1
|
Piégu B, Lefort G, Douet C, Milhes M, Jacques A, Lareyre JJ, Monget P, Fouchécourt S. A first complete catalog of highly expressed genes in eight chicken tissues reveals uncharacterized gene families specific for the chicken testis. Physiol Genomics 2024; 56:445-456. [PMID: 38497118 DOI: 10.1152/physiolgenomics.00151.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024] Open
Abstract
Based on next-generation sequencing, we established a repertoire of differentially overexpressed genes (DoEGs) in eight adult chicken tissues: the testis, brain, lung, liver, kidney, muscle, heart, and intestine. With 4,499 DoEGs, the testis had the highest number and proportion of DoEGs compared with the seven somatic tissues. The testis DoEG set included the highest proportion of long noncoding RNAs (lncRNAs; 1,851, representing 32% of the lncRNA genes in the whole genome) and the highest proportion of protein-coding genes (2,648, representing 14.7% of the protein-coding genes in the whole genome). The main significantly enriched Gene Ontology terms related to the protein-coding genes were "reproductive process," "tubulin binding," and "microtubule cytoskeleton." Using real-time quantitative reverse transcription-polymerase chain reaction, we confirmed the overexpression of genes that encode proteins already described in chicken sperm [such as calcium binding tyrosine phosphorylation regulated (CABYR), spermatogenesis associated 18 (SPATA18), and CDK5 regulatory subunit associated protein (CDK5RAP2)] but whose testis origin had not been previously confirmed. Moreover, we demonstrated the overexpression of vertebrate orthologs of testis genes not yet described in the adult chicken testis [such as NIMA related kinase 2 (NEK2), adenylate kinase 7 (AK7), and CCNE2]. Using clustering according to primary sequence homology, we found that 1,737 of the 2,648 (67%) testis protein-coding genes were unique genes. This proportion was significantly higher than the somatic tissues except muscle. We clustered the other 911 testis protein-coding genes into 495 families, from which 47 had all paralogs overexpressed in the testis. Among these 47 testis-specific families, eight contained uncharacterized duplicated paralogs without orthologs in other metazoans except birds: these families are thus specific for chickens/birds.NEW & NOTEWORTHY Comparative next-generation sequencing analysis of eight chicken tissues showed that the testis has highest proportion of long noncoding RNA and protein-coding genes of the whole genome. We identified new genes in the chicken testis, including orthologs of known mammalian testicular genes. We also identified 47 gene families in which all the members were overexpressed, if not exclusive, in the testis. Eight families, organized in duplication clusters, were unknown, without orthologs in metazoans except birds, and are thus specific for chickens/birds.
Collapse
Affiliation(s)
- Benoît Piégu
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Université de Tours, PRC, Nouzilly, France
| | - Gaëlle Lefort
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Université de Tours, PRC, Nouzilly, France
| | - Cécile Douet
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Université de Tours, PRC, Nouzilly, France
| | - Marine Milhes
- US 1426, GeT-PlaGe, Genotoul, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Castanet-Tolosan, France
| | - Aurore Jacques
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Université de Tours, PRC, Nouzilly, France
| | - Jean-Jacques Lareyre
- UR1037 LPGP, Fish Physiology and Genomics, Campus de Beaulieu, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Rennes, France
| | - Philippe Monget
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Université de Tours, PRC, Nouzilly, France
| | - Sophie Fouchécourt
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Université de Tours, PRC, Nouzilly, France
| |
Collapse
|
2
|
Han J, Zhu Y, Zhang J, Kapilevich L, Zhang XA. Noncoding RNAs: the crucial role of programmed cell death in osteoporosis. Front Cell Dev Biol 2024; 12:1409662. [PMID: 38799506 PMCID: PMC11116712 DOI: 10.3389/fcell.2024.1409662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Osteoporosis is the most common skeletal disease characterized by an imbalance between bone resorption and bone remodeling. Osteoporosis can lead to bone loss and bone microstructural deterioration. This increases the risk of bone fragility and fracture, severely reducing patients' mobility and quality of life. However, the specific molecular mechanisms involved in the development of osteoporosis remain unclear. Increasing evidence suggests that multiple noncoding RNAs show differential expression in the osteoporosis state. Meanwhile, noncoding RNAs have been associated with an increased risk of osteoporosis and fracture. Noncoding RNAs are an important class of factors at the level of gene regulation and are mainly involved in cell proliferation, cell differentiation, and cell death. Programmed cell death is a genetically-regulated form of cell death involved in regulating the homeostasis of the internal environment. Noncoding RNA plays an important role in the programmed cell death process. The exploration of the noncoding RNA-programmed cell death axis has become an interesting area of research and has been shown to play a role in many diseases such as osteoporosis. In this review, we summarize the latest findings on the mechanism of noncoding RNA-mediated programmed cell death on bone homeostasis imbalance leading to osteoporosis. And we provide a deeper understanding of the role played by the noncoding RNA-programmed cell death axis at the gene regulatory level of osteoporosis. We hope to provide a unique opportunity to develop novel diagnostic and therapeutic approaches for osteoporosis.
Collapse
Affiliation(s)
- Juanjuan Han
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Yuqing Zhu
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Jiale Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Leonid Kapilevich
- Faculty of Physical Education, Tomsk Stаte University, Tomsk, Russia
| | - Xin-an Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| |
Collapse
|
3
|
Nowak B, Mucha A, Zatoń-Dobrowolska M, Chrostowski G, Kruszyński W. Genetic basis of sow hyperprolificacy and litter size optimization based on a genome-wide association study. Theriogenology 2024; 218:119-125. [PMID: 38325148 DOI: 10.1016/j.theriogenology.2024.01.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/09/2024]
Abstract
Over the last few decades, there has been a constant increase in sow litter size, the consequences of which include parturition duration extension, an increase in the percentage of stillborn and hypoxic piglets, and increased variation in piglet birth weight, which reduces their vitality. As such, it seems clear that further increasing sow fertility will generate difficulties and costs in rearing numerous litters with low birth weights. Therefore, the current study aimed to analyze the genetic background of sow hyperprolifcacy using a genome-wide association study (GWAS). The research included 144 sows in the maternal component, divided into two equal groups. The first group (control) consisted of females giving birth to the optimal number of piglets in their third and fourth litters (14-16), while the second group (cases) included those with excessive litter size (>16). The analyzed sows were genotyped using Illumina's PorcineSNP60v2 BeadChip microarray, comprising 64,232 single nucleotide polymorphisms (SNPs). Statistical analysis using R included quality control of genotyping data and GWAS analysis based on five logistic regression models (dominant, codominant, overdominant, recessive, and log-additive) with a single SNP marker as the explanatory variable. On this basis, one SNP (SIRI0000069) was identified on chromosome seven within the EFCAB11 (EF-hand calcium binding domain 11) gene that had a statistically significant effect on sow hyperprolificacy. Additionally, ten SNPs (INRA0007631, ALGA0011600, ALGA0043433, ALGA0043428, M1GA0010535 ALGA00443338, ALGA0087116, MARC0056787, ALGA0112928, and ALGA0089047) had a relationship with the analyzed feature at a level close to significance, set at 1-5. These SNPs appear important since they are located on chromosomes on which a large number of quantitative trait loci (QTLs) and SNPs associated with reproductive characteristics, including litter size, have been identified.
Collapse
Affiliation(s)
- Błażej Nowak
- Department of Genetics, Wrocław University of Environmental and Life Sciences, Kożuchowska 7, 51-631, Wrocław, Poland.
| | - Anna Mucha
- Department of Genetics, Wrocław University of Environmental and Life Sciences, Kożuchowska 7, 51-631, Wrocław, Poland
| | - Magdalena Zatoń-Dobrowolska
- Department of Genetics, Wrocław University of Environmental and Life Sciences, Kożuchowska 7, 51-631, Wrocław, Poland
| | - Grzegorz Chrostowski
- Department of Genetics, Wrocław University of Environmental and Life Sciences, Kożuchowska 7, 51-631, Wrocław, Poland
| | - Wojciech Kruszyński
- Department of Genetics, Wrocław University of Environmental and Life Sciences, Kożuchowska 7, 51-631, Wrocław, Poland
| |
Collapse
|
4
|
Disruption of male fertility-critical Dcaf17 dysregulates mouse testis transcriptome. Sci Rep 2022; 12:21456. [PMID: 36509865 PMCID: PMC9744869 DOI: 10.1038/s41598-022-25826-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
During mammalian spermatogenesis, the ubiquitin proteasome system maintains protein homoeostasis (proteastasis) and spermatogenic cellular functions. DCAF17 is a substrate receptor in the ubiquitin CRL4 E3 Ligase complex, absence of which causes oligoasthenoteratozoospermia in mice resulting in male infertility. To determine the molecular phenomenon underlying the infertility phenotype caused by disrupting Dcaf17, we performed RNA-sequencing-based gene expression profiling of 3-weeks and 8-weeks old Dcaf17 wild type and Dcaf17 disrupted mutant mice testes. At three weeks, 44% and 56% differentially expressed genes (DEGs) were up- and down-regulated, respectively, with 32% and 68% DEGs were up- and down-regulated, respectively at 8 weeks. DEGs include protein coding genes and lncRNAs distributed across all autosomes and the X chromosome. Gene ontology analysis revealed major biological processes including proteolysis, regulation of transcription and chromatin remodelling are affected due to Dcaf17 disruption. We found that Dcaf17 disruption up-regulated several somatic genes, while germline-associated genes were down-regulated. Up to 10% of upregulated, and 12% of downregulated, genes were implicated in male reproductive phenotypes. Moreover, a large proportion of the up-regulated genes were highly expressed in spermatogonia and spermatocytes, while the majority of downregulated genes were predominantly expressed in round spermatids. Collectively, these data show that the Dcaf17 disruption affects directly or indirectly testicular proteastasis and transcriptional signature in mouse.
