1
|
Palakurti R, Biswas N, Roy S, Gnyawali SC, Sinha M, Singh K, Ghatak S, Sen CK, Khanna S. Inducible miR-1224 silences cerebrovascular Serpine1 and restores blood flow to the stroke-affected site of the brain. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:276-292. [PMID: 36726407 PMCID: PMC9868883 DOI: 10.1016/j.omtn.2022.12.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/31/2022] [Indexed: 01/04/2023]
Abstract
The α-tocotrienol (TCT) form of natural vitamin E is more potent than the better known α-tocopherol against stroke. Angiographic studies of canine stroke have revealed beneficial cerebrovascular effects of TCT. This work seeks to understand the molecular basis of such effect. In mice, TCT supplementation improved perfusion at the stroke-affected site by inducing miR-1224. miRNA profiling of a laser-capture-microdissected stroke-affected brain site identified miR-1224 as the only vascular miR induced. Lentiviral knockdown of miR-1224 significantly blunted the otherwise beneficial effects of TCT on stroke outcomes. Studies on primary brain microvascular endothelial cells revealed direct angiogenic properties of miR-1224. In mice not treated with TCT, advance stereotaxic delivery of an miR-1224 mimic to the stroke site markedly improved stroke outcomes. Mechanistic studies identified Serpine1 as a target of miR-1224. Downregulation of Serpine1 augmented the angiogenic response of the miR-1224 mimic in the brain endothelial cells. The inhibition of Serpine1, by dietary TCT and pharmacologically, increased cerebrovascular blood flow at the stroke-affected site and protected against stroke. This work assigns Serpine1, otherwise known to be of critical significance in stroke, a cerebrovascular function that worsens stroke outcomes. miR-1224-dependent inhibition of Serpine1 can be achieved by dietary TCT as well as by the small-molecule inhibitor TM5441.
Collapse
Affiliation(s)
- Ravichand Palakurti
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Nirupam Biswas
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sashwati Roy
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Surya C. Gnyawali
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mithun Sinha
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kanhaiya Singh
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Subhadip Ghatak
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Chandan K. Sen
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Savita Khanna
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA,Corresponding author: Savita Khanna, PhD, Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
2
|
Ren M, Xing L, Wang W, Bi W, Wu W, Jiang G, Wang W, Liang X, Liu M, Tang S. The Drosha-Independent MicroRNA6778-5p/GSK3 β Axis Mediates the Proliferation of Gastric Cancer Cells. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:5932512. [PMID: 36210981 PMCID: PMC9546646 DOI: 10.1155/2022/5932512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/10/2022] [Indexed: 11/17/2022]
Abstract
Background Gastric cancer (GC) is a primary cause of cancer death around the world. Previous studies have found that Drosha plays a significant role in the development of tumor cells. Soon after, we unexpectedly found that the expression of microRNA6778-5p (miR6778-5p) is unconventionally high in the gastric cancer cells low-expressing Drosha. So, we designed the Drosha interference sequence and recombined it into a lentiviral vector to construct Drosha knockdown lentivirus and transfected the Drosha knockdown lentivirus into gastric cancer cells to establish Drosha knockdown gastric cancer cell lines. We aimed to explore the effect of microRNA6778-5p on the proliferation of gastric cancer cells with Drosha knockdown and its intrinsic mechanism. Methods We designed the Drosha interference sequence and recombined it into a lentiviral vector to construct Drosha knockdown lentivirus and transfected the Drosha knockdown lentivirus into gastric cancer cells to establish Drosha knockdown gastric cancer cell lines. After transfecting miR6778-5p mimics and inhibitor into gastric cancer cell lines with Drosha knockdown, the expression levels of miR6778-5p mimics in Drosha low-expressing gastric cancer cells increased, while miR6778-5p inhibitor decreased the expression levels of miR6778-5p. The Cell Counting Kit-8 (CCK-8) experiment was used to detect the proliferation ability of gastric cancer cells after overexpression or knockdown of miR6778-5p and bioinformatics predicted the relationship between miR6778-5p and glycogen synthase kinase-3β (GSK3β). Results After infection with the Drosha knockdown lentivirus, Drosha's mRNA and protein levels were significantly downregulated in gastric cancer cells. The expression levels of miR6778-5p mimics in Drosha low-expressing gastric cancer cells increased, while miR6778-5p inhibitor decreased the expression levels of miR6778-5p. Overexpression of miR6778-5p significantly enhanced the proliferation ability of Drosha low-expression gastric cancer cells; on the contrary, knocking down miR6778-5p weakened the proliferation ability of Drosha low-expression gastric cancer cells. Bioinformatics predicted that miR6778-5p targeted glycogen synthase kinase-3β (GSK3β) and the mRNA and protein levels of GSK3β decreased significantly after overexpression of miR6778-5p. Conclusion miR6778-5p promotes the proliferation of Drosha low-expressing gastric cancer cells by targeting GSK3β.
