cancer Lett 2020; 503:185-196. [PMID: 33316348 DOI: 10.1016/j.canlet.2020.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/19/2020] [Accepted: 12/05/2020] [Indexed: 10/22/2022]
Abstract
Fanconi anemia (FA) is a chromosomal instability disorder of bone marrow associated with aplastic anemia, congenital abnormalities and a high risk of malignancies. The identification of more than two dozen FA genes has revealed a plethora of interacting proteins that are mainly involved in repair of DNA interstrand crosslinks (ICLs). Other important findings associated with FA are inflammation, oxidative stress response, mitochondrial dysfunction and mitophagy. In this work, we performed quantitative proteomic and metabolomic analyses on defective FA cells and identified a number of metabolic abnormalities associated with cancer. In particular, an increased de novo purine biosynthesis, a high concentration of fumarate, and an accumulation of purinosomal clusters were found. This was in parallel with decreased OXPHOS and altered glycolysis. On the whole, our results indicate an association between the need for nitrogenous bases upon impaired DDR in FA cells with a subsequent increase in purine metabolism and a potential role in oncogenesis.
Collapse
Affiliation(s)
- Etna Abad
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | | | | | - Giovanni Pagano
- Department of Chemical Sciences, Federico II Naples University, I-80126 Naples, Italy
| | - Marco Trifuoggi
- Department of Chemical Sciences, Federico II Naples University, I-80126 Naples, Italy
| | | | - David Potesil
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Zbynek Zdrahal
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Oscar Yanes
- Universitat Rovira i Virgili, Department of Electronic Engineering, IISPV, Tarragona 43007, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Alex Lyakhovich
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, 630117, Russia; Vall D'Hebron Institut de Recerca, 08035, Barcelona, Spain.
| |
Collapse
|
11
|
Ma C, Hokutan K, Shen Y, Nepal M, Kim JH, Zhang J, Fei P. TFG-maintaining stability of overlooked FANCD2 confers early DNA-damage response. Aging (Albany NY) 2020; 12:20268-20284. [PMID: 33099537 PMCID: PMC7655164 DOI: 10.18632/aging.103782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/28/2020] [Indexed: 01/09/2023]
Abstract
Emerging Fanconi Anemia (FA) signaling in the field of cancer research annotates the extreme importance of its center player, Fanconi Anemia complementation group D2 (FANCD2) in protecting human cells from going awry. However, a previously-unrecognized form of FANCD2, namely FANCD2-V2, is understudied. We report TRK-Fused Gene (TFG) is critical for roles played by FANCD2-V2 in early responses to DNA damage, but not for FANCD2-V1, the long-known form of FANCD2. FANCD2-V2 forms nuclear foci upon DNA damage, and both its focus appearance and disappearance are earlier than FANCD2-V1. The amino acid/aa 5-100 of TFG and the aa1437-1442 of FANCD2-V2 were identified to contribute to their interaction, which maintains the steady-state level of FANCD2-V2 protein. TFGΔaa5-100 or FANCD2-V2Δaa1437-1442-carrying cells could not show timely focus formation of FANCD2-V2 upon DNA damage and gained carcinogenicity over time. This study provides a previously-unknown key to unlock in-depth insights into maintaining genome stability, fostering translational studies on preventing, diagnosing and/or treating related diseases.
