1
|
Pupeikis J, Willenberg B, Bruno F, Hettich M, Nussbaum-Lapping A, Golling M, Bauer CP, Camenzind SL, Benayad A, Camy P, Audoin B, Phillips CR, Keller U. Picosecond ultrasonics with a free-running dual-comb laser. OPTICS EXPRESS 2021; 29:35735-35754. [PMID: 34809002 DOI: 10.1364/oe.440856] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
We present a free-running 80-MHz dual-comb polarization-multiplexed solid-state laser which delivers 1.8 W of average power with 110-fs pulse duration per comb. With a high-sensitivity pump-probe setup, we apply this free-running dual-comb laser to picosecond ultrasonic measurements. The ultrasonic signatures in a semiconductor multi-quantum-well structure originating from the quantum wells and superlattice regions are revealed and discussed. We further demonstrate ultrasonic measurements on a thin-film metalized sample and compare these measurements to ones obtained with a pair of locked femtosecond lasers. Our data show that a free-running dual-comb laser is well-suited for picosecond ultrasonic measurements and thus it offers a significant reduction in complexity and cost for this widely adopted non-destructive testing technique.
Collapse
|
2
|
Ronchi A, Sterzi A, Gandolfi M, Belarouci A, Giannetti C, Fatti ND, Banfi F, Ferrini G. Discrimination of nano-objects via cluster analysis techniques applied to time-resolved thermo-acoustic microscopy. ULTRASONICS 2021; 114:106403. [PMID: 33677164 DOI: 10.1016/j.ultras.2021.106403] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/07/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Time-effective, unsupervised clustering techniques are exploited to discriminate nanometric metal disks patterned on a dielectric substrate. The discrimination relies on cluster analysis applied to time-resolved optical traces obtained from thermo-acoustic microscopy based on asynchronous optical sampling. The analysis aims to recognize similarities among nanopatterned disks and to cluster them accordingly. Each cluster is characterized by a fingerprint time-resolved trace, synthesizing the common features of the thermo-acoustics response of the composing elements. The protocol is robust and widely applicable, not relying on any specific knowledge of the physical mechanisms involved. The present route constitutes an alternative diagnostic tool for on-chip non-destructive testing of individual nano-objects.
Collapse
Affiliation(s)
- Andrea Ronchi
- Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium; Interdisciplinary Laboratories for Advanced Materials Physics (I-LAMP), Università Cattolica del Sacro Cuore, I-25121 Brescia, Italy; Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, I-25121 Brescia, Italy
| | - Andrea Sterzi
- Empa, Swiss Federal Laboratories for Materials Science and Technology Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Marco Gandolfi
- CNR-INO, Via Branze 45, 25123 Brescia, Italy; Department of Information Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy
| | - Ali Belarouci
- Institut des Nanotechnologies de Lyon - CNRS - Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully, France
| | - Claudio Giannetti
- Interdisciplinary Laboratories for Advanced Materials Physics (I-LAMP), Università Cattolica del Sacro Cuore, I-25121 Brescia, Italy; Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, I-25121 Brescia, Italy
| | - Natalia Del Fatti
- FemtoNanoOptics group, Université de Lyon, Institut Lumière Matière (ILM), Université Lyon 1 and CNRS, 10 rue Ada Byron, 69622 Villeurbanne cedex, France
| | - Francesco Banfi
- Interdisciplinary Laboratories for Advanced Materials Physics (I-LAMP), Università Cattolica del Sacro Cuore, I-25121 Brescia, Italy; FemtoNanoOptics group, Université de Lyon, Institut Lumière Matière (ILM), Université Lyon 1 and CNRS, 10 rue Ada Byron, 69622 Villeurbanne cedex, France.
| | - Gabriele Ferrini
- Interdisciplinary Laboratories for Advanced Materials Physics (I-LAMP), Università Cattolica del Sacro Cuore, I-25121 Brescia, Italy; Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, I-25121 Brescia, Italy.