Collapse
Affiliation(s)
- Mingjun Ren
- Department of Laboratory Medicine, Liuzhou People's Hospital, Liu Zhou 545006, China
- Liuzhou Key Laboratory of Precision Medicine for Viral Diseases, Liu Zhou 545006, China
| | - Li Xing
- Graduate School, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Wanping Wang
- Graduate School, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Wanying Bi
- Graduate School, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Wanjun Wu
- Department of Laboratory Medicine, Liuzhou Traditional Chinese Medicine Hospital, Liu Zhou 545006, China
| | - Gui Jiang
- Department of Laboratory Medicine, Liuzhou Traditional Chinese Medicine Hospital, Liu Zhou 545006, China
| | - Weiji Wang
- Gastrointestinal Surgery, Liuzhou People's Hospital, Liu Zhou 545006, China
| | - Xingdong Liang
- Department of Laboratory Medicine, Liuzhou People's Hospital, Liu Zhou 545006, China
- Liuzhou Key Laboratory of Precision Medicine for Viral Diseases, Liu Zhou 545006, China
| | - Manran Liu
- Laboratory Medical College, Chongqing Medical University, Chongqing 400016, China
| | - Shifu Tang
- Department of Laboratory Medicine, Liuzhou People's Hospital, Liu Zhou 545006, China
- Liuzhou Key Laboratory of Precision Medicine for Viral Diseases, Liu Zhou 545006, China
| |
Collapse
|
3
|
Mirtronic miR-4646-5p promotes gastric cancer metastasis by regulating ABHD16A and metabolite lysophosphatidylserines. Cell Death Differ 2021; 28:2708-2727. [PMID: 33875796 PMCID: PMC8408170 DOI: 10.1038/s41418-021-00779-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/25/2021] [Accepted: 04/02/2021] [Indexed: 02/07/2023] Open
Abstract
The aberrant classical miRNAs are considered to play significant roles in tumor progression. However, it remains unclear for nonclassical miRNAs, a set of Drosha-independent miRNAs in the process of various biology. Here, we reveal that a nonclassical miR-4646-5p plays a pivotal role in gastric cancer (GC) metastasis. MiR-4646-5p, one of Drosha-independent mirtronic miRNA, is aberrant up-regulated in Drosha-low expressed GC and Drosha-knockdown gastric cancer cells. Mirtronic miR-4646-5p is a specific transcription splicing product of intron 3 of the host gene Abhd16a with the aid of SRSF2. The enhanced miR-4646-5p can stabilize HIF1A by targeting PHD3 to positive feedback regulate Abhd16a and miR-4646-5p itself expressions. ABHD16A, as an emerging phosphatidylserine-specific lipase, involves in lipid metabolism leading to lysophosphatidylserines (lyso-PSs) accumulation, which stimulates RhoA and downstream LIMK/cofilin cascade activity through GPR34/Gi subunit, thus causes metastasis of gastric cancer. In addition, miR-4646-5p/PHD3/HIF1A signaling can also up-regulate RhoA expression and synergistically promote gastric cancer cell invasion and metastasis. Our study provides new insights of nonclassical mirtronic miRNA on tumor progress and may serve as a new diagnostic biomarker for gastric cancer. MiR-4646-5p and its host gene Abhd16a mediated abnormal lipid metabolism may be a new target for clinical treatment of gastric cancer.
Collapse
|
4
|
Salim U, Kumar A, Kulshreshtha R, Vivekanandan P. Biogenesis, characterization, and functions of mirtrons. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1680. [PMID: 34155810 DOI: 10.1002/wrna.1680] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 01/18/2023]
Abstract
MicroRNAs (miRNAs) are major post-transcriptional regulators of gene expression. They base pair with the complementary target mRNA at the 3'UTR and modulate cellular processes by repressing the mRNA translation or degrading the mRNA. There are well-documented mechanisms of biogenesis of miRNA; however, a sizeable number of miRNAs are also produced by non-canonical pathways. Mirtrons represent a predominant class of non-canonical miRNAs. Mirtrons originate from intronic regions and are produced in a splicing-dependent and Drosha-independent manner. Mirtrons constitute about 15% of all miRNAs produced in a human body and have caught attention of researchers worldwide due to their unconventional origin, sequence characteristics, evolutionary dynamics, ability to regulate variety of cellular processes and their immense potential in disease therapeutics. In this comprehensive review we collate the research done in the past decade including biogenesis, sequence characteristics, regulation, and emerging therapeutic roles of mirtrons. This article is categorized under: RNA Processing > Processing of Small RNAs Regulatory RNAs/RNAi/Riboswitches > Biogenesis of Effector Small RNAs Regulatory RNAs/RNAi/Riboswitches > RNAi: Mechanisms of Action.