Collapse
Affiliation(s)
- Chi Ma
- University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI 96813, USA
| | - Kanani Hokutan
- University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI 96813, USA.,Graduate Program of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI 96813, USA
| | - Yihang Shen
- University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI 96813, USA
| | - Manoj Nepal
- University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI 96813, USA.,Graduate Program of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI 96813, USA
| | - Jin-Hee Kim
- University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI 96813, USA
| | - Jun Zhang
- Department of Laboratory Medicine and Pathology, Mayo Clinic Foundation, Phoenix, AZ 85054, USA
| | - Peiwen Fei
- University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI 96813, USA.,Graduate Program of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI 96813, USA
| |
Collapse
|
12
|
FANCD2 Confers a Malignant Phenotype in Esophageal Squamous Cell Carcinoma by Regulating Cell Cycle Progression. Cancers (Basel) 2020; 12:cancers12092545. [PMID: 32906798 PMCID: PMC7565464 DOI: 10.3390/cancers12092545] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/30/2020] [Accepted: 08/31/2020] [Indexed: 01/05/2023] Open
Abstract
Fanconi anemia patients with germline genetic defects in FANCD2 are highly susceptible to cancers. Esophageal squamous cell carcinoma (ESCC) is a deadly cancer. Little is known about the function of FANCD2 in ESCC. For detailed molecular and mechanistic insights on the functional role of FANCD2 in ESCC, in vivo and in vitro assays and RNA sequencing approaches were used. Utilizing Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) technology, FANCD2 knockout models were established to examine the functional impact in mouse models for tumor growth and metastasis and in vitro assays for cell growth, cell cycle, and cellular localization. Our RNA sequence analyses were integrated with public datasets. FANCD2 confers a malignant phenotype in ESCC. FANCD2 is significantly upregulated in ESCC tumors, as compared to normal counterparts. Depletion of FANCD2 protein expression significantly suppresses the cancer cell proliferation and tumor colony formation and metastasis potential, as well as cell cycle progression, by involving cyclin-CDK and ATR/ATM signaling. FANCD2 translocates from the nucleus to the cytoplasm during cell cycle progression. We provide evidence of a novel role of FANCD2 in ESCC tumor progression and its potential usefulness as a biomarker for ESCC disease management.
Collapse
|
13
|
The FANC/BRCA Pathway Releases Replication Blockades by Eliminating DNA Interstrand Cross-Links. Genes (Basel) 2020; 11:genes11050585. [PMID: 32466131 PMCID: PMC7288313 DOI: 10.3390/genes11050585] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/14/2020] [Accepted: 05/21/2020] [Indexed: 12/24/2022] Open
Abstract
DNA interstrand cross-links (ICLs) represent a major barrier blocking DNA replication fork progression. ICL accumulation results in growth arrest and cell death—particularly in cell populations undergoing high replicative activity, such as cancer and leukemic cells. For this reason, agents able to induce DNA ICLs are widely used as chemotherapeutic drugs. However, ICLs are also generated in cells as byproducts of normal metabolic activities. Therefore, every cell must be capable of rescuing lCL-stalled replication forks while maintaining the genetic stability of the daughter cells in order to survive, replicate DNA and segregate chromosomes at mitosis. Inactivation of the Fanconi anemia/breast cancer-associated (FANC/BRCA) pathway by inherited mutations leads to Fanconi anemia (FA), a rare developmental, cancer-predisposing and chromosome-fragility syndrome. FANC/BRCA is the key hub for a complex and wide network of proteins that—upon rescuing ICL-stalled DNA replication forks—allows cell survival. Understanding how cells cope with ICLs is mandatory to ameliorate ICL-based anticancer therapies and provide the molecular basis to prevent or bypass cancer drug resistance. Here, we review our state-of-the-art understanding of the mechanisms involved in ICL resolution during DNA synthesis, with a major focus on how the FANC/BRCA pathway ensures DNA strand opening and prevents genomic instability.