| |
Collapse
|
3
|
Peli S, Ronchi A, Bianchetti G, Rossella F, Giannetti C, Chiari M, Pingue P, Banfi F, Ferrini G. Optical and mechanical properties of streptavidin-conjugated gold nanospheres through data mining techniques. Sci Rep 2020; 10:16230. [PMID: 33004805 PMCID: PMC7530730 DOI: 10.1038/s41598-020-72534-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 08/31/2020] [Indexed: 11/09/2022] Open
Abstract
The thermo-mechanical properties of streptavidin-conjugated gold nanospheres, adhered to a surface via complex molecular chains, are investigated by two-color infrared asynchronous optical sampling pump-probe spectroscopy. Nanospheres with different surface densities have been deposited and exposed to a plasma treatment to modify their polymer binding chains. The aim is to monitor their optical response in complex chemical environments that may be experienced in, e.g., photothermal therapy or drug delivery applications. By applying unsupervised learning techniques to the spectroscopic traces, we identify their thermo-mechanical response variation. This variation discriminates nanospheres in different chemical environments or different surface densities. Such discrimination is not evident based on a standard analysis of the spectroscopic traces. This kind of analysis is important, given the widespread application of conjugated gold nanospheres in medicine and biology.
Collapse
Affiliation(s)
- Simone Peli
- Interdisciplinary Laboratories for Advanced Materials Physics (I-LAMP), Università Cattolica del Sacro Cuore, 25121, Brescia, Italy
- Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, 25121, Brescia, Italy
| | - Andrea Ronchi
- Interdisciplinary Laboratories for Advanced Materials Physics (I-LAMP), Università Cattolica del Sacro Cuore, 25121, Brescia, Italy
- Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, 25121, Brescia, Italy
- Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001, Leuven, Belgium
| | - Giada Bianchetti
- Interdisciplinary Laboratories for Advanced Materials Physics (I-LAMP), Università Cattolica del Sacro Cuore, 25121, Brescia, Italy
- Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, 25121, Brescia, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCSS, Rome, Italy
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesco Rossella
- NEST, Scuola Normale Superiore and CNR - Istituto Nanoscienze, piazza San Silvestro 12, 56127, Pisa, Italy
| | - Claudio Giannetti
- Interdisciplinary Laboratories for Advanced Materials Physics (I-LAMP), Università Cattolica del Sacro Cuore, 25121, Brescia, Italy
- Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, 25121, Brescia, Italy
| | - Marcella Chiari
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Milano, Italy
| | - Pasqualantonio Pingue
- NEST, Scuola Normale Superiore and CNR - Istituto Nanoscienze, piazza San Silvestro 12, 56127, Pisa, Italy
| | - Francesco Banfi
- Interdisciplinary Laboratories for Advanced Materials Physics (I-LAMP), Università Cattolica del Sacro Cuore, 25121, Brescia, Italy
- FemtoNanoOptics Group, Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - Gabriele Ferrini
- Interdisciplinary Laboratories for Advanced Materials Physics (I-LAMP), Università Cattolica del Sacro Cuore, 25121, Brescia, Italy.
- Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, 25121, Brescia, Italy.