Collapse
Affiliation(s)
- Uzma Salim
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, India
| | - Ashish Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, India
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, India
| | - Perumal Vivekanandan
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, India
| |
Collapse
|
5
|
Inhibition of miR-1224 suppresses hypoxia/reoxygenation-induced oxidative stress and apoptosis in cardiomyocytes through targeting GPX4. Exp Mol Pathol 2021; 121:104645. [PMID: 33989616 DOI: 10.1016/j.yexmp.2021.104645] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/29/2021] [Accepted: 05/09/2021] [Indexed: 11/23/2022]
Abstract
We have focused on the underlying role of miR-1224 in cardiomyocyte injury stimulated by hypoxia/reoxygenation (H/R). In the current study, the rat cardiomyocyte cell line H9C2 was used to construct a H/R cell model to validate the cardioprotective effects of miR-1224. Data from the dual-luciferase assay revealed that the glutathione peroxidase 4 (GPX4) was a direct target of miR-1224. Expression of miR-1224, determined using qRT-PCR, was remarkably increased while that of GPX4 protein, evaluated via western blotting, was significantly decreased in cardiomyocytes in response to H/R exposure. ROS generation, superoxide dismutase (SOD) activity, concentrations of malondialdehyde (MDA) and 4-hydroxy aldehydes (4-HNE), and H9C2 cell apoptosis were further evaluated following overexpression of miR-1224 or silencing of GPX4 in H9C2 cells. H9C2 cells under H/R conditions displayed increased synthesis of ROS, along with overexpression of miR-1224 and downregulation of GPX4. SOD activity was significantly decreased while concentrations of MDA and 4-HNE were markedly increased under H/R injury conditions. In addition, miR-1224 mimic or GPX4 siRNA plasmids dramatically enhanced H/R-mediated apoptosis, Bax expression and caspase-3 activity, with a concomitant reduction in Bcl-2 expression. Conversely, inhibition of miR-1224 exerted suppressive effects on oxidative stress and apoptosis in H9C2 cells under H/R conditions. Interestingly, silencing of GPX4 attenuated the negative effects of miR-1224 inhibition. Our results suggested that inhibition of miR-1224 caused resistance to H/R and diminished oxidative stress in vitro through targeting of GPX4.
Collapse
|
6
|
Abstract
Vascularization is a major hurdle in complex tissue and organ engineering. Tissues greater than 200 μm in diameter cannot rely on simple diffusion to obtain nutrients and remove waste. Therefore, an integrated vascular network is required for clinical translation of engineered tissues. Microvessels have been described as <150 μm in diameter, but clinically they are defined as <1 mm. With new advances in super microsurgery, vessels less than 1 mm can be anastomosed to the recipient circulation. However, this technical advancement still relies on the creation of a stable engineered microcirculation that is amenable to surgical manipulation and is readily perfusable. Microvascular engineering lays on the crossroads of microfabrication, microfluidics, and tissue engineering strategies that utilize various cellular constituents. Early research focused on vascularization by co-culture and cellular interactions, with the addition of angiogenic growth factors to promote vascular growth. Since then, multiple strategies have been utilized taking advantage of innovations in additive manufacturing, biomaterials, and cell biology. However, the anatomy and dynamics of native blood vessels has not been consistently replicated. Inconsistent results can be partially attributed to cell sourcing which remains an enigma for microvascular engineering. Variations of endothelial cells, endothelial progenitor cells, and stem cells have all been used for microvascular network fabrication along with various mural cells. As each source offers advantages and disadvantages, there continues to be a lack of consensus. Furthermore, discord may be attributed to incomplete understanding about cell isolation and characterization without considering the microvascular architecture of the desired tissue/organ.