Collapse
|
14
|
Subcellular localization of FANCD2 is associated with survival in ovarian carcinoma. Oncotarget 2020; 11:775-783. [PMID: 32165999 PMCID: PMC7055545 DOI: 10.18632/oncotarget.27437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 12/21/2019] [Indexed: 01/23/2023] Open
Abstract
Objective: Ovarian cancer is a leading cause of death from gynecological cancers. Late diagnosis and resistance to therapy results in mortality and effective screening is required for early diagnosis and better treatments. Expression of the Fanconi Anemia complementation group D2 protein (FANCD2) is reduced in ovarian surface epithelial cells (OSE) in patients with ovarian cancer. FANCD2 has been studied for its role in DNA repair; however multiple studies have suggested that FANCD2 has a role outside the nucleus. We sought to determine whether subcellular localization of FANCD2 correlates with patient outcome in ovarian cancer. Methods: We examined the subcellular localization of FANCD2 in primary OSE cells from consenting patients with ovarian cancer or a normal ovary. Ovarian tissue microarray was stained with anti-FANCD2 antibody by immunohistochemistry and the correlation of FANCD2 localization with patient outcomes was assessed. FANCD2 binding partners were identified by immunoprecipitation of cytoplasmic FANCD2. Results: Nuclear and cytoplasmic localization of FANCD2 was observed in OSEs from both normal and ovarian cancer patients. Patients with cytoplasmic localization of FANCD2 (cFANCD2) experienced significantly longer median survival time (50 months), versus patients without cytoplasmic localization of FANCD2 (38 months; p < 0.05). Cytoplasmic FANCD2 was found to bind proteins involved in the innate immune system, cellular response to heat stress, amyloid fiber formation and estrogen mediated signaling. Conclusions: Our results suggest that the presence of cytoplasmic FANCD2 modulates FANCD2 activity resulting in better survival outcome in ovarian cancer patients.
Collapse
|
15
|
Pagano G, Pallardó FV, Porto B, Fittipaldi MR, Lyakhovich A, Trifuoggi M. Mitoprotective Clinical Strategies in Type 2 Diabetes and Fanconi Anemia Patients: Suggestions for Clinical Management of Mitochondrial Dysfunction. Antioxidants (Basel) 2020; 9:antiox9010082. [PMID: 31963742 PMCID: PMC7023409 DOI: 10.3390/antiox9010082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress (OS) and mitochondrial dysfunction (MDF) occur in a number of disorders, and several clinical studies have attempted to counteract OS and MDF by providing adjuvant treatments against disease progression. The present review is aimed at focusing on two apparently distant diseases, namely type 2 diabetes (T2D) and a rare genetic disease, Fanconi anemia (FA). The pathogenetic links between T2D and FA include the high T2D prevalence among FA patients and the recognized evidence for OS and MDF in both disorders. This latter phenotypic/pathogenetic feature-namely MDF-may be regarded as a mechanistic ground both accounting for the clinical outcomes in both diseases, and as a premise to clinical studies aimed at counteracting MDF. In the case for T2D, the working hypothesis is raised of evaluating any in vivo decrease of mitochondrial cofactors, or mitochondrial nutrients (MNs) such as α-lipoic acid, coenzyme Q10, and l-carnitine, with possibly combined MN-based treatments. As for FA, the established knowledge of MDF, as yet only obtained from in vitro or molecular studies, prompts the requirement to ascertain in vivo MDF, and to design clinical studies aimed at utilizing MNs toward mitigating or delaying FA's clinical progression. Altogether, this paper may contribute to building hypotheses for clinical studies in a number of OS/MDF-related diseases.
Collapse
Affiliation(s)
- Giovanni Pagano
- Department of Chemical Sciences, Federico II Naples University, I-80126 Naples, Italy;
- Correspondence: ; Tel.: +39-335-790-7261
| | - Federico V. Pallardó
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia-INCLIVA, CIBERER, E-46010 Valencia, Spain;
| | - Beatriz Porto
- Institute of Biomedical Sciences, ICBAS, University of Porto, 4099-030 Porto, Portugal;
| | - Maria Rosa Fittipaldi
- Internal Medicine Unit, San Francesco d’Assisi Hospital, I-84020 Oliveto Citra (SA), Italy;
| | - Alex Lyakhovich
- Vall d’Hebron Institut de Recerca, E-08035 Barcelona, Spain;
- Institute of Molecular Biology and Biophysics of the “Federal Research Center of Fundamental and Translational Medicine”, 630117 Novosibirsk, Russia
| | - Marco Trifuoggi
- Department of Chemical Sciences, Federico II Naples University, I-80126 Naples, Italy;
| |
Collapse
|
16
|
Moore ES, Daugherity EK, Karambizi DI, Cummings BP, Behling-Kelly E, Schaefer DMW, Southard TL, McFadden JW, Weiss RS. Sex-specific hepatic lipid and bile acid metabolism alterations in Fancd2-deficient mice following dietary challenge. J Biol Chem 2019; 294:15623-15637. [PMID: 31434739 DOI: 10.1074/jbc.ra118.005729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 08/15/2019] [Indexed: 12/13/2022] Open