Collapse
|
5
|
Identification and characterization of unique and common lncRNAs and mRNAs in the pituitary, ovary, and uterus of Hu sheep with different prolificacy. Genomics 2022; 114:110511. [PMID: 36283658 DOI: 10.1016/j.ygeno.2022.110511] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 10/08/2022] [Accepted: 10/19/2022] [Indexed: 01/15/2023]
Abstract
LncRNAs are regarded as regulators in various animal reproductive physiological processes. However, the regulation of lncRNAs in the reproductive organ development of Hu sheep with different prolificacy remains unknown. Herein, numerous tissue-unique and -common differentially expressed lncRNAs (DELs) and differentially expressed genes (DEGs), and fecundity-unique DELs and DEGs were identified among different comparison groups at horizontal and vertical levels. Moreover, the tissue-unique and -common, and fecundity-unique female reproduction-associated DEGs and DELs were screened, and the interaction networks were constructed. Furthermore, MSTRG.43442.1 was mainly present in the cytoplasm of tested cells. The key genes ADAMTS1 and DCN were mainly localized in the granulosa cells, pituitary cells and/or endometrial epithelial cells of ovary, pituitary and/or uterus. Overall, this study identified large numbers of unique and common DELs and DEGs in the female reproductive organs of Hu sheep with different prolificacy and provided new insights into understanding the regulation of Hu sheep fecundity.
Collapse
|
6
|
Castro-Arnau J, Chauvigné F, Gómez-Garrido J, Esteve-Codina A, Dabad M, Alioto T, Finn RN, Cerdà J. Developmental RNA-Seq transcriptomics of haploid germ cells and spermatozoa uncovers novel pathways associated with teleost spermiogenesis. Sci Rep 2022; 12:14162. [PMID: 35986060 PMCID: PMC9391476 DOI: 10.1038/s41598-022-18422-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/10/2022] [Indexed: 12/18/2022] Open
Abstract
AbstractIn non-mammalian vertebrates, the molecular mechanisms involved in the transformation of haploid germ cells (HGCs) into spermatozoa (spermiogenesis) are largely unknown. Here, we investigated this process in the marine teleost gilthead seabream (Sparus aurata) through the examination of the changes in the transcriptome between cell-sorted HGCs and ejaculated sperm (SPZEJ). Samples were collected under strict quality controls employing immunofluorescence microscopy as well as by determining the sperm motion kinematic parameters by computer-assisted sperm analysis. Deep sequencing by RNA-seq identified a total of 7286 differentially expressed genes (DEGs) (p-value < 0.01) between both cell types, of which nearly half were upregulated in SPZEJ compared to HCGs. In addition, approximately 9000 long non-coding RNAs (lncRNAs) were found, of which 56% were accumulated or emerged de novo in SPZEJ. The upregulated transcripts are involved in transcriptional and translational regulation, chromatin and cytoskeleton organization, metabolic processes such as glycolysis and oxidative phosphorylation, and also include a number of ion and water channels, exchangers, transporters and receptors. Pathway analysis conducted on DEGs identified 37 different signaling pathways enriched in SPZEJ, including 13 receptor pathways, from which the most predominant correspond to the chemokine and cytokine, gonadotropin-releasing hormone receptor and platelet derived growth factor signaling pathways. Our data provide new insight into the mRNA and lncRNA cargos of teleost spermatozoa and uncover the possible involvement of novel endocrine mechanisms during the differentiation and maturation of spermatozoa.
Collapse
|
7
|
Ureña I, González C, Ramón M, Gòdia M, Clop A, Calvo JH, Carabaño MJ, Serrano M. Exploring the ovine sperm transcriptome by RNAseq techniques. I Effect of seasonal conditions on transcripts abundance. PLoS One 2022; 17:e0264978. [PMID: 35286314 PMCID: PMC8920283 DOI: 10.1371/journal.pone.0264978] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/21/2022] [Indexed: 01/20/2023] Open
Abstract
Understanding the cell molecular changes occurring as a results of climatic circumstances is crucial in the current days in which climate change and global warming are one of the most serious challenges that living organisms have to face. Sperm are one of the mammals’ cells most sensitive to heat, therefore evaluating the impact of seasonal changes in terms of its transcriptional activity can contribute to elucidate how these cells cope with heat stress events. We sequenced the total sperm RNA from 64 ejaculates, 28 collected in summer and 36 collected in autumn, from 40 Manchega rams. A highly rich transcriptome (11,896 different transcripts) with 90 protein coding genes that exceed an average number of 5000 counts were found. Comparing transcriptome in the summer and autumn ejaculates, 236 significant differential abundance genes were assessed, most of them (228) downregulated. The main functions that these genes are related to sexual reproduction and negative regulation of protein metabolic processes and kinase activity. Sperm response to heat stress supposes a drastic decrease of the transcriptional activity, and the upregulation of only a few genes related with the basic functions to maintain the organisms’ homeostasis and surviving. Rams’ spermatozoids carry remnant mRNAs which are retrospectively indicators of events occurring along the spermatogenesis process, including abiotic factors such as environmental temperature.
Collapse
Affiliation(s)
- Irene Ureña
- Departamento de Mejora Genética Animal, CSIC-INIA, Madrid, Spain
| | - Carmen González
- Departamento de Mejora Genética Animal, CSIC-INIA, Madrid, Spain
| | | | - Marta Gòdia
- Animal Genomics Group, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Catalonia, Spain
| | - Alex Clop
- Animal Genomics Group, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Catalonia, Spain
| | - Jorge H. Calvo
- Unidad de Tecnología en Producción Animal, CITA, Zaragoza, Spain
| | | | - Magdalena Serrano
- Departamento de Mejora Genética Animal, CSIC-INIA, Madrid, Spain
- * E-mail:
| |
Collapse
|
8
|
Abdelrahman M, Wang W, Shaukat A, Kulyar MFEA, Lv H, Abulaiti A, Yao Z, Ahmad MJ, Liang A, Yang L. Nutritional Modulation, Gut, and Omics Crosstalk in Ruminants. Animals (Basel) 2022; 12:ani12080997. [PMID: 35454245 PMCID: PMC9029867 DOI: 10.3390/ani12080997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Over the last decade, animal nutrition science has been significantly developed, supported by the great advancements in molecular technologies. For scientists, the present "feedomics and nutrigenomics" era continues to evolve and shape how research is designed, performed, and understood. The new omics interpretations have established a new point of view for the nutrition–gene interaction, integrating more comprehensive findings from animal physiology, molecular genetics, and biochemistry. In the ruminant model, this modern approach addresses rumen microbes as a critical intermediate that can deepen the studies of diet–gut interaction with host genomics. The present review discusses nutrigenomics’ and feedomics’ potential contribution to diminishing the knowledge gap about the DNA cellular activities of different nutrients. It also presents how nutritional management can influence the epigenetic pathway, considering the production type, life stage, and species for more sustainable ruminant nutrition strategies. Abstract Ruminant nutrition has significantly revolutionized a new and prodigious molecular approach in livestock sciences over the last decade. Wide-spectrum advances in DNA and RNA technologies and analysis have produced a wealth of data that have shifted the research threshold scheme to a more affluent level. Recently, the published literature has pointed out the nutrient roles in different cellular genomic alterations among different ruminant species, besides the interactions with other factors, such as age, type, and breed. Additionally, it has addressed rumen microbes within the gut health and productivity context, which has made interpreting homogenous evidence more complicated. As a more systematic approach, nutrigenomics can identify how genomics interacts with nutrition and other variables linked to animal performance. Such findings should contribute to crystallizing powerful interpretations correlating feeding management with ruminant production and health through genomics. This review will present a road-mapping discussion of promising trends in ruminant nutrigenomics as a reference for phenotype expression through multi-level omics changes.
Collapse
Affiliation(s)
- Mohamed Abdelrahman
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan 430070, China; (M.A.); (W.W.); (A.S.); (H.L.); (A.A.); (Z.Y.); (M.J.A.); (A.L.)
