1
|
Zheng S, Hong Z, Tan Y, Wang Y, Li J, Zhang Z, Feng T, Hong Z, Lin G, Ye D. MYO6 contributes to tumor progression and enzalutamide resistance in castration-resistant prostate cancer by activating the focal adhesion signaling pathway. Cell Commun Signal 2024; 22:517. [PMID: 39449086 PMCID: PMC11515482 DOI: 10.1186/s12964-024-01897-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Enzalutamide (Enz) resistance is a poor prognostic factor for patients with castration-resistant prostate cancer (CRPC), which often involves aberrant expression of the androgen receptor (AR). Myosin VI (MYO6), one member of the myosin family, plays an important role in regulating cell survival and is highly expressed in prostate cancer (PCa). However, whether MYO6 is involved in Enz resistance in CRPC and its mechanism remain unclear. METHODS Multiple open-access databases were utilized to examine the relationship between MYO6 expression and PCa progression, and to screen differentially expressed genes (DEGs) and potential signaling pathways associated with the MYO6-regulated Enz resistance. Both in vitro and in vivo tumorigenesis assays were employed to examine the impact of MYO6 on the growth and Enz resistance of PCa cells. Human PCa tissues and related clinical biochemical data were utilized to identify the role of MYO6 in promoting PCa progression and Enz resistance. The molecular mechanisms underlying the regulation of gene expression, PCa progression, and Enz resistance in CRPC by MYO6 were investigated. RESULTS MYO6 expression increases in patients with PCa and is positively correlated with AR expression in PCa cell lines and tissues. Overexpression of AR increases MYO6 expression to promote PCa cell proliferation, migration and invasion, and to inhibit PCa cell apoptosis; whereas knockdown of MYO6 expression reverses these outcomes and enhances Enz function in suppressing the proliferation of the Enz- sensitive and resistant PCa cells both in vitro and in vivo. Mechanistically, AR binds directly to the promoter region (residues - 503 to - 283 base pairs) of MYO6 gene and promotes its transcription. Furthermore, MYO6 activates focal adhesion kinase (FAK) phosphorylation at tyrosine-397 through integrin beta 8 (ITGB8) modulation to promote PCa progression and Enz resistance. Notably, inhibition of FAK activity by Y15, an inhibitor of FAK, can resensitize CRPC cells to Enz treatment in cell lines and mouse xenograft models. CONCLUSIONS MYO6 has pro-tumor and Enz-resistant effects in CRPC, suggesting that targeting MYO6 may be beneficial for ENZ-resistant CRPC therapy through the AR/MYO6/FAK signaling pathway.
Collapse
MESH Headings
- Humans
- Male
- Prostatic Neoplasms, Castration-Resistant/pathology
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Benzamides/pharmacology
- Phenylthiohydantoin/pharmacology
- Phenylthiohydantoin/analogs & derivatives
- Phenylthiohydantoin/therapeutic use
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Signal Transduction/drug effects
- Animals
- Nitriles/pharmacology
- Cell Line, Tumor
- Myosin Heavy Chains/genetics
- Myosin Heavy Chains/metabolism
- Disease Progression
- Focal Adhesions/drug effects
- Focal Adhesions/metabolism
- Mice
- Gene Expression Regulation, Neoplastic/drug effects
- Cell Proliferation/drug effects
- Mice, Nude
- Cell Movement/drug effects
- Receptors, Androgen/metabolism
- Receptors, Androgen/genetics
Collapse
Affiliation(s)
- Shengfeng Zheng
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
- Qingdao Institute, School of Life Medicine, Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Qingdao, China
| | - Zhe Hong
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China.
| | - Yao Tan
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Nursing Administration, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Yue Wang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Junhong Li
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Zihao Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Tao Feng
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Zongyuan Hong
- Department of Pharmacology and Laboratory of Quantitative Pharmacology, Wannan Medical College, Wuhu, Anhui, 241000, China.
| | - Guowen Lin
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China.
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China.
| |
Collapse
|
2
|
Rodrigues AM, Paula Zen Petisco Fiore A, Guardia GDA, Tomasin R, Azevedo Reis Teixeira A, Giordano RJ, Schechtman D, Pagano M, Galante PAF, Bruni-Cardoso A. Identification of a novel alternative splicing isoform of the Hippo kinase STK3/MST2 with impaired kinase and cell growth suppressing activities. Oncogene 2024; 43:2938-2950. [PMID: 39174858 DOI: 10.1038/s41388-024-03104-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/27/2024] [Accepted: 07/10/2024] [Indexed: 08/24/2024]
Abstract
Mammalian Ste-20-like Kinases 1 and 2 (MST1/2) are core serine-threonine kinases of the Hippo pathway regulating several cellular processes, including cell cycle arrest and cell death. Here, we discovered a novel alternative splicing variant of the MST2 encoding gene, STK3, in malignant cells and tumor datasets. This variant, named STK3∆7 or MST2∆7 (for mRNA or protein, respectively), resulted from the skipping of exon 7. MST2∆7 exhibited increased ubiquitylation and interaction with the E3 ubiquitin-protein ligase CHIP compared to the full-length protein (MST2FL). Exon 7 in STK3 encodes a segment within the kinase domain, and its exclusion compromised MST2 interaction with and phosphorylation of MOB, a major MST1/2 substrate. Nevertheless, MST2∆7 was capable of interacting with MST1 and MST2FL. Unlike MST2FL, overexpression of MST2∆7 did not lead to increased cell death and growth arrest. Strikingly, we observed the exclusion of STK3 exon 7 in 3.2-15% of tumor samples from patients of several types of cancer, while STK3∆7 was seldomly found in healthy tissues. Our study identified a novel STK3 splicing variant with loss of function and the potential to disturb tissue homeostasis by impacting on MST2 activities in the regulation of cell death and quiescence.
Collapse
Affiliation(s)
- Ana Maria Rodrigues
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Ana Paula Zen Petisco Fiore
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
- Department of Biology, New York University, New York, NY, USA
| | | | - Rebeka Tomasin
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | - Ricardo Jose Giordano
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Deborah Schechtman
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Pedro A F Galante
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, Brazil
| | - Alexandre Bruni-Cardoso
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
3
|
Villagra UMM, da Cunha BR, Polachini GM, Henrique T, Stefanini ACB, de Castro TB, da Silva CHTP, Feitosa OA, Fukuyama EE, López RVM, Dias-Neto E, Nunes FD, Severino P, Tajara EH. Expression of Truncated Products at the 5'-Terminal Region of RIPK2 and Evolutive Aspects that Support Their Biological Importance. Genome Biol Evol 2024; 16:evae106. [PMID: 38752399 PMCID: PMC11221433 DOI: 10.1093/gbe/evae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2024] [Indexed: 07/04/2024] Open
Abstract
Alternative splicing is the process of generating different mRNAs from the same primary transcript, which contributes to increase the transcriptome and proteome diversity. Abnormal splicing has been associated with the development of several diseases including cancer. Given that mutations and abnormal levels of the RIPK2 transcript and RIP-2 protein are frequent in tumors, and that RIP-2 modulates immune and inflammatory responses, we investigated alternative splicing events that result in partial deletions of the kinase domain at the N-terminus of RIP-2. We also investigated the structure and expression of the RIPK2 truncated variants and isoforms in different environments. In addition, we searched data throughout Supraprimates evolution that could support the biological importance of RIPK2 alternatively spliced products. We observed that human variants and isoforms were differentially regulated following temperature stress, and that the truncated transcript was more expressed than the long transcript in tumor samples. The inverse was found for the longer protein isoform. The truncated variant was also detected in chimpanzee, gorilla, hare, pika, mouse, rat, and tree shrew. The fact that the same variant has been preserved in mammals with divergence times up to 70 million years raises the hypothesis that it may have a functional significance.