Abstract
Defects in the Fanconi anemia (FA) DNA damage-response pathway result in genomic instability, developmental defects, hematopoietic failure, cancer predisposition, and metabolic disorders. The endogenous sources of damage contributing to FA phenotypes and the links between FA and metabolic disease remain poorly understood. Here, using mice lacking the Fancd2 gene, encoding a central FA pathway component, we investigated whether the FA pathway protects against metabolic challenges. Fancd2 -/- and wildtype (WT) mice were fed a standard diet (SD), a diet enriched in fat, cholesterol, and cholic acid (Paigen diet), or a diet enriched in lipid alone (high-fat diet (HFD)). Fancd2 -/- mice developed hepatobiliary disease and exhibited decreased survival when fed a Paigen diet but not a HFD. Male Paigen diet-fed mice lacking Fancd2 had significant biliary hyperplasia, increased serum bile acid concentration, and increased hepatic pathology. In contrast, female mice were similarly impacted by Paigen diet feeding regardless of Fancd2 status. Upon Paigen diet challenge, male Fancd2 -/- mice had altered expression of genes encoding hepatic bile acid transporters and cholesterol and fatty acid metabolism proteins, including Scp2/x, Abcg5/8, Abca1, Ldlr, Srebf1, and Scd-1 Untargeted lipidomic profiling in liver tissue revealed 132 lipid species, including sphingolipids, glycerophospholipids, and glycerolipids, that differed significantly in abundance depending on Fancd2 status in male mice. We conclude that the FA pathway has sex-specific impacts on hepatic lipid and bile acid metabolism, findings that expand the known functions of the FA pathway and may provide mechanistic insight into the metabolic disease predisposition in individuals with FA.
Collapse
Affiliation(s)
- Elizabeth S Moore
- Department of Biomedical Sciences, Cornell University, Ithaca, New York 14853
| | - Erin K Daugherity
- Department of Biomedical Sciences, Cornell University, Ithaca, New York 14853.,Center for Animal Resources and Education, Cornell University, Ithaca, New York 14853
| | - David I Karambizi
- Department of Biomedical Sciences, Cornell University, Ithaca, New York 14853
| | - Bethany P Cummings
- Department of Biomedical Sciences, Cornell University, Ithaca, New York 14853
| | - Erica Behling-Kelly
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York 14853
| | - Deanna M W Schaefer
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, Tennessee 37996
| | - Teresa L Southard
- Department of Biomedical Sciences, Cornell University, Ithaca, New York 14853
| | - Joseph W McFadden
- Department of Animal Science, Cornell University, Ithaca, New York 14853
| | - Robert S Weiss
- Department of Biomedical Sciences, Cornell University, Ithaca, New York 14853
| |
Collapse
|
17
|
Deniskin R, Sasa GS, Nandiwada SL, Rider NL. Lymphopenia With Clinical and Laboratory Features of Combined Immune Deficiency in an 11-Year-Old Female With FANCD2 Variants and Fanconi Anemia. Front Pediatr 2019; 6:390. [PMID: 30713837 PMCID: PMC6346677 DOI: 10.3389/fped.2018.00390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/27/2018] [Indexed: 11/13/2022] Open
Abstract
Fanconi anemia (FA) is an inherited bone marrow failure and cancer predisposition disorder due to mutations in DNA repair pathways proteins (FANC). The dysfunctional proteins are unable to repair DNA breaks and cause genomic instability. Mutations in many of the 19 FANC genes are well characterized biochemically and clinically. Little is known about the FANCD2 gene which acts downstream of the FA-core proteins. Here we report a 11-year-old female previously diagnosed with FA and bone marrow failure. Gene sequencing demonstrated deletion of exons 2-18 and a pathologic missense mutation (c. 2444G>A, p. Arg815Gln) in FANCD2 (Chr3). Her medical history is significant for an episode of pneumococcal sepsis despite adequate vaccination. Repeated blood samples and immunophenotyping demonstrated severe lymphopenia. There were markedly low CD4+ T-cell counts with a low CD4:CD8 ratio. Changes in the composition of the B-cell population included significantly diminished absolute total B-cells, and decreased mature cells. There was no immunogenic response to vaccination against S. pneumoniae. The NK-cell count was unaffected and demonstrated normal spontaneous and stimulated cytotoxic response. Bone marrow analysis demonstrated hypocellularity without dysplasia. The clinical and laboratory features are suggestive of combined immune deficiency. FANCD2 may be involved in the transition of immature B and T cells to mature cells, a process that requires substantial DNA recombination not observed in NK cells. Additional genetic and biochemical evaluation is needed to further characterize the novel genetic and clinical findings.