- Animal Production Department, Faculty of Agriculture, Assuit University, Asyut 71515, Egypt
| | - Wei Wang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan 430070, China; (M.A.); (W.W.); (A.S.); (H.L.); (A.A.); (Z.Y.); (M.J.A.); (A.L.)
| | - Aftab Shaukat
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan 430070, China; (M.A.); (W.W.); (A.S.); (H.L.); (A.A.); (Z.Y.); (M.J.A.); (A.L.)
| | | | - Haimiao Lv
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan 430070, China; (M.A.); (W.W.); (A.S.); (H.L.); (A.A.); (Z.Y.); (M.J.A.); (A.L.)
| | - Adili Abulaiti
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan 430070, China; (M.A.); (W.W.); (A.S.); (H.L.); (A.A.); (Z.Y.); (M.J.A.); (A.L.)
| | - Zhiqiu Yao
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan 430070, China; (M.A.); (W.W.); (A.S.); (H.L.); (A.A.); (Z.Y.); (M.J.A.); (A.L.)
| | - Muhammad Jamil Ahmad
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan 430070, China; (M.A.); (W.W.); (A.S.); (H.L.); (A.A.); (Z.Y.); (M.J.A.); (A.L.)
| | - Aixin Liang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan 430070, China; (M.A.); (W.W.); (A.S.); (H.L.); (A.A.); (Z.Y.); (M.J.A.); (A.L.)
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, China
| | - Liguo Yang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan 430070, China; (M.A.); (W.W.); (A.S.); (H.L.); (A.A.); (Z.Y.); (M.J.A.); (A.L.)
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: ; Tel.: +86-138-7105-6592
| |
Collapse
|
9
|
Long Noncoding RNAs: Recent Insights into Their Role in Male Infertility and Their Potential as Biomarkers and Therapeutic Targets. Int J Mol Sci 2021; 22:ijms222413579. [PMID: 34948376 PMCID: PMC8708977 DOI: 10.3390/ijms222413579] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/21/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are composed of nucleotides located in the nucleus and cytoplasm; these are transcribed by RNA polymerase II and are greater than 200 nt in length. LncRNAs fulfill important functions in a variety of biological processes, including genome imprinting, cell differentiation, apoptosis, stem cell pluripotency, X chromosome inactivation and nuclear transport. As high throughput sequencing technology develops, a substantial number of lncRNAs have been found to be related to a variety of biological processes, such as development of the testes, maintaining the self-renewal and differentiation of spermatogonial stem cells, and regulating spermatocyte meiosis. These indicate that lncRNAs can be used as biomarkers and potential therapeutic targets for male infertility. However, only a few comprehensive reviews have described the role of lncRNAs in male reproduction. In this paper, we summarize recent findings relating to the role of lncRNAs in spermatogenesis, their potential as biomarkers for male infertility and the relationship between reproductive arrest and transgenerational effects. Finally, we suggest specific targets for the treatment of male infertility from the perspective of lncRNAs.
Collapse
|
10
|
Li WJ, Wei D, Han HL, Song YJ, Wang Y, Xu HQ, Smagghe G, Wang JJ. lnc94638 is a testis-specific long non-coding RNA involved in spermatozoa formation in Zeugodacus cucurbitae (Coquillett). INSECT MOLECULAR BIOLOGY 2021; 30:605-614. [PMID: 34318563 DOI: 10.1111/imb.12729] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/24/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Long non-coding RNAs (lncRNAs) generally display tissue-specific distributions, and testis-specific lncRNAs form the highest proportion of lncRNAs in many species. Here, we presented a detailed analysis of testis-specific lncRNAs in the melon fly, Zeugodacus cucurbitae, a highly destructive insect pest of cucurbitaceous and other related crops. Most testis-specific lncRNAs were found to be long intergenic non-coding RNAs (lincRNA). The size distribution of these lncRNAs ranged between 600 and 1000 nucleotides. Testis-specific lncRNAs that harboured one isoform number and two exons were the most abundant. Compared to other male tissues, the testis had more highly expressed lncRNAs. The quantitative real-time polymerase chain reaction results of 10 randomly selected testis-specific lncRNAs showed expression patterns consistent with RNA-seq data. Further analysis of the most highly expressed testis-specific lncRNA, lnc94638, was undertaken. Fluorescent in situ hybridization assays localized lnc94638 to the apical region of the testis that contains mature spermatozoa. RNA interference-mediated knockdown of lnc94638 expression reduced spermatozoa numbers and impaired the fertility of Z. cucurbitae male. This study provides a catalogue of testis-specific lncRNAs, shows that the testis-specific lnc94638 is involved in spermatogenesis and has the potential to be used for treating male sterility.
Collapse
Affiliation(s)
- W-J Li
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - D Wei
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - H-L Han
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Y-J Song
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Y Wang
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - H-Q Xu
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - G Smagghe
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - J-J Wang
- Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
11
|
He X, Wu R, Yun Y, Qin X, Chen L, Han Y, Wu J, Sha L, Borjigin G. Transcriptome analysis of messenger RNA and long noncoding RNA related to different developmental stages of tail adipose tissues of sunite sheep. Food Sci Nutr 2021; 9:5722-5734. [PMID: 34646540 PMCID: PMC8498062 DOI: 10.1002/fsn3.2537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022] Open
Abstract
The tail fat of sheep is the most typical deposited fat, and it can be widely used in human daily life, such as diet, cosmetics, and industrial raw materials. To understand the potential regulatory mechanism of different growth stages of tail fat in Sunite sheep, we performed high-throughput RNA sequencing to characterize the long noncoding RNA (lncRNA) and messenger RNA (mRNA) expression profiles of the sheep tail fat at the age of 6, 18, and 30 months. A total of 223 differentially expressed genes (DEGs) and 148 differentially expressed lncRNAs were found in the tail fat of 6-, 18-, and 30-month-old sheep. Based on functional analysis, we found that fat-related DEGs were mainly expressed at 6 months of age and gradually decreased at 18 and 30 months of age. The target gene prediction analysis shows that most of the lncRNAs target more than 20 mRNAs as their transregulators. Further, we obtained several fat-related differentially expressed target genes; these target genes interact with different differentially expressed lncRNAs at various ages and play an important role in the development of tail fat. Based on the DEGs and differentially expressed lncRNAs, we established three co-expression networks for each comparison group. Finally, we concluded that the development of the sheep tail fat is more active during the early stage of growth and gradually decreases with the increase in age. The mutual regulation of lncRNAs and mRNAs may play a key role in this complex biological process.
Collapse
Affiliation(s)
- Xige He
- College of Food Science and EngineeringInner Mongolia Agricultural UniversityHohhotChina
| | - Rihan Wu
- College of Biochemistry and EngineeringHohhot Vocational CollegeHohhotChina
| | - Yueying Yun
- College of Food Science and EngineeringInner Mongolia Agricultural UniversityHohhotChina
- School of Life Science and TechnologyInner Mongolia University of Science and TechnologyBaotouChina
| | - Xia Qin
- College of Food Science and EngineeringInner Mongolia Agricultural UniversityHohhotChina
| | - Lu Chen
- College of Food Science and EngineeringInner Mongolia Agricultural UniversityHohhotChina
| | - Yunfei Han
- College of Food Science and EngineeringInner Mongolia Agricultural UniversityHohhotChina
| | - Jindi Wu
- College of Food Science and EngineeringInner Mongolia Agricultural UniversityHohhotChina
| | - Lina Sha
- College of Food Science and EngineeringInner Mongolia Agricultural UniversityHohhotChina
| | - Gerelt Borjigin
- College of Food Science and EngineeringInner Mongolia Agricultural UniversityHohhotChina
| |
Collapse
|
12
|
Chen H, Miao X, Xu J, Pu L, Li L, Han Y, Mao F, Ma Y. Alterations of mRNA and lncRNA profiles associated with the extracellular matrix and spermatogenesis in goats. Anim Biosci 2021; 35:544-555. [PMID: 34530511 PMCID: PMC8902208 DOI: 10.5713/ab.21.0259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/16/2021] [Indexed: 11/27/2022] Open
Abstract
Objective Spermatozoa are produced within the seminiferous tubules after sexual maturity. The expression levels of mRNAs and lncRNAs in testicular tissues are different at each stage of testicular development and are closely related to formation of the extracellular matrix (ECM) and spermatogenesis. Therefore, we set out to study the expression of lncRNAs and mRNAs during the different developmental stages of the goat testis. Methods We constructed 12 RNA libraries using testicular tissues from goats aged 3, 6, and 12 months, and studied the functions of mRNAs and lncRNAs using the gene ontogeny (GO) and Kyoto encyclopedia of genes and genomes (KEGG) databases. Relationships between differentially expressed genes (DEGs) were analyzed by lncRNA-mRNA co-expression network and protein-protein interaction network (PPI). Finally, the protein expression levels of matrix metalloproteinase 2 (MMP2), insulin-like growth factor 2 (IGF2), and insulin-like growth factor-binding protein 6 (IGFBP6) were detected by western blotting. Results We found 23, 8, and 135 differentially expressed lncRNAs and 161, 12, and 665 differentially expressed mRNAs that were identified between 3 vs 6, 6 vs 12, and 3 vs 12 months, respectively. GO, KEGG, and PPI analyses showed that the differential genes were mainly related to the ECM. Moreover, MMP2 was a hub gene and co-expressed with the lncRNA TCONS-0002139 and TCONS-00093342. The results of quantitative reverse-transcription polymerase chain reaction verification were consistent with those of RNA-seq sequencing. The expression trends of MMP2, IGF2, and IGFBP6 protein were the same as that of mRNA, which all decreased with age. IGF2 and MMP2 were significantly different in the 3 vs 6-month-old group (p<0.05). Conclusion These results improve our understanding of the molecular mechanisms involved in sexual maturation of the goat testis.