Collapse
Affiliation(s)
- Ulises M M Villagra
- Faculty of Exact Sciences, Biotechnology and Molecular Biology Institute (IBBM), National University of La Plata-CCT, CONICET, La Plata, Argentina
| | - Bianca R da Cunha
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo/USP, São Paulo, SP, Brazil
| | - Giovana M Polachini
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
| | - Tiago Henrique
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
| | - Ana Carolina Buzzo Stefanini
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo/USP, São Paulo, SP, Brazil
| | - Tialfi Bergamin de Castro
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
- Microbial Pathogenesis Department, University of Maryland Baltimore, School of Dentistry, Baltimore, MD, USA
| | - Carlos H T P da Silva
- Computational Laboratory of Pharmaceutical Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo/USP, Ribeirão Preto, SP, Brazil
| | - Olavo A Feitosa
- Computational Laboratory of Pharmaceutical Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo/USP, Ribeirão Preto, SP, Brazil
| | - Erica E Fukuyama
- Head and Neck Surgery Department, Arnaldo Vieira de Carvalho Cancer Institute, São Paulo, SP, Brazil
| | - Rossana V M López
- Comprehensive Center for Precision Oncology, Center for Translational Research in Oncology, State of São Paulo Cancer Institute—ICESP, Clinics Hospital, Sao Paulo University Medical School, São Paulo, SP, Brazil
| | - Emmanuel Dias-Neto
- Laboratory of Medical Genomics, A.C. Camargo Cancer Center, São Paulo, SP, Brazil
| | - Fabio D Nunes
- Department of Stomatology, School of Dentistry, University of São Paulo/USP, São Paulo, SP, Brazil
| | - Patricia Severino
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo/USP, São Paulo, SP, Brazil
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Eloiza H Tajara
- Department of Molecular Biology, School of Medicine of São José do Rio Preto/FAMERP, São José do Rio Preto, SP, Brazil
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo/USP, São Paulo, SP, Brazil
| |
Collapse
|
4
|
Deguchi Y, Kikutake C, Suyama M. Subtype-specific alternative splicing events in breast cancer identified by large-scale data analysis. Sci Rep 2024; 14:14158. [PMID: 38898123 PMCID: PMC11187070 DOI: 10.1038/s41598-024-65035-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/17/2024] [Indexed: 06/21/2024] Open
Abstract
Genome analysis in cancer has focused mainly on elucidating the function and regulatory mechanisms of genes that exhibit differential expression or mutation in cancer samples compared to normal samples. Recently, transcriptome analysis revealed that abnormal splicing events in cancer samples could contribute to cancer pathogenesis. Moreover, splicing variants in cancer reportedly generate diverse cancer antigens. Although abnormal splicing events are expected to be potential targets in cancer immunotherapy, the exploration of such targets and their biological significance in cancer have not been fully understood. In this study, to explore subtype-specific alternative splicing events, we conducted a comprehensive analysis of splicing events for each breast cancer subtype using large-scale splicing data derived from The Cancer Genome Atlas and found subtype-specific alternative splicing patterns. Analyses indicated that genes that produce subtype-specific alternative splicing events are potential novel targets for immunotherapy against breast cancer. The subtype-specific alternative splicing events identified in this study, which were not identified by mutation or differential expression analysis, bring new significance to previously overlooked splicing events.
Collapse
Affiliation(s)
- Yui Deguchi
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Chie Kikutake
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Mikita Suyama
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
5
|
Kashyap MK, Karathia H, Kumar D, Vera Alvarez R, Forero-Forero JV, Moreno E, Lujan JV, Amaya-Chanaga CI, Vidal NM, Yu Z, Ghia EM, Lengerke-Diaz PA, Achinko D, Choi MY, Rassenti LZ, Mariño-Ramírez L, Mount SM, Hannenhalli S, Kipps TJ, Castro JE. Aberrant spliceosome activity via elevated intron retention and upregulation and phosphorylation of SF3B1 in chronic lymphocytic leukemia. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102202. [PMID: 38846999 PMCID: PMC11154714 DOI: 10.1016/j.omtn.2024.102202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 04/24/2024] [Indexed: 06/09/2024]
Abstract
Splicing factor 3b subunit 1 (SF3B1) is the largest subunit and core component of the spliceosome. Inhibition of SF3B1 was associated with an increase in broad intron retention (IR) on most transcripts, suggesting that IR can be used as a marker of spliceosome inhibition in chronic lymphocytic leukemia (CLL) cells. Furthermore, we separately analyzed exonic and intronic mapped reads on annotated RNA-sequencing transcripts obtained from B cells (n = 98 CLL patients) and healthy volunteers (n = 9). We measured intron/exon ratio to use that as a surrogate for alternative RNA splicing (ARS) and found that 66% of CLL-B cell transcripts had significant IR elevation compared with normal B cells (NBCs) and that correlated with mRNA downregulation and low expression levels. Transcripts with the highest IR levels belonged to biological pathways associated with gene expression and RNA splicing. A >2-fold increase of active pSF3B1 was observed in CLL-B cells compared with NBCs. Additionally, when the CLL-B cells were treated with macrolides (pladienolide-B), a significant decrease in pSF3B1, but not total SF3B1 protein, was observed. These findings suggest that IR/ARS is increased in CLL, which is associated with SF3B1 phosphorylation and susceptibility to SF3B1 inhibitors. These data provide additional support to the relevance of ARS in carcinogenesis and evidence of pSF3B1 participation in this process.
Collapse
Affiliation(s)
- Manoj Kumar Kashyap
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093-0820, USA
- Division of Hematology Oncology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Panchgaon (Manesar), Gurugram (HR) 122413, India
| | - Hiren Karathia
- Advanced Biomedical Computational Science and National Center for Advancing Translational Sciences, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
- Greenwood Genetic Center, Greenwood, SC, USA
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742, USA
| | - Deepak Kumar
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093-0820, USA
| | - Roberto Vera Alvarez
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | | | - Eider Moreno
- Department of Internal Medicine, Division of Hematology-Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Juliana Velez Lujan
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093-0820, USA
| | | | - Newton Medeiros Vidal
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Zhe Yu
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093-0820, USA
| | - Emanuela M. Ghia
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093-0820, USA
- Division of Hematology Oncology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Center for Novel Therapeutics, University of California, San Diego, La Jolla, CA 92037, USA
| | - Paula A. Lengerke-Diaz
- Department of Internal Medicine, Division of Hematology-Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Daniel Achinko
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Michael Y. Choi
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093-0820, USA
- Division of Hematology Oncology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Center for Novel Therapeutics, University of California, San Diego, La Jolla, CA 92037, USA
| | - Laura Z. Rassenti
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093-0820, USA
- Division of Hematology Oncology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Center for Novel Therapeutics, University of California, San Diego, La Jolla, CA 92037, USA
| | - Leonardo Mariño-Ramírez
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Stephen M. Mount
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA
| | - Sridhar Hannenhalli
- Cancer Data Science Lab, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thomas J. Kipps
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093-0820, USA
- Division of Hematology Oncology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Center for Novel Therapeutics, University of California, San Diego, La Jolla, CA 92037, USA
| | - Januario E. Castro
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093-0820, USA
- Department of Internal Medicine, Division of Hematology-Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| |
Collapse
|
6
|
Young AM, Van Buren S, Rashid NU. Differential transcript usage analysis incorporating quantification uncertainty via compositional measurement error regression modeling. Biostatistics 2024; 25:559-576. [PMID: 37040757 PMCID: PMC11017126 DOI: 10.1093/biostatistics/kxad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/22/2022] [Accepted: 02/06/2023] [Indexed: 04/13/2023] Open
Abstract
Differential transcript usage (DTU) occurs when the relative expression of multiple transcripts arising from the same gene changes between different conditions. Existing approaches to detect DTU often rely on computational procedures that can have speed and scalability issues as the number of samples increases. Here we propose a new method, CompDTU, that uses compositional regression to model the relative abundance proportions of each transcript that are of interest in DTU analyses. This procedure leverages fast matrix-based computations that make it ideally suited for DTU analysis with larger sample sizes. This method also allows for the testing of and adjustment for multiple categorical or continuous covariates. Additionally, many existing approaches for DTU ignore quantification uncertainty in the expression estimates for each transcript in RNA-seq data. We extend our CompDTU method to incorporate quantification uncertainty leveraging common output from RNA-seq expression quantification tool in a novel method CompDTUme. Through several power analyses, we show that CompDTU has excellent sensitivity and reduces false positive results relative to existing methods. Additionally, CompDTUme results in further improvements in performance over CompDTU with sufficient sample size for genes with high levels of quantification uncertainty, while also maintaining favorable speed and scalability. We motivate our methods using data from the Cancer Genome Atlas Breast Invasive Carcinoma data set, specifically using RNA-seq data from primary tumors for 740 patients with breast cancer. We show greatly reduced computation time from our new methods as well as the ability to detect several novel genes with significant DTU across different breast cancer subtypes.
Collapse
Affiliation(s)
- Amber M Young
- Department of Biostatistics, University of North Carolina at Chapel Hill, 135 Dauer Drive, Chapel Hill, NC, 27599, USA
| | - Scott Van Buren
- Department of Biostatistics, University of North Carolina at Chapel Hill, 135 Dauer Drive, Chapel Hill, NC, 27599, USA
| | - Naim U Rashid
- Department of Biostatistics, University of North Carolina at Chapel Hill, 135 Dauer Drive, Chapel Hill, NC, 27599, USA and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 450 West Drive, Chapel Hill, NC, 27599, USA
| |
Collapse
|
7
|
Deng L, Liao L, Zhang YL, Yang SY, Hu SY, Andriani L, Ling YX, Ma XY, Zhang FL, Shao ZM, Li DQ. SF3A2 promotes progression and cisplatin resistance in triple-negative breast cancer via alternative splicing of MKRN1. SCIENCE ADVANCES 2024; 10:eadj4009. [PMID: 38569025 PMCID: PMC10990288 DOI: 10.1126/sciadv.adj4009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 02/28/2024] [Indexed: 04/05/2024]
Abstract
Triple-negative breast cancer (TNBC) is the deadliest subtype of breast cancer owing to the lack of effective therapeutic targets. Splicing factor 3a subunit 2 (SF3A2), a poorly defined splicing factor, was notably elevated in TNBC tissues and promoted TNBC progression, as confirmed by cell proliferation, colony formation, transwell migration, and invasion assays. Mechanistic investigations revealed that E3 ubiquitin-protein ligase UBR5 promoted the ubiquitination-dependent degradation of SF3A2, which in turn regulated UBR5, thus forming a feedback loop to balance these two oncoproteins. Moreover, SF3A2 accelerated TNBC progression by, at least in part, specifically regulating the alternative splicing of makorin ring finger protein 1 (MKRN1) and promoting the expression of the dominant and oncogenic isoform, MKRN1-T1. Furthermore, SF3A2 participated in the regulation of both extrinsic and intrinsic apoptosis, leading to cisplatin resistance in TNBC cells. Collectively, these findings reveal a previously unknown role of SF3A2 in TNBC progression and cisplatin resistance, highlighting SF3A2 as a potential therapeutic target for patients with TNBC.