| |
Collapse
|
4
|
Medeghini F, Rouxel R, Crut A, Maioli P, Rossella F, Banfi F, Vallée F, Del Fatti N. Signatures of Small Morphological Anisotropies in the Plasmonic and Vibrational Responses of Individual Nano-objects. J Phys Chem Lett 2019; 10:5372-5380. [PMID: 31449419 DOI: 10.1021/acs.jpclett.9b01898] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The plasmonic and vibrational properties of single gold nanodisks patterned on a sapphire substrate are investigated via spatial modulation and pump-probe optical spectroscopies. The features of the measured extinction spectra and time-resolved signals are highly sensitive to minute deviations of the nanodisk morphology from a perfectly cylindrical one. An elliptical nanodisk section, as compared to a circular one, lifts the degeneracy of the two nanodisk in-plane dipolar surface plasmon resonances, which can be selectively excited by controlling the polarization of the incident light. This splitting effect, whose amplitude increases with nanodisk ellipticity, correlates with the detection of additional vibrational modes in the context of time-resolved spectroscopy. Analysis of the measurements is performed through the combination of optical and acoustic numerical models. This allows us first to estimate the dimensions of the investigated nanodisks from their plasmonic response and then to compare the measured and computed frequencies of their detectable vibrational modes, which are found to be in excellent agreement. This study demonstrates that single-particle optical spectroscopies are able to provide access to fine morphological characteristics, representing in this case a valuable alternative to traditional techniques aimed at postfabrication inspection of subwavelength nanodevice morphology.
Collapse
Affiliation(s)
- Fabio Medeghini
- FemtoNanoOptics group , Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut Lumière Matière , F-69622 Villeurbanne , France
| | - Romain Rouxel
- FemtoNanoOptics group , Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut Lumière Matière , F-69622 Villeurbanne , France
| | - Aurélien Crut
- FemtoNanoOptics group , Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut Lumière Matière , F-69622 Villeurbanne , France
| | - Paolo Maioli
- FemtoNanoOptics group , Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut Lumière Matière , F-69622 Villeurbanne , France
| | - Francesco Rossella
- NEST , Scuola Normale Superiore and Istituto Nanoscienze-CNR , Piazza S. Silvestro 12 , I-56124 Pisa , Italy
| | - Francesco Banfi
- FemtoNanoOptics group , Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut Lumière Matière , F-69622 Villeurbanne , France
- Interdisciplinary Laboratories for Advanced Materials Physics (I-LAMP) , Università Cattolica del Sacro Cuore , I-25121 Brescia , Italy
| | - Fabrice Vallée
- FemtoNanoOptics group , Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut Lumière Matière , F-69622 Villeurbanne , France
| | - Natalia Del Fatti
- FemtoNanoOptics group , Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institut Lumière Matière , F-69622 Villeurbanne , France
| |
Collapse
|
5
|
Benetti G, Gandolfi M, Van Bael MJ, Gavioli L, Giannetti C, Caddeo C, Banfi F. Photoacoustic Sensing of Trapped Fluids in Nanoporous Thin Films: Device Engineering and Sensing Scheme. ACS APPLIED MATERIALS & INTERFACES 2018; 10:27947-27954. [PMID: 30039696 DOI: 10.1021/acsami.8b07925] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Accessing fluid infiltration in nanogranular coatings is an outstanding challenge, of relevance for applications ranging from nanomedicine to catalysis. A sensing platform, allowing quantifying the amount of fluid infiltrated in a nanogranular ultrathin coating, with thickness in the 10-40 nm range, is here proposed and theoretically investigated by multiscale modeling. The scheme relies on impulsive photoacoustic excitation of hypersonic mechanical breathing modes in engineered gas-phase-synthesized nanogranular metallic ultrathin films and time-resolved acousto-optical read-out of the breathing modes frequency shift upon liquid infiltration. A superior sensitivity, exceeding 26 × 103 cm2/g, is predicted upon equivalent areal mass loading of a few ng/mm2. The capability of the present scheme to discriminate among different infiltration patterns is discussed. The platform is an ideal tool to investigate nanofluidics in granular materials and naturally serves as a distributed nanogetter coating, integrating fluid sensing capabilities. The proposed scheme is readily extendable to other nanoscale and mesoscale porous materials.
Collapse
Affiliation(s)
| | | | | | | | | | - Claudia Caddeo
- Istituto Officina dei Materiali (CNR-IOM) Cagliari, Cittadella Universitaria , I-09042 Monserrato , Cagliari , Italy
| | | |
Collapse
|