Collapse
Affiliation(s)
- Haolin Chen
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730000, China.,Institute of Animal Husbandry and Veterinary, Guizhou Academy of Agricultural Sciences, Guizhou, 550000, China
| | - Xiaomeng Miao
- Institute of Animal Husbandry and Veterinary, Guizhou Academy of Agricultural Sciences, Guizhou, 550000, China
| | - Jinge Xu
- Institute of Animal Husbandry and Veterinary, Guizhou Academy of Agricultural Sciences, Guizhou, 550000, China
| | - Ling Pu
- Institute of Animal Husbandry and Veterinary, Guizhou Academy of Agricultural Sciences, Guizhou, 550000, China
| | - Liang Li
- Institute of Animal Husbandry and Veterinary, Guizhou Academy of Agricultural Sciences, Guizhou, 550000, China
| | - Yong Han
- Institute of Animal Husbandry and Veterinary, Guizhou Academy of Agricultural Sciences, Guizhou, 550000, China
| | - Fengxian Mao
- Guizhou Province Livestock and Poultry Genetic Resources Management Station, Guiyang, Guizhou, 550000, China
| | - Youji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730000, China
| |
Collapse
|
13
|
Melatonin alleviated oxidative stress induced by energy restriction on sheep Leydig cells through Sirt1/Sod2 pathway. Theriogenology 2021; 173:83-92. [PMID: 34352672 DOI: 10.1016/j.theriogenology.2021.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/30/2021] [Accepted: 07/18/2021] [Indexed: 01/19/2023]
Abstract
Energy balance is essential for normal reproduction of ram. However, the effect of energy restriction (ER) on reactive oxygen species (ROS) of sheep Leydig cells (LCs) and the rescuee methods are still unclear. To investigate the in vitro effect of melatonin on cellular ROS in fER-treated sheep LCs and explore the underlying mechanism, Hu sheep LCs were restricted energy using no serum culture medium and resaved with 10 ng/ml melatonin, respectively. The results showed that ER significantly increased MDA level, while decreased CAT, GHS-px expression and ΔΨm (p < 0.05). Meanwhile, ER decreased testosterone concentration and cell proliferation rate (p < 0.05). And the expression of testosterone synthesis-related enzymes was also down-regulated by ER (p < 0.05). Furthermore, we revealed that melatonin reversed the defective phenotypes in ER-treated LCs via Sirt1/Sod2 pathway. The interference of Sirt1 abolished the melatonin-mediated improvement of cellular ROS and testosterone secretion. Taken together, our study firstly indicated that melatonin could alleviate the excessive ROS accumulation and promote testosterone biosynthesis in ER-treated sheep LCs via the activation of Sirt1/Sod2 pathway.
Collapse
|
14
|
Integrated Analysis of Long Non-Coding RNA and mRNA Expression Profiles in Testes of Calves and Sexually Mature Wandong Bulls ( Bos taurus). Animals (Basel) 2021; 11:ani11072006. [PMID: 34359134 PMCID: PMC8300165 DOI: 10.3390/ani11072006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
The mRNAs and long non-coding RNAs axes are playing a vital role in the regulating of post-transcriptional gene expression. Thereby, elucidating the expression pattern of mRNAs and long non-coding RNAs underlying testis development is crucial. In this study, mRNA and long non-coding RNAs expression profiles were investigated in 3-month-old calves and 3-year-old mature bulls' testes by total RNA sequencing. Additionally, during the gene level analysis, 21,250 mRNAs and 20,533 long non-coding RNAs were identified. As a result, 7908 long non-coding RNAs (p-adjust < 0.05) and 5122 mRNAs (p-adjust < 0.05) were significantly differentially expressed between the distinct age groups. In addition, gene ontology and biological pathway analyses revealed that the predicted target genes are enriched in the lysine degradation, cell cycle, propanoate metabolism, adherens junction and cell adhesion molecules pathways. Correspondingly, the RT-qPCR validation results showed a strong consistency with the sequencing data. The source genes for the mRNAs (CCDC83, DMRTC2, HSPA2, IQCG, PACRG, SPO11, EHHADH, SPP1, NSD2 and ACTN4) and the long non-coding RNAs (COX7A2, COX6B2, TRIM37, PRM2, INHBA, ERBB4, SDHA, ATP6VOA2, FGF9 and TCF21) were found to be actively associated with bull sexual maturity and spermatogenesis. This study provided a comprehensive catalog of long non-coding RNAs in the bovine testes and also offered useful resources for understanding the differences in sexual development caused by the changes in the mRNA and long non-coding RNA interaction expressions between the immature and mature stages.
Collapse
|
15
|
Zhao W, Ahmed S, Ahmed S, Yangliu Y, Wang H, Cai X. Analysis of long non-coding RNAs in epididymis of cattleyak associated with male infertility. Theriogenology 2020; 160:61-71. [PMID: 33181482 DOI: 10.1016/j.theriogenology.2020.10.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 09/07/2020] [Accepted: 10/26/2020] [Indexed: 02/08/2023]
Abstract
Cattleyak (CY), is a cross breed between cattle and yak (YK), which display equal adaptability to the harsh environment as YK and much higher performances than YK. However, the CY is female fertile and male sterile. Previous studies were conducted on testes tissues to investigate the mechanism of male infertility in CY. There is no systematic research on genes, especially lncRNAs between CY and YK epididymis. In this study, Illumina Hiseq was performed to profile the epididymis transcriptome (lncRNA and mRNA) of CY and YK. In total 18859 lncRNAs were identified, from which lincRNAs 12458, antisense lncRNAs 2345, intronic lncRNAs 3101, and sense lncRNAs 955 respectively. We have identified 345 DE lncRNAs and 3008 DE mRNAs between YK and CY epididymis. Thirteen DEGs were validated by quantitative real-time PCR. Combing with DEG, 14 couples of lncRNAs and their target genes were both DE, and 6 of them including CCDC39, KCNJ16, NECTIN2, MRPL20, PSMC4, and DEFB112 show their potential infertility-related terms such as cellular motility, sperm maturation, sperm storage, cellular junction, folate metabolism, and capacitation. On the other hand, several down-regulated genes such as DEFB124, DEFB126, DEFB125, DEFB127, DEFB129, CES5A, TKDP1, CST3, RNASE9 and CD52 in CY compared to YK were involved in the immune response and sperm maturation. Therefore, comprehensive analysis for lncRNAs and their target genes may enhance our understanding of the molecular mechanisms underlying the process of sperm maturation in CY and may provide important resources for further research.
Collapse
Affiliation(s)
- Wangsheng Zhao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Saeed Ahmed
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Siraj Ahmed
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Yueling Yangliu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Hongmei Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Xin Cai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education, Chengdu, Sichuan, 610041, China; Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
16
|
Joshi M, Rajender S. Long non-coding RNAs (lncRNAs) in spermatogenesis and male infertility. Reprod Biol Endocrinol 2020; 18:103. [PMID: 33126901 PMCID: PMC7599102 DOI: 10.1186/s12958-020-00660-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) have a size of more than 200 bp and are known to regulate a host of crucial cellular processes like proliferation, differentiation and apoptosis by regulating gene expression. While small noncoding RNAs (ncRNAs) such as miRNAs, siRNAs, Piwi-interacting RNAs have been extensively studied in male germ cell development, the role of lncRNAs in spermatogenesis remains largely unknown. OBJECTIVE In this article, we have reviewed the biology and role of lncRNAs in spermatogenesis along with the tools available for data analysis. RESULTS AND CONCLUSIONS Till date, three microarray and four RNA-seq studies have been undertaken to identify lncRNAs in mouse testes or germ cells. These studies were done on pre-natal, post-natal, adult testis, and different germ cells to identify lncRNAs regulating spermatogenesis. In case of humans, five RNA-seq studies on different germ cell populations, including two on sperm, were undertaken. We compared three studies on human germ cells to identify common lncRNAs and found 15 lncRNAs (LINC00635, LINC00521, LINC00174, LINC00654, LINC00710, LINC00226, LINC00326, LINC00494, LINC00535, LINC00616, LINC00662, LINC00668, LINC00467, LINC00608, and LINC00658) to show consistent differential expression across these studies. Some of the targets of these lncRNAs included CENPB, FAM98B, GOLGA6 family, RPGR, TPM2, GNB5, KCNQ10T1, TAZ, LIN28A, CDKN2B, CDKN2A, CDKN1A, CDKN1B, CDKN1C, EZH2, SUZ12, VEGFA genes. A lone study on human male infertility identified 9879 differentially expressed lncRNAs with three (lnc32058, lnc09522, and lnc98497) of them showing specific and high expression in immotile sperm in comparison to normal motile sperm. A few lncRNAs (Mrhl, Drm, Spga-lncRNAs, NLC1-C, HongrES2, Tsx, LncRNA-tcam1, Tug1, Tesra, AK015322, Gm2044, and LncRNA033862) have been functionally validated for their roles in spermatogenesis. Apart from rodents and humans, studies on sheep and bull have also identified lncRNAs potentially important for spermatogenesis. A number of these non-coding RNAs are strong candidates for further research on their roles in spermatogenesis.