Collapse
Affiliation(s)
- Ling Deng
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Li Liao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yin-Ling Zhang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Shao-Ying Yang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Shu-Yuan Hu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lisa Andriani
- Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yun-Xiao Ling
- Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiao-Yan Ma
- Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fang-Lin Zhang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhi-Ming Shao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Da-Qiang Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
8
|
Xiang X, He Y, Zhang Z, Yang X. Interrogations of single-cell RNA splicing landscapes with SCASL define new cell identities with physiological relevance. Nat Commun 2024; 15:2164. [PMID: 38461306 PMCID: PMC10925056 DOI: 10.1038/s41467-024-46480-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 02/28/2024] [Indexed: 03/11/2024] Open
Abstract
RNA splicing shapes the gene regulatory programs that underlie various physiological and disease processes. Here, we present the SCASL (single-cell clustering based on alternative splicing landscapes) method for interrogating the heterogeneity of RNA splicing with single-cell RNA-seq data. SCASL resolves the issue of biased and sparse data coverage on single-cell RNA splicing and provides a new scheme for classifications of cell identities. With previously published datasets as examples, SCASL identifies new cell clusters indicating potentially precancerous and early-tumor stages in triple-negative breast cancer, illustrates cell lineages of embryonic liver development, and provides fine clusters of highly heterogeneous tumor-associated CD4 and CD8 T cells with functional and physiological relevance. Most of these findings are not readily available via conventional cell clustering based on single-cell gene expression data. Our study shows the potential of SCASL in revealing the intrinsic RNA splicing heterogeneity and generating biological insights into the dynamic and functional cell landscapes in complex tissues.
Collapse
Affiliation(s)
- Xianke Xiang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Center for Synthetic & Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Yao He
- Biomedical Pioneering Innovation Center and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Zemin Zhang
- Biomedical Pioneering Innovation Center and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- Cancer Research Institute, Shenzhen Bay Lab, Shenzhen, 518132, China
| | - Xuerui Yang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Center for Synthetic & Systems Biology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
9
|
Deng L, Liao L, Zhang YL, Hu SY, Yang SY, Ma XY, Huang MY, Zhang FL, Li DQ. MYC-driven U2SURP regulates alternative splicing of SAT1 to promote triple-negative breast cancer progression. Cancer Lett 2023; 560:216124. [PMID: 36907504 DOI: 10.1016/j.canlet.2023.216124] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/27/2023] [Accepted: 03/09/2023] [Indexed: 03/12/2023]
Abstract
Triple-negative breast cancer (TNBC), although highly lethal, lacks validated therapeutic targets. Here, we report that U2 snRNP-associated SURP motif-containing protein (U2SURP), a poorly defined member of the serine/arginine rich protein family, was significantly upregulated in TNBC tissues, and its high expression was associated with poor prognosis of TNBC patients. MYC, a frequently amplified oncogene in TNBC tissues, enhanced U2SURP translation through an eIF3D (eukaryotic translation initiation factor 3 subunit D)-dependent mechanism, resulting in the accumulation of U2SURP in TNBC tissues. Functional assays revealed that U2SURP played an important role in facilitating tumorigenesis and metastasis of TNBC cells both in vitro and in vivo. Intriguingly, U2SURP had no significant effects on proliferative, migratory, and invasive potential of normal mammary epithelial cells. Furthermore, we found that U2SURP promoted alternative splicing of spermidine/spermine N1-acetyltransferase 1 (SAT1) pre-mRNA by removal of intron 3, resulting in an increase in the stability of SAT1 mRNA and subsequent protein expression levels. Importantly, spliced SAT1 promoted the oncogenic properties of TNBC cells, and re-expression of SAT1 in U2SURP-depleted cells partially rescued the impaired malignant phenotypes of TNBC cells caused by U2SURP knockdown both in vitro and in mice. Collectively, these findings reveal previously unknown functional and mechanism roles of the MYC-U2SURP-SAT1 signaling axis in TNBC progression and highlight U2SURP as a potential therapy target for TNBC.
Collapse
Affiliation(s)
- Ling Deng
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Li Liao
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yin-Ling Zhang
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Shu-Yuan Hu
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Shao-Ying Yang
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiao-Yan Ma
- Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Min-Ying Huang
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Fang-Lin Zhang
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Da-Qiang Li
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Cancer Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Key Laboratory of Radiation Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
10
|
Neoantigens: promising targets for cancer therapy. Signal Transduct Target Ther 2023; 8:9. [PMID: 36604431 PMCID: PMC9816309 DOI: 10.1038/s41392-022-01270-x] [Citation(s) in RCA: 232] [Impact Index Per Article: 116.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/14/2022] [Accepted: 11/27/2022] [Indexed: 01/07/2023] Open
Abstract
Recent advances in neoantigen research have accelerated the development and regulatory approval of tumor immunotherapies, including cancer vaccines, adoptive cell therapy and antibody-based therapies, especially for solid tumors. Neoantigens are newly formed antigens generated by tumor cells as a result of various tumor-specific alterations, such as genomic mutation, dysregulated RNA splicing, disordered post-translational modification, and integrated viral open reading frames. Neoantigens are recognized as non-self and trigger an immune response that is not subject to central and peripheral tolerance. The quick identification and prediction of tumor-specific neoantigens have been made possible by the advanced development of next-generation sequencing and bioinformatic technologies. Compared to tumor-associated antigens, the highly immunogenic and tumor-specific neoantigens provide emerging targets for personalized cancer immunotherapies, and serve as prospective predictors for tumor survival prognosis and immune checkpoint blockade responses. The development of cancer therapies will be aided by understanding the mechanism underlying neoantigen-induced anti-tumor immune response and by streamlining the process of neoantigen-based immunotherapies. This review provides an overview on the identification and characterization of neoantigens and outlines the clinical applications of prospective immunotherapeutic strategies based on neoantigens. We also explore their current status, inherent challenges, and clinical translation potential.
Collapse
|
11
|
Sources of Cancer Neoantigens beyond Single-Nucleotide Variants. Int J Mol Sci 2022; 23:ijms231710131. [PMID: 36077528 PMCID: PMC9455963 DOI: 10.3390/ijms231710131] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
The success of checkpoint blockade therapy against cancer has unequivocally shown that cancer cells can be effectively recognized by the immune system and eliminated. However, the identity of the cancer antigens that elicit protective immunity remains to be fully explored. Over the last decade, most of the focus has been on somatic mutations derived from non-synonymous single-nucleotide variants (SNVs) and small insertion/deletion mutations (indels) that accumulate during cancer progression. Mutated peptides can be presented on MHC molecules and give rise to novel antigens or neoantigens, which have been shown to induce potent anti-tumor immune responses. A limitation with SNV-neoantigens is that they are patient-specific and their accurate prediction is critical for the development of effective immunotherapies. In addition, cancer types with low mutation burden may not display sufficient high-quality [SNV/small indels] neoantigens to alone stimulate effective T cell responses. Accumulating evidence suggests the existence of alternative sources of cancer neoantigens, such as gene fusions, alternative splicing variants, post-translational modifications, and transposable elements, which may be attractive novel targets for immunotherapy. In this review, we describe the recent technological advances in the identification of these novel sources of neoantigens, the experimental evidence for their presentation on MHC molecules and their immunogenicity, as well as the current clinical development stage of immunotherapy targeting these neoantigens.