Collapse
|
7
|
Zhao M, Hou Y, Du YE, Yang L, Qin Y, Peng M, Liu S, Wan X, Qiao Y, Zeng H, Cui X, Teng Y, Liu M. Drosha-independent miR-6778-5p strengthens gastric cancer stem cell stemness via regulation of cytosolic one-carbon folate metabolism. Cancer Lett 2020; 478:8-21. [PMID: 32142918 DOI: 10.1016/j.canlet.2020.02.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023]
Abstract
Drosha-dependent canonical microRNAs (miRNAs) play a crucial role in the biological functions and development of cancer. However, the effects of Drosha-independent non-canonical miRNAs remain poorly understood. In our previous work, we found a set of aberrant miRNAs, including some upregulated miRNAs, called Drosha-independent noncanonical miRNAs, in Drosha-knockdown gastric cancer (GC) cells. Surprisingly, Drosha-silenced GC cells still retained strong malignant properties (e.g., proliferation ability and cancer stem cell (CSC) characteristics), indicating that aberrantly upregulated non-canonical miRNAs may play an important role in the maintenance of the malignant properties in GC cells that express low Drosha levels. Here, we report that miR-6778-5p, a noncanonical miRNA, acts as a crucial regulator for maintenance of CSC stemness in Drosha-silenced GC cells. MiR-6778-5p belongs to the 5'-tail mirtron type of non-canonical miRNAs and is transcript splice-derived from intron 5 of SHMT1 (coding cytoplasmic serine hydroxymethyltransferase). It positively regulates expression of its host gene, SHMT1, via targeting YWHAE in Drosha-knockdown GC cells. Similar to its family member SHMT2, SHMT1 plays a crucial role in folate-dependent serine/glycine inter-conversion in one-carbon metabolism. In Drosha wild type GC cells, SHMT2 mediates a mitochondrial-carbon metabolic pathway, which is a major pathway of one-carbon metabolism in normal cells and most cancer cells. However, in Drosha-silenced or Drosha low-expressing GC cells, miR-6778-5p positively regulates SHMT1, instead of SHMT2, thus mediating a compensatory activation of cytoplasmic carbon metabolism that plays an essential role in the maintenance of CSCs in gastric cancer (GCSCs). Drosha wild type GCSCs with SHMT2 are sensitive to 5-fluorouracil; however, Drosha low-expressing GCSCs with SHMT1 are 5-FU-resistant. The loss of miR-6778-5p or SHMT1 notably mitigates GCSC sphere formation and increases sensitivity to 5-fluorouracil in Drosha-knockdown gastric cancer cells. Thus, our study reveals a novel function of Drosha-independent noncanonical miRNAs in maintaining the stemness of GCSCs.
Collapse
Affiliation(s)
- Maojia Zhao
- Key Laboratory of Laboratory Medical Diagnostics Designated By Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Yixuan Hou
- Experimental Teaching Center of Basic Medicine Science, Chongqing Medical University, Chongqing, 400016, China
| | - Yan-E Du
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Liping Yang
- Key Laboratory of Laboratory Medical Diagnostics Designated By Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Yilu Qin
- Key Laboratory of Laboratory Medical Diagnostics Designated By Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Meixi Peng
- Key Laboratory of Laboratory Medical Diagnostics Designated By Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Shuiqing Liu
- Key Laboratory of Laboratory Medical Diagnostics Designated By Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Xueying Wan
- Key Laboratory of Laboratory Medical Diagnostics Designated By Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Yina Qiao
- Key Laboratory of Laboratory Medical Diagnostics Designated By Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Huan Zeng
- Key Laboratory of Laboratory Medical Diagnostics Designated By Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaojiang Cui
- Department of Surgery, Department of Obstetrics and Gynecology, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center. Los Angeles, CA, 91006, USA
| | - Yong Teng
- Department of Oral Biology, Dental College of Georgia, Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Manran Liu
- Key Laboratory of Laboratory Medical Diagnostics Designated By Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
8
|
Li Q, Cheng K, Wang AY, Xu QG, Fu ZF, He SY, Xu PX. microRNA-126 inhibits tube formation of HUVECs by interacting with EGFL7 and down-regulating PI3K/AKT signaling pathway. Biomed Pharmacother 2019; 116:109007. [PMID: 31170663 DOI: 10.1016/j.biopha.2019.109007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 12/28/2022] Open
Abstract