Collapse
Affiliation(s)
- Meghali Joshi
- Division of Endocrinology, Central Drug Research Institute, Lucknow, UP, India
| | - Singh Rajender
- Division of Endocrinology, Central Drug Research Institute, Lucknow, UP, India.
| |
Collapse
|
17
|
Satoh Y, Takei N, Kawamura S, Takahashi N, Kotani T, Kimura AP. A novel testis-specific long noncoding RNA, Tesra, activates the Prss42/Tessp-2 gene during mouse spermatogenesis†. Biol Reprod 2020; 100:833-848. [PMID: 30379984 PMCID: PMC6437258 DOI: 10.1093/biolre/ioy230] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/06/2018] [Accepted: 10/29/2018] [Indexed: 02/07/2023] Open
Abstract
The progression of spermatogenesis is precisely controlled by meiotic stage-specific genes, but the molecular mechanism for activation of such genes is still elusive. Here we found a novel testis-specific long noncoding RNA (lncRNA), Tesra, that was specifically expressed in the mouse testis at the Prss/Tessp gene cluster on chromosome 9. Tesra was transcribed downstream of Prss44/Tessp-4, starting within the gene, as a 4435-nucleotide transcript and developmentally activated at a stage similar to that for Prss/Tessp genes. By in situ hybridization, Tesra was found to be localized in and around germ cells and Leydig cells, being consistent with biochemical data showing its existence in cytoplasmic, nuclear, and extracellular fractions. Based on the finding of more signals in nuclei of pachytene spermatocytes, we explored the possibility that Tesra plays a role in transcriptional activation of Prss/Tessp genes. By a ChIRP assay, the Tesra transcript was found to bind to the Prss42/Tessp-2 promoter region in testicular germ cells, and transient overexpression of Tesra significantly activated endogenous Prss42/Tessp-2 expression and increased Prss42/Tessp-2 promoter activity in a reporter construct. These findings suggest that Tesra activates the Prss42/Tessp-2 gene by binding to the promoter. Finally, we investigated whether Tesra co-functioned with enhancers adjacent to another lncRNA, lncRNA-HSVIII. In the Tet-on system, Tesra transcription significantly increased activity of one enhancer, but Tesra and the enhancer were not interdependent. Collectively, our results proposed a potential function of an lncRNA, Tesra, in transcriptional activation and suggest a novel relationship between an lncRNA and an enhancer.
Collapse
Affiliation(s)
- Yui Satoh
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan.,Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Natsumi Takei
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Shohei Kawamura
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Nobuhiko Takahashi
- Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, Kanazawa, Ishikari-Tobetsu, Japan
| | - Tomoya Kotani
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan.,Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Atsushi P Kimura
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan.,Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
18
|
Yang H, Ma J, Wang Z, Yao X, Zhao J, Zhao X, Wang F, Zhang Y. Genome-Wide Analysis and Function Prediction of Long Noncoding RNAs in Sheep Pituitary Gland Associated with Sexual Maturation. Genes (Basel) 2020; 11:E320. [PMID: 32192168 PMCID: PMC7140784 DOI: 10.3390/genes11030320] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 02/07/2023] Open
Abstract
Long noncoding RNA (lncRNA) plays a crucial role in the hypothalamic-pituitary-testis (HPT) axis associated with sheep reproduction. The pituitary plays a connecting role in the HPT axis. However, little is known of their expression pattern and potential roles in the pituitary gland. To explore the potential lncRNAs that regulate the male sheep pituitary development and sexual maturation, we constructed immature and mature sheep pituitary cDNA libraries (three-month-old, TM, and nine-month-old, NM, respectively, n = 3) for lncRNA and mRNA high-throughput sequencing. Firstly, the expression of lncRNA and mRNA were comparatively analyzed. 2417 known lncRNAs and 1256 new lncRNAs were identified. Then, 193 differentially expressed (DE) lncRNAs and 1407 DE mRNAs were found in the pituitary between the two groups. Moreover, mRNA-lncRNA interaction network was constructed according to the target gene prediction of lncRNA and functional enrichment analysis. Five candidate lncRNAs and their targeted genes HSD17B12, DCBLD2, PDPK1, GPX3 and DLL1 that enriched in growth and reproduction related pathways were further filtered. Lastly, the interaction of candidate lncRNA TCONS_00066406 and its targeted gene HSD17B12 were validated in in vitro of sheep pituitary cells. Our study provided a systematic presentation of lncRNAs and mRNAs in male sheep pituitary, which revealed the potential role of lncRNA in male reproduction.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yanli Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (J.M.); (Z.W.); (X.Y.); (J.Z.); (X.Z.); (F.W.)
| |
Collapse
|
19
|
Maternal energy insufficiency affects testicular development of the offspring in a swine model. Sci Rep 2019; 9:14533. [PMID: 31601864 PMCID: PMC6787339 DOI: 10.1038/s41598-019-51041-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 09/19/2019] [Indexed: 12/19/2022] Open
Abstract
We determined the effects of insufficient maternal energy on testicular development in offspring in a swine model. Thirty-six sows were divided into control (CON) and low-energy diet (LE) groups during gestation. We observed that the number of Sertoli, germ, and Leydig cells in the offspring of the CON group were significantly higher than those in the LE group at 28 and 120 d after birth. Furthermore, the percentage of apoptotic testis cells was significantly higher in the offspring of the LE group than in the CON group. Transcriptome analysis of differentially expressed mRNAs and long noncoding RNAs in offspring testes indicated that these RNAs were mainly involved in lipid metabolism, apoptosis, cell proliferation, and some pivotal regulatory pathways. Results revealed that AMPK-PI3K-mTOR, MAPK, and oxidative phosphorylation signaling pathways play an important role in mediating the programming effect of insufficient maternal energy on testicular development, and that this effect occurs mainly at an early stage in life. mRNA and protein expression analyses confirmed the importance of certain signaling pathways in the regulation of testicular development. This study provides insights into the influence and possible mechanism underlying the effect of inadequate maternal energy intake on testicular development in the offspring.
Collapse
|
20
|
Gao Y, Li S, Lai Z, Zhou Z, Wu F, Huang Y, Lan X, Lei C, Chen H, Dang R. Analysis of Long Non-Coding RNA and mRNA Expression Profiling in Immature and Mature Bovine ( Bos taurus) Testes. Front Genet 2019; 10:646. [PMID: 31333723 PMCID: PMC6624472 DOI: 10.3389/fgene.2019.00646] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/18/2019] [Indexed: 01/08/2023] Open
Abstract
Testis development and spermatogenesis are strictly regulated by numbers of genes and non-coding genes. However, long non-coding RNAs (lncRNAs) as key regulators in multitudinous biological processes have not been systematically identified in bovine testes during sexual maturation. In this study, we comprehensively analyzed lncRNA and mRNA expression profiling of six bovine testes at 3 days after birth and 13 months by RNA sequencing. 23,735 lncRNAs and 22,118 mRNAs were identified, in which 540 lncRNAs (P-value < 0.05) and 3,525 mRNAs (P-adjust < 0.05) were significantly differentially expressed (DE) between two stages. Correspondingly, the results of RT-qPCR analysis showed well correlation with the transcriptome data. Moreover, GO and KEGG enrichment analyses showed that DE genes and target genes of DE lncRNAs were enriched in spermatogenesis. Furthermore, we constructed lncRNA–gene interaction networks; consequently, 15 DE lncRNAs and 12 cis-target genes were involved. The target genes (SPATA16, TCF21, ZPBP, PACRG, ATP8B3, COMP, ACE, and OSBP2) were found associated with bovine sexual maturation. In addition, the expression of lncRNAs and cis-target genes was detected in bovine Leydig cells, Sertoli cells, and spermatogonia. Our study identified and analyzed lncRNAs and mRNAs in testis tissues, suggesting that lncRNAs may regulate testis development and spermatogenesis. Our findings provided new insights for further investigation of biological function in bovine lncRNA.