Collapse
|
12
|
Naro C, Barbagallo F, Caggiano C, De Musso M, Panzeri V, Di Agostino S, Paronetto MP, Sette C. Functional Interaction Between the Oncogenic Kinase NEK2 and Sam68 Promotes a Splicing Program Involved in Migration and Invasion in Triple-Negative Breast Cancer. Front Oncol 2022; 12:880654. [PMID: 35530315 PMCID: PMC9068942 DOI: 10.3389/fonc.2022.880654] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/16/2022] [Indexed: 12/01/2022] Open
Abstract
Triple-negative breast cancer (TNBC) represents the most aggressive breast cancer subtype. Poor prognosis in TNBC is partly due to lack of efficacious targeted therapy and high propensity to metastasize. Dysregulation of alternative splicing has recently emerged as a trait of TNBC, suggesting that unveiling the molecular mechanisms underlying its regulation could uncover new druggable cancer vulnerabilities. The oncogenic kinase NEK2 is significantly upregulated in TNBC and contributes to shaping their unique splicing profile. Herein, we found that NEK2 interacts with the RNA binding protein Sam68 in TNBC cells and that NEK2-mediated phosphorylation of Sam68 enhances its splicing activity. Genome-wide transcriptome analyses identified the splicing targets of Sam68 in TNBC cells and revealed a common set of exons that are co-regulated by NEK2. Functional annotation of splicing-regulated genes highlighted cell migration and spreading as biological processes regulated by Sam68. Accordingly, Sam68 depletion reduces TNBC cell migration and invasion, and these effects are potentiated by the concomitant inhibition of NEK2 activity. Our findings indicate that Sam68 and NEK2 functionally cooperate in the regulation of a splicing program that sustains the pro-metastatic features of TNBC cells.
Collapse
Affiliation(s)
- Chiara Naro
- Department of Neuroscience, Section of Human Anatomy, University of the Sacred Hearth, Rome, Italy.,Gemelli SCIENCE and TECHNOLOGY PARK (GSTeP)-Organoids Research Core Facility, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - Federica Barbagallo
- Department of Experimental Medicine, University of Rome Sapienza, Rome, Italy
| | - Cinzia Caggiano
- Department of Neuroscience, Section of Human Anatomy, University of the Sacred Hearth, Rome, Italy.,Gemelli SCIENCE and TECHNOLOGY PARK (GSTeP)-Organoids Research Core Facility, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - Monica De Musso
- Department of Neuroscience, Section of Human Anatomy, University of the Sacred Hearth, Rome, Italy
| | - Valentina Panzeri
- Department of Neuroscience, Section of Human Anatomy, University of the Sacred Hearth, Rome, Italy.,Gemelli SCIENCE and TECHNOLOGY PARK (GSTeP)-Organoids Research Core Facility, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - Silvia Di Agostino
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Maria Paola Paronetto
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy.,Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, University of the Sacred Hearth, Rome, Italy.,Gemelli SCIENCE and TECHNOLOGY PARK (GSTeP)-Organoids Research Core Facility, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| |
Collapse
|
13
|
Naro C, De Musso M, Delle Monache F, Panzeri V, de la Grange P, Sette C. The oncogenic kinase NEK2 regulates an RBFOX2-dependent pro-mesenchymal splicing program in triple-negative breast cancer cells. J Exp Clin Cancer Res 2021; 40:397. [PMID: 34930366 PMCID: PMC8686545 DOI: 10.1186/s13046-021-02210-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/06/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is the most heterogeneous and malignant subtype of breast cancer (BC). TNBC is defined by the absence of expression of estrogen, progesterone and HER2 receptors and lacks efficacious targeted therapies. NEK2 is an oncogenic kinase that is significantly upregulated in TNBC, thereby representing a promising therapeutic target. NEK2 localizes in the nucleus and promotes oncogenic splice variants in different cancer cells. Notably, alternative splicing (AS) dysregulation has recently emerged as a featuring trait of TNBC that contributes to its aggressive phenotype. METHODS To investigate whether NEK2 modulates TNBC transcriptome we performed RNA-sequencing analyses in a representative TNBC cell line (MDA-MB-231) and results were validated in multiple TNBC cell lines. Bioinformatics and functional analyses were carried out to elucidate the mechanism of splicing regulation by NEK2. Data from The Cancer Genome Atlas were mined to evaluate the potential of NEK2-sensitive exons as markers to identify the TNBC subtype and to assess their prognostic value. RESULTS Transcriptome analysis revealed a widespread impact of NEK2 on the transcriptome of TNBC cells, with 1830 AS events that are susceptible to its expression. NEK2 regulates the inclusion of cassette exons in splice variants that discriminate TNBC from other BC and that correlate with poor prognosis, suggesting that this kinase contributes to the TNBC-specific splicing program. NEK2 elicits its effects by modulating the expression of the splicing factor RBFOX2, a well-known regulator of epithelial to mesenchymal transition (EMT). Accordingly, NEK2 splicing-regulated genes are enriched in functional terms related to cell adhesion and contractile cytoskeleton and NEK2 depletion in mesenchymal TNBC cells induces phenotypic and molecular traits typical of epithelial cells. Remarkably, depletion of select NEK2-sensitive splice-variants that are prognostic in TNBC patients is sufficient to interfere with TNBC cell morphology and motility, suggesting that NEK2 orchestrates a pro-mesenchymal splicing program that modulates migratory and invasive properties of TNBC cells. CONCLUSIONS Our study uncovers an extensive splicing program modulated by NEK2 involving splice variants that confer an invasive phenotype to TNBCs and that might represent, together with NEK2 itself, valuable therapeutic targets for this disease.
Collapse
Affiliation(s)
- Chiara Naro
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168, Rome, Italy.
- Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy.
| | - Monica De Musso
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Francesca Delle Monache
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Valentina Panzeri
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | | | - Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168, Rome, Italy.
- Fondazione Santa Lucia, IRCCS, Rome, Italy.
| |
Collapse
|
14
|
Namba S, Ueno T, Kojima S, Kobayashi K, Kawase K, Tanaka Y, Inoue S, Kishigami F, Kawashima S, Maeda N, Ogawa T, Hazama S, Togashi Y, Ando M, Shiraishi Y, Mano H, Kawazu M. Transcript-targeted analysis reveals isoform alterations and double-hop fusions in breast cancer. Commun Biol 2021; 4:1320. [PMID: 34811492 PMCID: PMC8608905 DOI: 10.1038/s42003-021-02833-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 11/02/2021] [Indexed: 12/22/2022] Open
Abstract
Although transcriptome alteration is an essential driver of carcinogenesis, the effects of chromosomal structural alterations on the cancer transcriptome are not yet fully understood. Short-read transcript sequencing has prevented researchers from directly exploring full-length transcripts, forcing them to focus on individual splice sites. Here, we develop a pipeline for Multi-Sample long-read Transcriptome Assembly (MuSTA), which enables construction of a transcriptome from long-read sequence data. Using the constructed transcriptome as a reference, we analyze RNA extracted from 22 clinical breast cancer specimens. We identify a comprehensive set of subtype-specific and differentially used isoforms, which extended our knowledge of isoform regulation to unannotated isoforms including a short form TNS3. We also find that the exon-intron structure of fusion transcripts depends on their genomic context, and we identify double-hop fusion transcripts that are transcribed from complex structural rearrangements. For example, a double-hop fusion results in aberrant expression of an endogenous retroviral gene, ERVFRD-1, which is normally expressed exclusively in placenta and is thought to protect fetus from maternal rejection; expression is elevated in several TCGA samples with ERVFRD-1 fusions. Our analyses provide direct evidence that full-length transcript sequencing of clinical samples can add to our understanding of cancer biology and genomics in general.
Collapse
Affiliation(s)
- Shinichi Namba
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Toshihide Ueno
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Shinya Kojima
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Kenya Kobayashi
- Department of Head and Neck Oncology, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Katsushige Kawase
- Division of Cell Therapy, Chiba Cancer Center, Research Institute, Chiba, 260-8717, Japan
| | - Yosuke Tanaka
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Satoshi Inoue
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Fumishi Kishigami
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Shusuke Kawashima
- Division of Cell Therapy, Chiba Cancer Center, Research Institute, Chiba, 260-8717, Japan
| | - Noriko Maeda
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Yamaguchi, 755-8505, Japan
| | - Tomoko Ogawa
- Department of Breast Surgery, Mie University Hospital, Mie, 514-8507, Japan
| | - Shoichi Hazama
- Department of Translational Research and Developmental Therapeutics against Cancer, Yamaguchi University Graduate School of Medicine, Yamaguchi, 755-8505, Japan
| | - Yosuke Togashi
- Division of Cell Therapy, Chiba Cancer Center, Research Institute, Chiba, 260-8717, Japan
| | - Mizuo Ando
- Department of Otolaryngology, Head and Neck Surgery, The University of Tokyo Hospital, Tokyo, 113-8654, Japan
| | - Yuichi Shiraishi
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Hiroyuki Mano
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Masahito Kawazu
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, 104-0045, Japan.