Collapse
Affiliation(s)
- Roman Deniskin
- Department of Pediatrics (Pediatrician Scientist Training and Development Program), Houston, TX, United States
| | - Ghadir S. Sasa
- Section of Hematology and Oncology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, United States
| | - Sarada L. Nandiwada
- Clinical and Diagnostic Immunology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, United States
- Section of Allergy, Immunology, and Rheumatology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, United States
| | - Nicholas L. Rider
- Section of Allergy, Immunology, and Rheumatology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, United States
| |
Collapse
|
18
|
Abstract
In the past 25 years, incidence rates of breast cancer have risen about 30% in westernized countries. Mutations in BRCA1 and BRCA2 are the most prominent cause of breast cancer. However, these cancer susceptibility genes (BRCAs) only account for a few percent of women suffering breast tumor. With our understanding that BRCAs are Fanconi Anemia (FA) genes, investigations into the FA signaling network should provide a previously unrecognized key to unlock in-depth insights into both etiology and treatment of breast cancer. Here, we discuss utilization of the FA signaling as a unique genetic model system to expand our knowledge about the molecular biology of breast cancer and potential applications of the gained knowledge to enable preventive and therapeutic approaches for breast cancer patient care.
Collapse
Affiliation(s)
- Chi Ma
- a University of Hawaii Cancer Center
| | - Manoj Nepal
- a University of Hawaii Cancer Center.,b Graduate Program of Molecular Biosciences and Bioengineering , University of Hawaii , Honolulu , Hawaii , USA
| | | | - Ping Fan
- a University of Hawaii Cancer Center
| | - Peiwen Fei
- a University of Hawaii Cancer Center.,b Graduate Program of Molecular Biosciences and Bioengineering , University of Hawaii , Honolulu , Hawaii , USA
| |
Collapse
|
19
|
Wiesmüller L, Scharffetter-Kochanek K, Geiger H. Special section: Replication stress, a threat to the nuclear and mitochondrial genome. Mutat Res 2018; 808:53-55. [PMID: 29426566 DOI: 10.1016/j.mrfmmm.2018.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- Lisa Wiesmüller
- Department of Obstetrics and Gynecology, Ulm University, Germany; Department of Dermatology and Allergic Diseases, Ulm University, Germany,; Institute of Molecular Medicine, Ulm University, Germany,.
| | - Karin Scharffetter-Kochanek
- Department of Obstetrics and Gynecology, Ulm University, Germany; Department of Dermatology and Allergic Diseases, Ulm University, Germany,; Institute of Molecular Medicine, Ulm University, Germany,.
| | - Hartmut Geiger
- Department of Obstetrics and Gynecology, Ulm University, Germany; Department of Dermatology and Allergic Diseases, Ulm University, Germany,; Institute of Molecular Medicine, Ulm University, Germany,.