Collapse
Affiliation(s)
- Yuan Gao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Shipeng Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zhenyu Lai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zihui Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Fei Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yongzhen Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Ruihua Dang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
21
|
Genome-wide identification and characterization of long non-coding RNAs expressed during sheep fetal and postnatal hair follicle development. Sci Rep 2019; 9:8501. [PMID: 31186438 PMCID: PMC6559957 DOI: 10.1038/s41598-019-44600-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 05/03/2019] [Indexed: 01/09/2023] Open
Abstract
Long non-coding RNAs (lncRNAs), >200 nt in length, are transcribed from mammalian genomes. They play important regulatory roles in various biological processes; However, the function and expression profile of lncRNAs involved in the development of hair follicles in the fetus, have been relatively under-explored area. To investigate the specific role of lncRNAs and mRNAs that regulate hair follicle development, we herein performed a comprehensive study on the lncRNA and mRNA expression profiles of sheep at multiple embryonic days (E65, E85, E105, and E135) and six lambs aged one week (D7) and one month (D30) using RNA-seq technology. The number of genes (471 lncRNAs and 12,812 mRNAs) differentially expressed and potential targets of differentially expressed lncRNAs were predicted. Differentially expressed lncRNAs were grouped into 10 clusters based on their expression pattern by K-means clustering. Moreover, Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses showed that some differentially expressed mRNAs, such as DKK1, DSG4, FOXE1, Hoxc13, SFRP1, SFRP2, and Wnt10A overlapped with lncRNAs targets, and enriched in important hair follicle developmental pathways, including Wnt, TNF, and MAPK signaling pathways. In addition, 9 differentially expressed lncRNAs and 4 differentially expressed mRNAs were validated using quantitative real-time PCR (qRT-PCR). This study helps enrich the Ovis lncRNA databases and provides a comprehensive lncRNA transcriptome profile of fetal and postnatal skin of sheep. Additionally, it provides a foundation for further experiments on the role of lncRNAs in the regulation of hair growth in sheep.
Collapse
|
22
|
Identification and Expression Analysis of Long Noncoding RNAs in Fat-Tail of Sheep Breeds. G3-GENES GENOMES GENETICS 2019; 9:1263-1276. [PMID: 30787031 PMCID: PMC6469412 DOI: 10.1534/g3.118.201014] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Emerging evidence suggests that long non-coding RNAs (lncRNAs) participate in the regulation of a diverse range of biological processes. However, most studies have been focused on a few established model organisms and little is known about lncRNAs in fat-tail development in sheep. Here, the first profile of lncRNA in sheep fat-tail along with their possible roles in fat deposition were investigated, based on a comparative transcriptome analysis between fat-tailed (Lori-Bakhtiari) and thin-tailed (Zel) Iranian sheep breeds. Among all identified lncRNAs candidates, 358 and 66 transcripts were considered novel intergenic (lincRNAs) and novel intronic (ilncRNAs) corresponding to 302 and 58 gene loci, respectively. Our results indicated that a low percentage of the novel lncRNAs were conserved. Also, synteny analysis identified 168 novel lincRNAs with the same syntenic region in human, bovine and chicken. Only seven lncRNAs were identified as differentially expressed genes between fat and thin tailed breeds. Q-RT-PCR results were consistent with the RNA-Seq data and validated the findings. Target prediction analysis revealed that the novel lncRNAs may act in cis or trans and regulate the expression of genes that are involved in the lipid metabolism. A gene regulatory network including lncRNA-mRNA interactions were constructed and three significant modules were found, with genes relevant to lipid metabolism, insulin and calcium signaling pathway. Moreover, integrated analysis with AnimalQTLdb database further suggested six lincRNAs and one ilncRNAs as candidates of sheep fat-tail development. Our results highlighted the putative contributions of lncRNAs in regulating expression of genes associated with fat-tail development in sheep.
Collapse
|
23
|
Sun Z, Xue S, Xu H, Hu X, Chen S, Yang Z, Yang Y, Ouyang J, Cui H. Expression profiles of long noncoding RNAs associated with the NSUN2 gene in HepG2 cells. Mol Med Rep 2019; 19:2999-3008. [PMID: 30816500 PMCID: PMC6423554 DOI: 10.3892/mmr.2019.9984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 01/25/2019] [Indexed: 12/19/2022] Open
Abstract
NOP2/Sun domain family member 2 (NSUN2) is upregulated in numerous types of tumors and may be implicated in multiple biological processes, including cell proliferation, migration and human tumorigenesis. However, little is known about how NSUN2 serves a role in these processes. In the present study, expression profiles of long noncoding RNAs (lncRNAs) and mRNAs were developed in NSUN2‑deficient HepG2 cells by RNA‑sequencing analysis. A total of 757 lncRNAs were differentially expressed, 392 of which were upregulated, and 365 were downregulated compared with wild‑type HepG2 cells. Moreover, 212 lncRNAs were co‑expressed with 368 target mRNAs. It was also observed that 253 pairs of lncRNAs and mRNAs exhibited negative correlations and that 290 pairs had positive correlations. Bioinformatics analysis indicated that these lncRNAs regulated by NSUN2 were associated with 'signal transduction', 'extracellular exosome' and 'calcium ion binding', and were enriched in 'pathways in cancer', 'PI3K‑Akt signaling pathway' and 'ECM‑receptor interaction pathway'. These results illustrate the landscape and co‑expression network of lncRNAs regulated by NSUN2 and provide invaluable information for studying the molecular function of NSUN2.
Collapse
Affiliation(s)
- Zhen Sun
- Institute of Epigenetics and Epigenomics and College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Shonglei Xue
- Institute of Epigenetics and Epigenomics and College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Hui Xu
- Institute of Epigenetics and Epigenomics and College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Xuming Hu
- Institute of Epigenetics and Epigenomics and College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Shihao Chen
- Institute of Epigenetics and Epigenomics and College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Zhe Yang
- Institute of Epigenetics and Epigenomics and College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Yu Yang
- Institute of Epigenetics and Epigenomics and College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Juan Ouyang
- Institute of Epigenetics and Epigenomics and College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Hengmi Cui
- Institute of Epigenetics and Epigenomics and College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
- Joint International Research Laboratory of Agricultural and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| |
Collapse
|
24
|
Integrated analysis of mRNAs and long noncoding RNAs in the semen from Holstein bulls with high and low sperm motility. Sci Rep 2019; 9:2092. [PMID: 30765858 PMCID: PMC6376035 DOI: 10.1038/s41598-018-38462-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/28/2018] [Indexed: 02/06/2023] Open
Abstract
Sperm motility is the main index used to assess the quality of bull semen. It may also be used to evaluate the fertility potential of bulls. Protein-coding mRNA and long noncoding RNA (lncRNA) participate in the regulation of spermatogenesis. Here, we employed strand-specific RNA sequencing to profile the semen transcriptome (mRNA and lncRNA) of six paired full-sibling Holstein bulls with divergent sperm motility and to determine the functions of mRNA and lncRNA in sperm motility. Among 20,875 protein-encoding genes detected in semen, 19 were differentially expressed between the high sperm motility group (H: H1, H2, and H3) and low sperm motility group (L: L1, L2, and L3). Of the 11,561 lncRNAs identified in sperm, 2,517 were differentially expressed between the H and L groups. We found that TCONS_00041733 lncRNA targets the node gene EFNA1 (ephrin A1), involved in male reproductive physiology. Our study provides a global mRNA and lncRNA transcriptome of bull semen, as well as novel insights into the regulation of neighboring protein coding by lncRNAs and the influence of mRNAs on sperm motility.
Collapse
|
25
|
Liu T, Wang Z, Zhou R, Liang W. Focally amplified lncRNA on chromosome 1 regulates apoptosis of esophageal cancer cells via DRP1 and mitochondrial dynamics. IUBMB Life 2018; 71:254-260. [PMID: 30501006 DOI: 10.1002/iub.1971] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/24/2018] [Accepted: 10/10/2018] [Indexed: 01/05/2023]
Abstract
Long noncoding RNAs (lncRNAs), a family of noncoding RNA transcripts with a length of <200 nucleotides (nts), have been associated with the pathological development of various types of carcinogenesis. Focally amplified lncRNA on chromosome 1 (FAL1) is a recently identified lncRNA. In the current study, we aimed to investigate the physiological function of FAL1 in esophageal squamous cell carcinoma (ESCC). Our findings demonstrate that FAL1 was associated with esophageal cancer cell survival by regulating mitochondrial fission. First, we found that the expression of the mitochondrial fission protein dynamin-related protein 1 (DRP1) was significantly reduced, but the expression of the mitochondrial fusion protein mitofusin 1 (Mfn1) was increased in ESCC tissues and esophageal cancer cell lines as compared with adjacent normal tissues and a normal esophagus epithelial cell line. In addition, we found that reduced expression of DRP1 in the esophageal cancer cell lines KYSE450 and EC9706 cells was associated with increased expression of FAL1. Inhibition of FAL1 promoted mitochondrial fission and mitochondrial dysfunction in KYSE450 and EC9706 cells mediated by DRP1. Silencing of DRP1 abolished FAL1-induced apoptosis through a mitochondrial-dependent pathway. Our findings suggest that FAL1/DRP1 could be a therapeutic target for the treatment of ESCC. © 2018 IUBMB Life, 71(1):254-260, 2019.