- Division of Cell Therapy, Chiba Cancer Center, Research Institute, Chiba, 260-8717, Japan.
| |
Collapse
|
15
|
Castelli LM, Cutillo L, Souza CDS, Sanchez-Martinez A, Granata I, Lin YH, Myszczynska MA, Heath PR, Livesey MR, Ning K, Azzouz M, Shaw PJ, Guarracino MR, Whitworth AJ, Ferraiuolo L, Milo M, Hautbergue GM. SRSF1-dependent inhibition of C9ORF72-repeat RNA nuclear export: genome-wide mechanisms for neuroprotection in amyotrophic lateral sclerosis. Mol Neurodegener 2021; 16:53. [PMID: 34376242 PMCID: PMC8353793 DOI: 10.1186/s13024-021-00475-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/16/2021] [Indexed: 12/13/2022] Open
Abstract
Background Loss of motor neurons in amyotrophic lateral sclerosis (ALS) leads to progressive paralysis and death. Dysregulation of thousands of RNA molecules with roles in multiple cellular pathways hinders the identification of ALS-causing alterations over downstream changes secondary to the neurodegenerative process. How many and which of these pathological gene expression changes require therapeutic normalisation remains a fundamental question. Methods Here, we investigated genome-wide RNA changes in C9ORF72-ALS patient-derived neurons and Drosophila, as well as upon neuroprotection taking advantage of our gene therapy approach which specifically inhibits the SRSF1-dependent nuclear export of pathological C9ORF72-repeat transcripts. This is a critical study to evaluate (i) the overall safety and efficacy of the partial depletion of SRSF1, a member of a protein family involved itself in gene expression, and (ii) a unique opportunity to identify neuroprotective RNA changes. Results Our study shows that manipulation of 362 transcripts out of 2257 pathological changes, in addition to inhibiting the nuclear export of repeat transcripts, is sufficient to confer neuroprotection in C9ORF72-ALS patient-derived neurons. In particular, expression of 90 disease-altered transcripts is fully reverted upon neuroprotection leading to the characterisation of a human C9ORF72-ALS disease-modifying gene expression signature. These findings were further investigated in vivo in diseased and neuroprotected Drosophila transcriptomes, highlighting a list of 21 neuroprotective changes conserved with 16 human orthologues in patient-derived neurons. We also functionally validated the high neuroprotective potential of one of these disease-modifying transcripts, demonstrating that inhibition of ALS-upregulated human KCNN1–3 (Drosophila SK) voltage-gated potassium channel orthologs mitigates degeneration of human motor neurons and Drosophila motor deficits. Conclusions Strikingly, the partial depletion of SRSF1 leads to expression changes in only a small proportion of disease-altered transcripts, indicating that not all RNA alterations need normalization and that the gene therapeutic approach is safe in the above preclinical models as it does not disrupt globally gene expression. The efficacy of this intervention is also validated at genome-wide level with transcripts modulated in the vast majority of biological processes affected in C9ORF72-ALS. Finally, the identification of a characteristic signature with key RNA changes modified in both the disease state and upon neuroprotection also provides potential new therapeutic targets and biomarkers. Supplementary Information The online version contains supplementary material available at 10.1186/s13024-021-00475-y.
Collapse
Affiliation(s)
- Lydia M Castelli
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Luisa Cutillo
- School of Mathematics, University of Leeds, Leeds, LS2 9JT, UK
| | - Cleide Dos Santos Souza
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Alvaro Sanchez-Martinez
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Ilaria Granata
- National Research Council of Italy, High Performance Computing and Networking Institute (ICAR-CNR), 111 Via Pietro Castellino, 80131, Naples, Italy
| | - Ya-Hui Lin
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Monika A Myszczynska
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Paul R Heath
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK
| | - Matthew R Livesey
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK.,Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Ke Ning
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK.,Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Mimoun Azzouz
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK.,Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK.,Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Mario R Guarracino
- National Research Council of Italy, High Performance Computing and Networking Institute (ICAR-CNR), 111 Via Pietro Castellino, 80131, Naples, Italy
| | - Alexander J Whitworth
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK.,Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Marta Milo
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK. .,Present Address: AstraZeneca, Academy House, 136 Hills Road, Cambridge, CB2 8PA, UK.
| | - Guillaume M Hautbergue
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, 385 Glossop Road, Sheffield, S10 2HQ, UK. .,Neuroscience Institute, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| |
Collapse
|
16
|
Zhang Y, Cai Y, Roca X, Kwoh CK, Fullwood MJ. Chromatin loop anchors predict transcript and exon usage. Brief Bioinform 2021; 22:6319936. [PMID: 34263910 PMCID: PMC8575016 DOI: 10.1093/bib/bbab254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/16/2021] [Accepted: 05/25/2021] [Indexed: 11/24/2022] Open
Abstract
Epigenomics and transcriptomics data from high-throughput sequencing techniques such as RNA-seq and ChIP-seq have been successfully applied in predicting gene transcript expression. However, the locations of chromatin loops in the genome identified by techniques such as Chromatin Interaction Analysis with Paired End Tag sequencing (ChIA-PET) have never been used for prediction tasks. Here, we developed machine learning models to investigate if ChIA-PET could contribute to transcript and exon usage prediction. In doing so, we used a large set of transcription factors as well as ChIA-PET data. We developed different Gradient Boosting Trees models according to the different tasks with the integrated datasets from three cell lines, including GM12878, HeLaS3 and K562. We validated the models via 10-fold cross validation, chromosome-split validation and cross-cell validation. Our results show that both transcript and splicing-derived exon usage can be effectively predicted with at least 0.7512 and 0.7459 of accuracy, respectively, on all cell lines from all kinds of validations. Examining the predictive features, we found that RNA Polymerase II ChIA-PET was one of the most important features in both transcript and exon usage prediction, suggesting that chromatin loop anchors are predictive of both transcript and exon usage.
Collapse
Affiliation(s)
- Yu Zhang
- School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yichao Cai
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Dr, Singapore 117599, Singapore
| | - Xavier Roca
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Dr, Singapore 637551, Singapore
| | - Chee Keong Kwoh
- School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Melissa Jane Fullwood
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Dr, Singapore 117599, Singapore.,School of Biological Sciences, Nanyang Technological University, 637551, Singapore.,Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Dr, Singapore 138673, Singapore
| |
Collapse
|
17
|
Development of alternative splicing signature in lung squamous cell carcinoma. Med Oncol 2021; 38:49. [PMID: 33772655 PMCID: PMC8004499 DOI: 10.1007/s12032-021-01490-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/01/2021] [Indexed: 12/21/2022]
Abstract
Increasing evidence demonstrated that alternative splicing (AS) plays a vital role in tumorigenesis and clinical outcome of patient. However, systematical analysis of AS in lung squamous cell carcinoma (LUSC) is lacking and greatly necessary. Thus, this study was to systematically estimate the function of AS events served as prognostic indicators in LUSC. Among 31,345 mRNA AS events in 9633 genes, we detected 1996 AS in 1409 genes which have significant connection with overall survival (OS) of LUSC patients. Then, prognostic model based on seven types of AS events was established and we further constructed a combined prognostic model. The Kaplan–Meier curve results suggested that seven types of AS signatures and the combined prognostic model could exhibit robust performance in predicting prognosis. Patients in the high-risk group had significantly shorter OS than those in the low-risk group. The ROC showed all prognostic models had high accuracy and powerful predictive performance with different AUC ranging from 0.837 to 0.978. Moreover, the combined prognostic model had highest performance in risk stratification and predictive accuracy than single prognostic models and had higher accuracy than other mRNA model. Finally, a significant correlation network between survival-related AS genes and prognostic splicing factors (SFs) was established. In conclusion, our study provided several potential prognostic AS models and constructed splicing network between AS and SFs in LUSC, which could be used as potential indicators and treatment targets for LUSC patients.
Collapse
|
18
|
Al Abo M, Hyslop T, Qin X, Owzar K, George DJ, Patierno SR, Freedman JA. Differential alternative RNA splicing and transcription events between tumors from African American and White patients in The Cancer Genome Atlas. Genomics 2021; 113:1234-1246. [PMID: 33705884 DOI: 10.1016/j.ygeno.2021.02.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/15/2021] [Accepted: 02/01/2021] [Indexed: 11/26/2022]
Abstract
Individuals of African ancestry suffer disproportionally from higher incidence, aggressiveness, and mortality for particular cancers. This disparity likely results from an interplay among differences in multiple determinants of health, including differences in tumor biology. We used The Cancer Genome Atlas (TCGA) SpliceSeq and TCGA aggregate expression datasets and identified differential alternative RNA splicing and transcription events (ARS/T) in cancers between self-identified African American (AA) and White (W) patients. We found that retained intron events were enriched among race-related ARS/T. In addition, on average, 12% of the most highly ranked race-related ARS/T overlapped between any two analyzed cancers. Moreover, the genes undergoing race-related ARS/T functioned in cancer-promoting pathways, and a number of race-related ARS/T were associated with patient survival. We built a web-application, CanSplice, to mine genomic datasets by self-identified race. The race-related targets have the potential to aid in the development of new biomarkers and therapeutics to mitigate cancer disparity.