| |
Collapse
|
20
|
Che R, Zhang J, Nepal M, Han B, Fei P. Multifaceted Fanconi Anemia Signaling. Trends Genet 2018; 34:171-183. [PMID: 29254745 PMCID: PMC5858900 DOI: 10.1016/j.tig.2017.11.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/28/2017] [Indexed: 01/26/2023]
Abstract
In 1927 Guido Fanconi described a hereditary condition presenting panmyelopathy accompanied by short stature and hyperpigmentation, now better known as Fanconi anemia (FA). With this discovery the genetic and molecular basis underlying FA has emerged as a field of great interest. FA signaling is crucial in the DNA damage response (DDR) to mediate the repair of damaged DNA. This has attracted a diverse range of investigators, especially those interested in aging and cancer. However, recent evidence suggests FA signaling also regulates functions outside the DDR, with implications for many other frontiers of research. We discuss here the characteristics of FA functions and expand upon current perspectives regarding the genetics of FA, indicating that FA plays a role in a myriad of molecular and cellular processes.
Collapse
Affiliation(s)
- Raymond Che
- University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI, USA; Graduate Program of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI, USA
| | - Jun Zhang
- Department of Laboratory Medicine and Pathology, Mayo Clinic Foundation, USA
| | - Manoj Nepal
- University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI, USA; Graduate Program of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI, USA
| | - Bing Han
- University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI, USA
| | - Peiwen Fei
- University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI, USA; Graduate Program of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI, USA.
| |
Collapse
|
21
|
Nepal M, Che R, Zhang J, Ma C, Fei P. Fanconi Anemia Signaling and Cancer. Trends Cancer 2017; 3:840-856. [PMID: 29198440 DOI: 10.1016/j.trecan.2017.10.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/16/2017] [Accepted: 10/19/2017] [Indexed: 12/19/2022]
Abstract
The extremely high cancer incidence associated with patients suffering from a rare human genetic disease, Fanconi anemia (FA), demonstrates the importance of FA genes. Over the course of human tumor development, FA genes perform critical tumor-suppression roles. In doing so, FA provides researchers with a unique genetic model system to study cancer etiology. Here, we review how aberrant function of the 22 FA genes and their signaling network contributes to malignancy. From this perspective, we will also discuss how the knowledge discovered from FA research serves basic and translational cancer research.
Collapse
Affiliation(s)
- Manoj Nepal
- University of Hawaii Cancer Center, Honolulu, HI, USA; Graduate Program of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI, USA; Equal contribution
| | - Raymond Che
- University of Hawaii Cancer Center, Honolulu, HI, USA; Graduate Program of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI, USA; Equal contribution
| | - Jun Zhang
- Department of Laboratory Medicine and Pathology, Mayo Clinic Foundation, USA
| | - Chi Ma
- University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Peiwen Fei
- University of Hawaii Cancer Center, Honolulu, HI, USA; Graduate Program of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI, USA.
| |
Collapse
|
22
|
Nepal M, Che R, Ma C, Zhang J, Fei P. FANCD2 and DNA Damage. Int J Mol Sci 2017; 18:ijms18081804. [PMID: 28825622 PMCID: PMC5578191 DOI: 10.3390/ijms18081804] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/08/2017] [Accepted: 08/12/2017] [Indexed: 02/07/2023] Open
Abstract
Investigators have dedicated considerable effort to understanding the molecular basis underlying Fanconi Anemia (FA), a rare human genetic disease featuring an extremely high incidence of cancer and many congenital defects. Among those studies, FA group D2 protein (FANCD2) has emerged as the focal point of FA signaling and plays crucial roles in multiple aspects of cellular life, especially in the cellular responses to DNA damage. Here, we discuss the recent and relevant studies to provide an updated review on the roles of FANCD2 in the DNA damage response.
Collapse
Affiliation(s)
- Manoj Nepal
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA.
- Graduate Program of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI 96813, USA.
| | - Raymond Che
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA.
- Graduate Program of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI 96813, USA.
| | - Chi Ma
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA.
| | - Jun Zhang
- Department of Laboratory Medicine and Pathology, Mayo Clinic Foundation, Rochester, MN 55905, USA.
| | - Peiwen Fei
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA.
- Graduate Program of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI 96813, USA.
| |
Collapse
|