Collapse
Affiliation(s)
- Tao Liu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China
| | - Zhi Wang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China
| | - Riqiang Zhou
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China
| | - Wulin Liang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China
| |
Collapse
|
26
|
Jin C, Bao J, Wang Y, Chen W, Wu T, Wang L, Lv X, Gao W, Wang B, Zhu G, Dai G, Sun W. Changes in long non-coding RNA expression profiles related to the antagonistic effects of Escherichia coli F17 on lamb spleens. Sci Rep 2018; 8:16514. [PMID: 30410073 PMCID: PMC6224397 DOI: 10.1038/s41598-018-34291-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 10/18/2018] [Indexed: 12/17/2022] Open
Abstract
Sheep colibacillosis is one of the most common bacterial diseases found at large-scale sheep farms. The aim of this study was to employ RNA-seq to screen differentially expressed (DE) long non-coding RNAs (lncRNAs) that impart antagonistic or sensitive effects on Escherichia coli F17. In this study, individuals who had antagonistic or sensitive responses to E. coli F17 were identified by feeding E. coli F17 strains to Hu lambs. The sensitive group had higher levels of intestinal bacteria than that in the antagonistic group (P < 0.05), the jejunum showed various levels of mucosal tissue damage and had a dark colour, and disintegration of part of the small intestinal villi was observed. Totals of 34 DE lncRNAs and 703 DE mRNAs in two groups were identified. qRT-PCR results for 12 randomly selected DE lncRNAs and DE mRNAs were consistent with the RNA-seq data. Gene Ontology (GO), KEGG Pathway enrichment and lncRNA-mRNA interaction analyses identified 6 co-expressed genes, namely, MYO1G, TIMM29, CARM1, ADGRB1, SEPT4, and DESI2. This is the first study that has performed expression profiling of lncRNAs in the spleen of antagonistic and sensitive lambs. The identification of DE lncRNAs can facilitate investigations into the molecular mechanism underlying resistance to diarrhoea in sheep.
Collapse
Affiliation(s)
- Chengyan Jin
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Jianjun Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Yue Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Weihao Chen
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Tianyi Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Lihong Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Xiaoyang Lv
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Wen Gao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Buzhong Wang
- Jiangsu Xilaiyuan Ecological Agriculture Co., Ltd. Taizhou, 225300, Jiangsu, P. R. China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Guojun Dai
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Wei Sun
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China. .,Joint international research laboratory of agriculture and agri - product safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China.
| |
Collapse
|
27
|
Kern C, Wang Y, Chitwood J, Korf I, Delany M, Cheng H, Medrano JF, Van Eenennaam AL, Ernst C, Ross P, Zhou H. Genome-wide identification of tissue-specific long non-coding RNA in three farm animal species. BMC Genomics 2018; 19:684. [PMID: 30227846 PMCID: PMC6145346 DOI: 10.1186/s12864-018-5037-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 08/27/2018] [Indexed: 03/08/2023] Open
Abstract
Background Numerous long non-coding RNAs (lncRNAs) have been identified and their roles in gene regulation in humans, mice, and other model organisms studied; however, far less research has been focused on lncRNAs in farm animal species. While previous studies in chickens, cattle, and pigs identified lncRNAs in specific developmental stages or differentially expressed under specific conditions in a limited number of tissues, more comprehensive identification of lncRNAs in these species is needed. The goal of the FAANG Consortium (Functional Annotation of Animal Genomes) is to functionally annotate animal genomes, including the annotation of lncRNAs. As one of the FAANG pilot projects, lncRNAs were identified across eight tissues in two adult male biological replicates from chickens, cattle, and pigs. Results Comprehensive lncRNA annotations for the chicken, cattle, and pig genomes were generated by utilizing RNA-seq from eight tissue types from two biological replicates per species at the adult developmental stage. A total of 9393 lncRNAs in chickens, 7235 lncRNAs in cattle, and 14,429 lncRNAs in pigs were identified. Including novel isoforms and lncRNAs from novel loci, 5288 novel lncRNAs were identified in chickens, 3732 in cattle, and 4870 in pigs. These transcripts match previously known patterns of lncRNAs, such as generally lower expression levels than mRNAs and higher tissue specificity. An analysis of lncRNA conservation across species identified a set of conserved lncRNAs with potential functions associated with chromatin structure and gene regulation. Tissue-specific lncRNAs were identified. Genes proximal to tissue-specific lncRNAs were enriched for GO terms associated with the tissue of origin, such as leukocyte activation in spleen. Conclusions LncRNAs were identified in three important farm animal species using eight tissues from adult individuals. About half of the identified lncRNAs were not previously reported in the NCBI annotations for these species. While lncRNAs are less conserved than protein-coding genes, a set of positionally conserved lncRNAs were identified among chickens, cattle, and pigs with potential functions related to chromatin structure and gene regulation. Tissue-specific lncRNAs have potential regulatory functions on genes enriched for tissue-specific GO terms. Future work will include epigenetic data from ChIP-seq experiments to further refine these annotations. Electronic supplementary material The online version of this article (10.1186/s12864-018-5037-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Colin Kern
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Ying Wang
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - James Chitwood
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Ian Korf
- Genome Center, University of California, Davis, Davis, CA, USA
| | - Mary Delany
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Hans Cheng
- USDA-ARS, Avian Disease and Oncology Laboratory, East Lansing, MI, USA
| | - Juan F Medrano
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | | | - Catherine Ernst
- Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Pablo Ross
- Department of Animal Science, University of California, Davis, Davis, CA, USA.
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
28
|
Ma L, Zhang M, Jin Y, Erdenee S, Hu L, Chen H, Cai Y, Lan X. Comparative Transcriptome Profiling of mRNA and lncRNA Related to Tail Adipose Tissues of Sheep. Front Genet 2018; 9:365. [PMID: 30250481 PMCID: PMC6139350 DOI: 10.3389/fgene.2018.00365] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 08/21/2018] [Indexed: 01/05/2023] Open
Abstract
The Lanzhou Fat-Tail sheep (LFTS, long fat-tailed sheep) is an endangered sheep breed in China with a fat tail compared to the traditional local varieties, Small Tail Han sheep (STHS, thin-tailed sheep) with a small tail, and Tibetan sheep (TS, short thin-tailed sheep) with a little tail. However, little is known regarding how tail fat deposition is regulated by long noncoding RNA (lncRNA). To evaluate the lncRNA and mRNA associated with tail fat deposition and development among these breeds, high-throughput RNA sequencing of three individuals each of LFTS, STHS, and TS were performed and analyzed in this study. RNA sequencing data from these three groups revealed 10 differentially expressed genes (DEGs) and 37 differentially expressed lncRNAs between the LFTS and STHS groups, 390 DEGs and 59 differentially expressed lncRNAs between the LFTS and TS groups, and 80 DEGs and 16 differentially expressed lncRNAs between the STHS and TS groups (p-value < 0.05 and fold change ≥ 2), respectively. Gene Ontology and pathway analysis of DEGs and target genes of differentially expressed lncRNAs revealed enrichment in fatty acid metabolism and fatty acid elongation-related pathways that contribute to fat deposition. Subsequently, the expression of 14 DEGs and 6 differentially expressed lncRNAs was validated by quantitative real-time PCR. Finally, two co-expression networks of differentially expressed mRNA and lncRNAs were constructed. The results suggested that some differentially expressed lncRNAs (TCONS_00372767, TCONS_00171926, TCONS_00054953, and TCONS_00373007) may play crucial roles as core lncRNAs in tail fat deposition processes. In summary, the present study extends the sheep tail fat lncRNA database and these differentially expressed mRNA and lncRNAs may provide novel candidate regulators for future genetic and molecular studies on tail fat deposition of sheep.