Collapse
Affiliation(s)
- Muthana Al Abo
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Terry Hyslop
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA; Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Xiaodi Qin
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Kouros Owzar
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Daniel J George
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA; Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Steven R Patierno
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA; Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jennifer A Freedman
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA; Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
19
|
Canbezdi C, Tarin M, Houy A, Bellanger D, Popova T, Stern MH, Roman-Roman S, Alsafadi S. Functional and conformational impact of cancer-associated SF3B1 mutations depends on the position and the charge of amino acid substitution. Comput Struct Biotechnol J 2021; 19:1361-1370. [PMID: 33777335 PMCID: PMC7960499 DOI: 10.1016/j.csbj.2021.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 11/18/2022] Open
Abstract
The hotspot mutations of SF3B1, the most frequently mutated splicing gene in cancers, contribute to oncogenesis by corrupting the mRNA splicing. Further SF3B1 mutations have been reported in cancers but their consequences remain unclear. Here, we screened for SF3B1 mutations in the vicinity of the hotspot region in tumors. We then performed in-silico prediction of the functional outcome followed by in-cellulo modelling of different SF3B1 mutants. We show that cancer-associated SF3B1 mutations present varying functional consequences that are loosely predicted by the in-silico algorithms. Analysis of the tertiary structure of SF3B1 mutants revealed that the resulting splicing errors may be due to a conformational change in SF3B1 N-terminal region, which mediates binding with other splicing factors. Our study demonstrates a varying functional impact of SF3B1 mutations according to the mutated codon and the amino acid substitution, implying unequal pathogenic and prognostic potentials of SF3B1 mutations in cancers.
Collapse
Affiliation(s)
- Christine Canbezdi
- Institut Curie, PSL Research University, Uveal Melanoma Group, Translational Research Department, Paris, France
| | - Malcy Tarin
- Institut Curie, PSL Research University, Uveal Melanoma Group, Translational Research Department, Paris, France
| | - Alexandre Houy
- Institut Curie, PSL Research University, INSERM U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Paris, France
| | - Dorine Bellanger
- Institut Curie, PSL Research University, INSERM U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Paris, France
- University of Tours, INSERM UMR1069, Tours, France
| | - Tatiana Popova
- Institut Curie, PSL Research University, INSERM U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Paris, France
| | - Marc-Henri Stern
- Institut Curie, PSL Research University, INSERM U830, DNA Repair and Uveal Melanoma (D.R.U.M.), Paris, France
| | - Sergio Roman-Roman
- Institut Curie, PSL Research University, Uveal Melanoma Group, Translational Research Department, Paris, France
| | - Samar Alsafadi
- Institut Curie, PSL Research University, Uveal Melanoma Group, Translational Research Department, Paris, France
| |
Collapse
|
20
|
Lorenzi C, Barriere S, Villemin JP, Dejardin Bretones L, Mancheron A, Ritchie W. iMOKA: k-mer based software to analyze large collections of sequencing data. Genome Biol 2020; 21:261. [PMID: 33050927 PMCID: PMC7552494 DOI: 10.1186/s13059-020-02165-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/10/2020] [Indexed: 01/24/2023] Open
Abstract
iMOKA (interactive multi-objective k-mer analysis) is a software that enables comprehensive analysis of sequencing data from large cohorts to generate robust classification models or explore specific genetic elements associated with disease etiology. iMOKA uses a fast and accurate feature reduction step that combines a Naïve Bayes classifier augmented by an adaptive entropy filter and a graph-based filter to rapidly reduce the search space. By using a flexible file format and distributed indexing, iMOKA can easily integrate data from multiple experiments and also reduces disk space requirements and identifies changes in transcript levels and single nucleotide variants. iMOKA is available at https://github.com/RitchieLabIGH/iMOKA and Zenodo https://doi.org/10.5281/zenodo.4008947 .
Collapse
Affiliation(s)
- Claudio Lorenzi
- IGH, Centre National de la Recherche Scientifique, University of Montpellier, Montpellier, France
| | - Sylvain Barriere
- IGH, Centre National de la Recherche Scientifique, University of Montpellier, Montpellier, France
| | - Jean-Philippe Villemin
- IGH, Centre National de la Recherche Scientifique, University of Montpellier, Montpellier, France
| | | | | | - William Ritchie
- IGH, Centre National de la Recherche Scientifique, University of Montpellier, Montpellier, France.
| |
Collapse
|
21
|
The Possible Influence of Mediterranean Diet on Extracellular Vesicle miRNA Expression in Breast Cancer Survivors. Cancers (Basel) 2020; 12:cancers12061355. [PMID: 32466456 PMCID: PMC7352167 DOI: 10.3390/cancers12061355] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/15/2020] [Accepted: 05/22/2020] [Indexed: 12/21/2022] Open
Abstract
The Mediterranean diet (MD) has been reported to have beneficial effects on breast cancer and cardiovascular diseases. Recently, microRNAs (miRNAs) have been suggested as biomarkers for the diagnosis and disease prognosis in cancer and cardiovascular diseases. We evaluated the influence of the MD on the plasma-derived extracellular vesicle miRNA signature of overweight breast cancer survivors. Sixteen participants instructed to adhere to the MD for eight weeks were included in this study. To curate differentially expressed miRNAs after MD intervention, we employed two methods: significance analysis of microarrays and DESeq2. The selected miRNAs were analyzed using ingenuity pathway analysis. After an eight-week intervention, body mass index, waist circumference, fasting glucose, fasting insulin, and homeostatic model assessment for insulin resistance were significantly improved. Expression levels of 798 miRNAs were comprehensively analyzed, and 42 extracellular vesicle miRNAs were significantly differentially regulated after the eight-week MD (36 were up and 6 were down-regulated). We also identified enriched pathways in genes regulated by differentially expressed 42 miRNAs, which include signaling associated with breast cancer, energy metabolism, glucose metabolism, and insulin. Our study indicates that extracellular vesicle miRNAs differentially expressed as a result of the MD might be involved in the mechanisms that relate to cardiometabolic risk factors in overweight breast cancer survivors.
Collapse
|
22
|
Wang E, Aifantis I. RNA Splicing and Cancer. Trends Cancer 2020; 6:631-644. [PMID: 32434734 DOI: 10.1016/j.trecan.2020.04.011] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 01/01/2023]
Abstract
RNA splicing is an essential process that governs many aspects of cellular proliferation, survival, and differentiation. Considering the importance of RNA splicing in gene regulation, alterations in this pathway have been implicated in many human cancers. Large-scale genomic studies have uncovered a spectrum of splicing machinery mutations that contribute to tumorigenesis. Moreover, cancer cells are capable of hijacking the expression of RNA-binding proteins (RBPs), leading to dysfunctional gene splicing and tumor-specific dependencies. Advances in next-generation RNA sequencing have revealed tumor-specific isoforms associated with these alterations, including the presence of neoantigens, which serve as potential immunotherapeutic targets. In this review, we discuss the various mechanisms by which cancer cells exploit RNA splicing to promote tumor growth and the current therapeutic landscape for splicing-based therapies.
Collapse
Affiliation(s)
- Eric Wang
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA.
| | - Iannis Aifantis
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
23
|
Wilkinson EJ, Woodworth AM, Parker M, Phillips JL, Malley RC, Dickinson JL, Holloway AF. Epigenetic regulation of the ITGB4 gene in prostate cancer. Exp Cell Res 2020; 392:112055. [PMID: 32376286 DOI: 10.1016/j.yexcr.2020.112055] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 01/17/2023]
Abstract
BACKGROUND Examination of epigenetic changes at the ITGB4 gene promoter reveals altered methylation at different stages of prostate tumour progression and these changes may, in part, explain the complex patterns of gene expression of this integrin observed. Transcriptional re-programming perturbs expression of cell adhesion molecules and underpins metastatic tumour cell behaviour. Decreasing expression of the cell adhesion molecule ITGB4, which encodes the beta subunit of the integrin, alpha6 beta4 (α6β4), has been correlated with increased tumour aggressiveness and metastasis in multiple tumour types including prostate cancer. Paradoxically, in vitro studies in tumour cell models demonstrate that ITGB4 mediates cell mobility and invasion. Herein we examined whether transcriptional re-programming by methylation influenced ITGB4 gene expression at different stages of prostate cancer progression. Bisulphite sequencing of a large CpG island in the ITGB4 gene promoter identified differentially methylated regions in prostate cancer cell lines representing a localised tumour (22Rv1), lymph node metastasis (LNCaP), and a bone metastasis (PC-3). The highest levels of methylation were observed in the CpG island surrounding the ITGB4 transcription start site in PC-3 cells, and this observation also correlated with higher gene expression of ITGB4 in these cells. Furthermore, PC-3 cells expressed two distinct transcripts, using an alternate transcription start site, which was not detected in other cell lines. In prostate tumour biopsy samples, patterns of methylation across the ITGB4 promoter were similar overall in matched primary and metastatic samples (n = 4 pairs), with a trend toward loss of methylation at specific sites in metastatic lesions.