Collapse
Affiliation(s)
- Lin Ma
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Meng Zhang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yunyun Jin
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Sarantsetseg Erdenee
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Linyong Hu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Hong Chen
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yong Cai
- Science Experimental Center, Northwest University for Nationalities, Lanzhou, China.,College of Life Science and Engineering, Northwest University for Nationalities, Lanzhou, China
| | - Xianyong Lan
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
29
|
Bush SJ, Muriuki C, McCulloch MEB, Farquhar IL, Clark EL, Hume DA. Cross-species inference of long non-coding RNAs greatly expands the ruminant transcriptome. Genet Sel Evol 2018; 50:20. [PMID: 29690875 PMCID: PMC5926538 DOI: 10.1186/s12711-018-0391-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/13/2018] [Indexed: 02/06/2023] Open
Abstract
Background mRNA-like long non-coding RNAs (lncRNAs) are a significant component of mammalian transcriptomes, although most are expressed only at low levels, with high tissue-specificity and/or at specific developmental stages. Thus, in many cases lncRNA detection by RNA-sequencing (RNA-seq) is compromised by stochastic sampling. To account for this and create a catalogue of ruminant lncRNAs, we compared de novo assembled lncRNAs derived from large RNA-seq datasets in transcriptional atlas projects for sheep and goats with previous lncRNAs assembled in cattle and human. We then combined the novel lncRNAs with the sheep transcriptional atlas to identify co-regulated sets of protein-coding and non-coding loci. Results Few lncRNAs could be reproducibly assembled from a single dataset, even with deep sequencing of the same tissues from multiple animals. Furthermore, there was little sequence overlap between lncRNAs that were assembled from pooled RNA-seq data. We combined positional conservation (synteny) with cross-species mapping of candidate lncRNAs to identify a consensus set of ruminant lncRNAs and then used the RNA-seq data to demonstrate detectable and reproducible expression in each species. In sheep, 20 to 30% of lncRNAs were located close to protein-coding genes with which they are strongly co-expressed, which is consistent with the evolutionary origin of some ncRNAs in enhancer sequences. Nevertheless, most of the lncRNAs are not co-expressed with neighbouring protein-coding genes. Conclusions Alongside substantially expanding the ruminant lncRNA repertoire, the outcomes of our analysis demonstrate that stochastic sampling can be partly overcome by combining RNA-seq datasets from related species. This has practical implications for the future discovery of lncRNAs in other species. Electronic supplementary material The online version of this article (10.1186/s12711-018-0391-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stephen J Bush
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, Midlothian, EH25 9RG, UK. .,Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Headington, Oxford, OX3 9DU, UK.
| | - Charity Muriuki
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, Midlothian, EH25 9RG, UK
| | - Mary E B McCulloch
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, Midlothian, EH25 9RG, UK
| | - Iseabail L Farquhar
- Centre for Synthetic and Systems Biology, CH Waddington Building, Max Borne Crescent, King's Buildings, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Emily L Clark
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, Midlothian, EH25 9RG, UK
| | - David A Hume
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, Midlothian, EH25 9RG, UK. .,Translational Research Institute, Mater Research-University of Queensland, 37 Kent Street, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
30
|
Selvaraju S, Parthipan S, Somashekar L, Binsila BK, Kolte AP, Arangasamy A, Ravindra JP, Krawetz SA. Current status of sperm functional genomics and its diagnostic potential of fertility in bovine (Bos taurus). Syst Biol Reprod Med 2018. [DOI: 10.1080/19396368.2018.1444816] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sellappan Selvaraju
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - Sivashanmugam Parthipan
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - Lakshminarayana Somashekar
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - B. Krishnan Binsila
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - Atul P. Kolte
- Omics Laboratory, Animal Nutrition Division, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - Arunachalam Arangasamy
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - Janivara Parameshwaraiah Ravindra
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - Stephen A. Krawetz
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| |
Collapse
|
31
|
Key Anti-Fibrosis Associated Long Noncoding RNAs Identified in Human Hepatic Stellate Cell via Transcriptome Sequencing Analysis. Int J Mol Sci 2018; 19:ijms19030675. [PMID: 29495545 PMCID: PMC5877536 DOI: 10.3390/ijms19030675] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/23/2018] [Accepted: 02/24/2018] [Indexed: 12/21/2022] Open
Abstract
Hepatic fibrosis is the main pathological basis for chronic cirrhosis, and activated hepatic stellate cells (HSCs) are the primary cells involved in liver fibrosis. Our study analyzed anti-fibrosis long noncoding RNAs (lncRNAs) in activated human HSCs (hHSCs). We performed RNA sequencing (RNA-seq) and bioinformatics analysis to determine whether lncRNA expression profile changes between hHSCs activation and quiescence. Eight differentially expressed (DE) lncRNAs and three pairs of co-expression lncRNAs-mRNAs were verified by quantitative Real-Time Polymerase Chain Reaction (qRT-PCR). A total of 34146 DE lncRNAs were identified in this study. Via gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, we found several DE lncRNAs regulated hHSC activation by participating in DNA bending/packaging complex, growth factor binding and the Hippo signaling pathway (p < 0.05). With lncRNA–mRNA co-expression analysis, three lncRNAs were identified to be associated with connective tissue growth factor (CTGF), fibroblast growth factor 2 (FGF2) and netrin-4 (NTN4). The quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) results of the eight DE lncRNAs and three pairs of co-expression lncRNAs–mRNAs were consistent with the RNA-seq data and previous reports. Several lncRNAs may serve as potential targets to reverse the progression of liver fibrosis. This study provides a first insight into lncRNA expression profile changes associated with activated human HSCs.
Collapse
|
32
|
Li B, Mao R, Liu C, Zhang W, Tang Y, Guo Z. LncRNA FAL1 promotes cell proliferation and migration by acting as a CeRNA of miR-1236 in hepatocellular carcinoma cells. Life Sci 2018; 197:122-129. [PMID: 29421439 DOI: 10.1016/j.lfs.2018.02.006] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/02/2018] [Accepted: 02/04/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Long non-coding RNAs (LncRNAs) have been demonstrated to play crucial role in tumor growth and metastasis for hepatocellular carcinoma (HCC). LncRNA FAL1 has been indicated to promote the progression of various cancers. However, the role of lncRNA FAL1 in HCC was poorly understood. METHODS The expression levels of lncRNA FAL1 in HCC tissues and cells were determined by RT-qPCR. The roles of lncRNA FAL1 on HCC cells were investigated by MTT, colony formation, transwell, RT-qPCR, and Western blotting. The miRNA binding sites of lncRNA FAL1 was predicted using RegRNA 2.0 and miR-1236 was validated to target lncRNA FAL1 by luciferase reporter assays and RT-qPCR. Finally, the expression levels of lncRNA FAL1 in serum exosome of HCC patients was also investigated and the role of exosome-mediated lncRNA FAL1 was further investigated by co-culturing with HCC cells. RESULTS This study first showed that lncRNA FAL1 was up-regulated in HCC tissues and functioned as an oncogene in HCC. LncRNA FAL1 could accelerate cell proliferation and metastasis as a ceRNA mechanism by competitively binding to miR-1236. Moreover, lncRNA FAL1 was also up-regulated in serum exosome of HCC patients and could transfer lncRNA FAL1 to HCC cells to increase their abilities of cell proliferation and migration. CONCLUSIONS Taken together, this study indicated that lncRNA FAL1 functions as an oncogenic in HCC and may be a novel diagnostic biomarker or a novel target for the treatment of HCC in future.
Collapse
Affiliation(s)
- Baoguo Li
- Department of Interventional Therapy, Tianjin Medical University Cancer Institute and Hospital, Chinese National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China.
| | - Rui Mao
- Department of Interventional Therapy, Tianjin Medical University Cancer Institute and Hospital, Chinese National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Changfu Liu
- Department of Interventional Therapy, Tianjin Medical University Cancer Institute and Hospital, Chinese National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Weihao Zhang
- Department of Interventional Therapy, Tianjin Medical University Cancer Institute and Hospital, Chinese National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Yong Tang
- Department of Interventional Therapy, Tianjin Medical University Cancer Institute and Hospital, Chinese National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Zhi Guo
- Department of Interventional Therapy, Tianjin Medical University Cancer Institute and Hospital, Chinese National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China.
| |
Collapse
|
33
|
Influences of different dietary energy level on sheep testicular development associated with AMPK/ULK1/autophagy pathway. Theriogenology 2017; 108:362-370. [PMID: 29304491 DOI: 10.1016/j.theriogenology.2017.12.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/05/2017] [Accepted: 12/05/2017] [Indexed: 11/21/2022]
Abstract
Energy balance is an important feature for spermatozoa production in the testis. The 5'-AMP-activated protein kinase (AMPK) is a sensor of cell energy, has been implicated as a mediator between gonadal function and energy balance. Herein, we intended to determine the physiological effects of AMPK on testicular development in feed energy restricted and compensated pre-pubertal rams. Lambs had restricted feeding for 2 months and then provided compensatory feeding for another 3 months. Feed levels were 100%(control), 15% and 30% of energy restriction (ER) diets, respectively. The results showed that lambs fed the 30% ER diet had significantly lower testicular weight (P < .05) and spermatids number in the seminiferous tubules, but there were no differences between control and 15% ER groups. Meanwhile, 15% ER and 30% ER diets induced testis autophagy and apoptosis through activating AMPK-ULK1(ULK1, Unc-51 like autophagy activating kinase) signal pathway with characterization of increased Beclin-1 and Light chain 3-Ⅱ/Light chain 3-Ⅰ (LC3-II/LC3-I) ratio, up-regulated the ratio of pro-apoptotic Bcl-2-associated X protein (BAX) and anti-apoptotic B-cell lymphoma 2 (Bcl-2), as well as activated AMPK, phosphorylated AMPK(p-AMPK) and ULK1. Furthermore, a compensation of these parameters occurred when the lambs were re-fed with normal energy requirement after restriction. Taken together, dietary energy levels influence testicular development through autophagy and apoptosis interplay mediated by AMPK-ULK1 signal pathway, which also indicates the important role of the actions of AMPK in the testis homeostasis.
Collapse
|