Collapse
Affiliation(s)
- Emma J Wilkinson
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia, 7000; Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia, 7000
| | - Alexandra M Woodworth
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia, 7000
| | - Madeline Parker
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia, 7000
| | - Jessica L Phillips
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia, 7000
| | - Roslyn C Malley
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia, 7000
| | - Joanne L Dickinson
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia, 7000.
| | - Adele F Holloway
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia, 7000
| |
Collapse
|
24
|
Roles and mechanisms of alternative splicing in cancer - implications for care. Nat Rev Clin Oncol 2020; 17:457-474. [PMID: 32303702 DOI: 10.1038/s41571-020-0350-x] [Citation(s) in RCA: 411] [Impact Index Per Article: 82.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2020] [Indexed: 12/14/2022]
Abstract
Removal of introns from messenger RNA precursors (pre-mRNA splicing) is an essential step for the expression of most eukaryotic genes. Alternative splicing enables the regulated generation of multiple mRNA and protein products from a single gene. Cancer cells have general as well as cancer type-specific and subtype-specific alterations in the splicing process that can have prognostic value and contribute to every hallmark of cancer progression, including cancer immune responses. These splicing alterations are often linked to the occurrence of cancer driver mutations in genes encoding either core components or regulators of the splicing machinery. Of therapeutic relevance, the transcriptomic landscape of cancer cells makes them particularly vulnerable to pharmacological inhibition of splicing. Small-molecule splicing modulators are currently in clinical trials and, in addition to splice site-switching antisense oligonucleotides, offer the promise of novel and personalized approaches to cancer treatment.
Collapse
|
25
|
David JK, Maden SK, Weeder BR, Thompson R, Nellore A. Putatively cancer-specific exon-exon junctions are shared across patients and present in developmental and other non-cancer cells. NAR Cancer 2020; 2:zcaa001. [PMID: 34316681 PMCID: PMC8209686 DOI: 10.1093/narcan/zcaa001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/06/2020] [Accepted: 01/14/2020] [Indexed: 01/08/2023] Open
Abstract
This study probes the distribution of putatively cancer-specific junctions across a broad set of publicly available non-cancer human RNA sequencing (RNA-seq) datasets. We compared cancer and non-cancer RNA-seq data from The Cancer Genome Atlas (TCGA), the Genotype-Tissue Expression (GTEx) Project and the Sequence Read Archive. We found that (i) averaging across cancer types, 80.6% of exon-exon junctions thought to be cancer-specific based on comparison with tissue-matched samples (σ = 13.0%) are in fact present in other adult non-cancer tissues throughout the body; (ii) 30.8% of junctions not present in any GTEx or TCGA normal tissues are shared by multiple samples within at least one cancer type cohort, and 87.4% of these distinguish between different cancer types; and (iii) many of these junctions not found in GTEx or TCGA normal tissues (15.4% on average, σ = 2.4%) are also found in embryological and other developmentally associated cells. These findings refine the meaning of RNA splicing event novelty, particularly with respect to the human neoepitope repertoire. Ultimately, cancer-specific exon-exon junctions may have a substantial causal relationship with the biology of disease.
Collapse
Affiliation(s)
- Julianne K David
- Computational Biology Program, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Sean K Maden
- Computational Biology Program, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Benjamin R Weeder
- Computational Biology Program, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Reid F Thompson
- Computational Biology Program, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR 97239, USA
- Portland VA Research Foundation, Portland, OR 97239, USA
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA
- Division of Hospital and Specialty Medicine, VA Portland Healthcare System, Portland, OR 97239, USA
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR 97239, USA
| | - Abhinav Nellore
- Computational Biology Program, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
26
|
Li Z, Chen X, Wei M, Liu G, Tian Y, Zhang X, Zhu G, Chen C, Liu J, Wang T, Lin G, Wang J, Cai G, Lv Y. Systemic Analysis of RNA Alternative Splicing Signals Related to the Prognosis for Head and Neck Squamous Cell Carcinoma. Front Oncol 2020; 10:87. [PMID: 32117741 PMCID: PMC7025462 DOI: 10.3389/fonc.2020.00087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 01/16/2020] [Indexed: 12/11/2022] Open
Abstract
Alternative splicing (AS) is an important mechanism that is responsible for the production of protein diversity. An increasing body of evidence has suggested that out-of-control AS is closely related to the genesis and development of cancer. Systematic analysis of genome-wide AS in head and neck squamous cell carcinoma (HNSCC) has not yet been carried out, and consideration of this topic remains at the preliminary stage and requires further investigation. In this study, systemic bioinformatic analysis was carried out on the genome-wide AS events of 555 clinical HNSCC samples from the TCGA database. Firstly, we statistically analyzed the distributions of seven AS event types in HNSCC samples. Then, through univariate survival analysis, we observed the relationship between AS and the prognosis of the disease and found that 437 intersections of AS events were significantly related to overall survival. Among them, 335 cross-genes showed a high degree of consistency in the genes associated with overall survival and recurrence. The overall survival was significantly related to AS events. Besides, the frequency of overall survival-related ES events was evidently reduced, while the AP and the AT events were increased. In addition, AT events accounted for the largest proportion. Further, multiple regression model analysis proved that AS could become a new classification method for HNSCC, and KEGG enrichment analysis proved that most genes and proteins interacting with AS events had different biological functions and were associated with a variety of diseases. Finally, through the selection of characteristic HNSCC genes and the construction of a prognostic model, seven cross-genes related to survival and recurrence were screened out, and these characteristic genes were verified by multivariate survival model analysis so as to classify the prognosis at different splicing times and gene expression levels. These results have laid a solid foundation for our further research and play a decisive role in showing the correlation of AS with the prognosis of HNSCC.
Collapse
Affiliation(s)
- Zhexuan Li
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xun Chen
- Department of Stomatology, First Affiliated Hospital of Quanzhou, Fujian Medical University, Quanzhou, China
| | - Ming Wei
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Guancheng Liu
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Yongquan Tian
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Gangcai Zhu
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Changhan Chen
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jiangyi Liu
- Quanzhou Disease Prevention and Control Center, Quanzhou, China
| | - Tiansheng Wang
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Gongbiao Lin
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Quanzhou, Fujian Medical University, Quanzhou, China
| | - Juncheng Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Gengming Cai
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Quanzhou, Fujian Medical University, Quanzhou, China
| | - Yunxia Lv
- Department of Thyroid Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
27
|
Sun X, Tian Y, Wang J, Sun Z, Zhu Y. Genome-wide analysis reveals the association between alternative splicing and DNA methylation across human solid tumors. BMC Med Genomics 2020; 13:4. [PMID: 31906954 PMCID: PMC6945449 DOI: 10.1186/s12920-019-0654-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 12/24/2019] [Indexed: 12/13/2022] Open
Abstract
Background Dysregulation of alternative splicing (AS) is a critical signature of cancer. However, the regulatory mechanisms of cancer-specific AS events, especially the impact of DNA methylation, are poorly understood. Methods By using The Cancer Genome Atlas (TCGA) SpliceSeq and TCGA data for ten solid tumor types, association analysis was performed to characterize the potential link between cancer-specific AS and DNA methylation. Functional and pathway enrichment analyses were performed, and the protein-protein interaction (PPI) network was constructed with the String website. The prognostic analysis was carried out with multivariate Cox regressions models. Results 15,818 AS events in 3955 annotated genes were identified across ten solid tumor types. The different DNA methylation patterns between tumor and normal tissues at the corresponding alternative spliced exon boundaries were shown, and 51.3% of CpG sites (CpGs) revealed hypomethylated in tumors. Notably, 607 CpGs were found to be highly correlated with 369 cancer-specific AS events after permutation tests. Among them, the hypomethylated CpGs account for 52.7%, and the number of down-regulated exons was 173. Furthermore, we found 38 AS events in 35 genes could serve as new molecular biomarkers to predict patient survival. Conclusions Our study described the relationship between DNA methylation and AS events across ten human solid tumor types and provided new insights into intragenic DNA methylation and exon usage during the AS process.
Collapse
Affiliation(s)
- Xiaohui Sun
- Department of Epidemiology & Biostatistics, School of Public Health, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Yiping Tian
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Jianming Wang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, the State University of New Jersey, New Brunswick, 08901, USA
| | - Zeyuan Sun
- Department of Health Related Social and Behavioral Science, West China School of Public Health, Sichuan University, Chengdu, 610041, China
| | - Yimin Zhu
- Department of Epidemiology & Biostatistics, School of Public Health, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
28
|
Desterro J, Bak-Gordon P, Carmo-Fonseca M. Targeting mRNA processing as an anticancer strategy. Nat Rev Drug Discov 2019; 19:112-129. [PMID: 31554928 DOI: 10.1038/s41573-019-0042-3] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2019] [Indexed: 12/19/2022]
Abstract
Discoveries in the past decade have highlighted the potential of mRNA as a therapeutic target for cancer. Specifically, RNA sequencing revealed that, in addition to gene mutations, alterations in mRNA can contribute to the initiation and progression of cancer. Indeed, precursor mRNA processing, which includes the removal of introns by splicing and the formation of 3' ends by cleavage and polyadenylation, is frequently altered in tumours. These alterations result in numerous cancer-specific mRNAs that generate altered levels of normal proteins or proteins with new functions, leading to the activation of oncogenes or the inactivation of tumour-suppressor genes. Abnormally spliced and polyadenylated mRNAs are also associated with resistance to cancer treatment and, unexpectedly, certain cancers are highly sensitive to the pharmacological inhibition of splicing. This Review summarizes recent progress in our understanding of how splicing and polyadenylation are altered in cancer and highlights how this knowledge has been translated for drug discovery, resulting in the production of small molecules and oligonucleotides that modulate the spliceosome and are in clinical trials for the treatment of cancer.
Collapse
Affiliation(s)
- Joana Desterro
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto Português de Oncologia de Lisboa, Serviço de Hematologia, Lisboa, Portugal
| | - Pedro Bak-Gordon
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Maria Carmo-Fonseca
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
29
|
Wang BD, Lee NH. Aberrant RNA Splicing in Cancer and Drug Resistance. Cancers (Basel) 2018; 10:E458. [PMID: 30463359 PMCID: PMC6266310 DOI: 10.3390/cancers10110458] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 12/22/2022] Open
Abstract
More than 95% of the 20,000 to 25,000 transcribed human genes undergo alternative RNA splicing, which increases the diversity of the proteome. Isoforms derived from the same gene can have distinct and, in some cases, opposing functions. Accumulating evidence suggests that aberrant RNA splicing is a common and driving event in cancer development and progression. Moreover, aberrant splicing events conferring drug/therapy resistance in cancer is far more common than previously envisioned. In this review, aberrant splicing events in cancer-associated genes, namely BCL2L1, FAS, HRAS, CD44, Cyclin D1, CASP2, TMPRSS2-ERG, FGFR2, VEGF, AR and KLF6, will be discussed. Also highlighted are the functional consequences of aberrant splice variants (BCR-Abl35INS, BIM-γ, IK6, p61 BRAF V600E, CD19-∆2, AR-V7 and PIK3CD-S) in promoting resistance to cancer targeted therapy or immunotherapy. To overcome drug resistance, we discuss opportunities for developing novel strategies to specifically target the aberrant splice variants or splicing machinery that generates the splice variants. Therapeutic approaches include the development of splice variant-specific siRNAs, splice switching antisense oligonucleotides, and small molecule inhibitors targeting splicing factors, splicing factor kinases or the aberrant oncogenic protein isoforms.
Collapse
Affiliation(s)
- Bi-Dar Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA.
| | - Norman H Lee
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, George Washington University, GW Cancer Center, Washington, DC 20037, USA.
| |
Collapse
|
30
|
Kahles A, Lehmann KV, Toussaint NC, Hüser M, Stark SG, Sachsenberg T, Stegle O, Kohlbacher O, Sander C, Rätsch G. Comprehensive Analysis of Alternative Splicing Across Tumors from 8,705 Patients. Cancer Cell 2018; 34:211-224.e6. [PMID: 30078747 PMCID: PMC9844097 DOI: 10.1016/j.ccell.2018.07.001] [Citation(s) in RCA: 572] [Impact Index Per Article: 81.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/30/2018] [Accepted: 07/02/2018] [Indexed: 01/19/2023]
Abstract
Our comprehensive analysis of alternative splicing across 32 The Cancer Genome Atlas cancer types from 8,705 patients detects alternative splicing events and tumor variants by reanalyzing RNA and whole-exome sequencing data. Tumors have up to 30% more alternative splicing events than normal samples. Association analysis of somatic variants with alternative splicing events confirmed known trans associations with variants in SF3B1 and U2AF1 and identified additional trans-acting variants (e.g., TADA1, PPP2R1A). Many tumors have thousands of alternative splicing events not detectable in normal samples; on average, we identified ≈930 exon-exon junctions ("neojunctions") in tumors not typically found in GTEx normals. From Clinical Proteomic Tumor Analysis Consortium data available for breast and ovarian tumor samples, we confirmed ≈1.7 neojunction- and ≈0.6 single nucleotide variant-derived peptides per tumor sample that are also predicted major histocompatibility complex-I binders ("putative neoantigens").
Collapse
Affiliation(s)
- André Kahles
- ETH Zurich, Department of Computer Science, Zurich, Switzerland; Memorial Sloan Kettering Cancer Center, Computational Biology Department, New York, USA; University Hospital Zurich, Biomedical Informatics Research, Zurich, Switzerland; SIB Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Kjong-Van Lehmann
- ETH Zurich, Department of Computer Science, Zurich, Switzerland; Memorial Sloan Kettering Cancer Center, Computational Biology Department, New York, USA; University Hospital Zurich, Biomedical Informatics Research, Zurich, Switzerland; SIB Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Nora C Toussaint
- ETH Zurich, NEXUS Personalized Health Technologies, Zurich, Switzerland; SIB Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Matthias Hüser
- ETH Zurich, Department of Computer Science, Zurich, Switzerland; University Hospital Zurich, Biomedical Informatics Research, Zurich, Switzerland; SIB Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Stefan G Stark
- ETH Zurich, Department of Computer Science, Zurich, Switzerland; Memorial Sloan Kettering Cancer Center, Computational Biology Department, New York, USA; University Hospital Zurich, Biomedical Informatics Research, Zurich, Switzerland; SIB Swiss Institute of Bioinformatics, Zurich, Switzerland
| | - Timo Sachsenberg
- University of Tübingen, Department of Computer Science, Tübingen, Germany
| | - Oliver Stegle
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, UK
| | - Oliver Kohlbacher
- University of Tübingen, Department of Computer Science, Tübingen, Germany; Center for Bioinformatics, University of Tübingen, Tübingen, Germany; Quantitative Biology Center, University of Tübingen, Tübingen, Germany; Biomolecular Interactions, Max Planck Institute for Developmental Biology, Tübingen, Germany; Institute for Translational Bioinformatics, University Medical Center, Tübingen, Germany
| | - Chris Sander
- Dana-Farber Cancer Institute, cBio Center, Department of Biostatistics and Computational Biology, Boston, MA, USA; Harvard Medical School, CompBio Collaboratory, Department of Cell Biology, Boston, USA
| | - Gunnar Rätsch
- ETH Zurich, Department of Computer Science, Zurich, Switzerland; Memorial Sloan Kettering Cancer Center, Computational Biology Department, New York, USA; University Hospital Zurich, Biomedical Informatics Research, Zurich, Switzerland; ETH Zurich, Department of Biology, Zurich, Switzerland; SIB Swiss Institute of Bioinformatics, Zurich, Switzerland.
| |
Collapse
|
31
|
Zhong Z, Rosenow M, Xiao N, Spetzler D. Profiling plasma extracellular vesicle by pluronic block-copolymer based enrichment method unveils features associated with breast cancer aggression, metastasis and invasion. J Extracell Vesicles 2018; 7:1458574. [PMID: 29696079 PMCID: PMC5912199 DOI: 10.1080/20013078.2018.1458574] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 03/17/2018] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicle (EV)-based liquid biopsies have been proposed to be a readily obtainable biological substrate recently for both profiling and diagnostics purposes. Development of a fast and reliable preparation protocol to enrich such small particles could accelerate the discovery of informative, disease-related biomarkers. Though multiple EV enrichment protocols are available, in terms of efficiency, reproducibility and simplicity, precipitation-based methods are most amenable to studies with large numbers of subjects. However, the selectivity of the precipitation becomes critical. Here, we present a simple plasma EV enrichment protocol based on pluronic block copolymer. The enriched plasma EV was able to be verified by multiple platforms. Our results showed that the particles enriched from plasma by the copolymer were EV size vesicles with membrane structure; proteomic profiling showed that EV-related proteins were significantly enriched, while high-abundant plasma proteins were significantly reduced in comparison to other precipitation-based enrichment methods. Next-generation sequencing confirmed the existence of various RNA species that have been observed in EVs from previous studies. Small RNA sequencing showed enriched species compared to the corresponding plasma. Moreover, plasma EVs enriched from 20 advanced breast cancer patients and 20 age-matched non-cancer controls were profiled by semi-quantitative mass spectrometry. Protein features were further screened by EV proteomic profiles generated from four breast cancer cell lines, and then selected in cross-validation models. A total of 60 protein features that highly contributed in model prediction were identified. Interestingly, a large portion of these features were associated with breast cancer aggression, metastasis as well as invasion, consistent with the advanced clinical stage of the patients. In summary, we have developed a plasma EV enrichment method with improved precipitation selectivity and it might be suitable for larger-scale discovery studies.
Collapse
Affiliation(s)
- Zhenyu Zhong
- Caris Life Sciences, Phoenix, AZ, USA.,Molecular and Cellular Biology Graduate Program, Arizona State University, Tempe, AZ, USA
| | | | - Nick Xiao
- Caris Life Sciences, Phoenix, AZ, USA
| | - David Spetzler
- Caris Life Sciences, Phoenix, AZ, USA.,Molecular and Cellular Biology Graduate Program, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
32
|
Penalva LO, Sanford JR. From mechanisms to therapy: RNA processing's impact on human genetics. Hum Genet 2017; 136:1013-1014. [PMID: 28866814 DOI: 10.1007/s00439-017-1841-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Luiz O Penalva
- Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Jeremy R Sanford
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, 95060, USA.
| |
Collapse
|