It's critical for tube formation and angiogenesis to repair ischemic myocardium or stroke. This study aimed to investigate role of microRNA-126 (miR-126) in tube formation in human umbilical vein endothelial cells (HUVECs) and associated mechanisms. Primary neural stem cells (NSCs) and HUVECs were cultured and transfected with microRNA-126 mimics and miR-126 inhibitor. Cell counting kit-8 (CCK-8) and cell cycle assay were conducted for evaluating NSCs viability. Transwell assay was conducted to observe invasive ability of HUVECs. Quantitative real-time PCR (qRT-PCR) assay was used to examine epidermal growth factor like domain 7 (EGFL7) and miR-126 mRNA both in vitro and animal models. Tube forming capability was evaluated in HUVECs. Dual luciferase assay was performed to evaluate interaction between miR-126 and EGFL7 gene. Western blot assay was used to determine phosphoinositide-3-kinase/protein kinase-B (PI3K/AKT) signaling molecules and EGFL7. The results indicated that miR-126 significantly decreased cell viability, inhibited invasive ability and modulated cell cycle of NSCs compared to miR-NC group (p < 0.05). miR-126 significantly inhibited tube formation of HUVECs compared to miR-NC group (p < 0.05). miR-126 significantly down-regulated EGFL7 mRNA and protein expression compared to miR-NC (p < 0.05). Atorvastatin significantly increased CD34 and enhanced EGFL7 expression in traumatic brain injury (TBI) rats brain tissues compared to Model group (p < 0.05). miR-126 significantly down-regulated and atorvastatin up-regulated PI3K/AKT signaling pathway (p < 0.05). Atorvastatin significantly increased EGFL7 and down-regulated miR-126 expression in TBI rats brain tissues compared to Model group (p < 0.05). miR-126 interacted with and negatively correlated with EGFL7 gene both in vitro and in TBI models. In conclusion, microRNA-126 inhibited tube formation of HUVECs by interacting with EGFL7 and down-regulating PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Qiang Li
- Department of Neurosurgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, China.
| | - Kai Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Ai-Yue Wang
- Department of Neurology, Haikou Municipal People's Hospital, Haikou, China
| | - Qiong-Guang Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Zhou-Feng Fu
- Department of Neurosurgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Shao-Yu He
- Department of Neurosurgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Peng-Xiang Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
9
|
Mukwaya A, Jensen L, Peebo B, Lagali N. MicroRNAs in the cornea: Role and implications for treatment of corneal neovascularization. Ocul Surf 2019; 17:400-411. [PMID: 30959113 DOI: 10.1016/j.jtos.2019.04.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/25/2019] [Accepted: 04/01/2019] [Indexed: 12/18/2022]
Abstract
With no safe and efficient approved therapy available for treating corneal neovascularization, the search for alternative and effective treatments is of great importance. Since the discovery of miRNAs as key regulators of gene expression, knowledge of their function in the eye has expanded continuously, facilitated by high throughput genomic tools such as microarrays and RNA sequencing. Recently, reports have emerged implicating miRNAs in pathological and developmental angiogenesis. This has led to the idea of targeting these regulatory molecules as a therapeutic approach for treating corneal neovascularization. With the growing volume of data generated from high throughput tools applied to study corneal neovascularization, we provide here a focused review of the known miRNAs related to corneal neovascularization, while presenting new experimental data and insights for future research and therapy development.
Collapse
Affiliation(s)
- Anthony Mukwaya
- Department of Ophthalmology, Institute for Clinical and Experimental Medicine, Faculty of Health Sciences, Linkoping University, Linköping, Sweden
| | - Lasse Jensen
- Department of Medical and Health Sciences, Division of Cardiovascular Medicine, Linköping University, Linköping, Sweden
| | - Beatrice Peebo
- Department of Ophthalmology, Institute for Clinical and Experimental Medicine, Faculty of Health Sciences, Linkoping University, Linköping, Sweden
| | - Neil Lagali
- Department of Ophthalmology, Institute for Clinical and Experimental Medicine, Faculty of Health Sciences, Linkoping University, Linköping, Sweden; Department of Ophthalmology, Sørlandet Hospital Arendal, Arendal, Norway.
| |
Collapse
|
10
|
Wang J, Wen T, Li Z, Che X, Gong L, Yang X, Zhang J, Tang H, He L, Qu X, Liu Y. MicroRNA-1224 Inhibits Tumor Metastasis in Intestinal-Type Gastric Cancer by Directly Targeting FAK. Front Oncol 2019; 9:222. [PMID: 31019895 PMCID: PMC6458237 DOI: 10.3389/fonc.2019.00222] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/13/2019] [Indexed: 12/20/2022] Open
Abstract
Intestinal-type gastric cancer (GC) of the Lauren classification system has specific epidemiological characteristics and carcinogenesis patterns. MicroRNAs (miRNAs) have prognostic significance, and some can be used as prognostic biomarkers in GC. In this study, we identified miR-1224 as a potential survival-related miRNA in intestinal-type GC patients by The Cancer Genome Atlas (TCGA) analysis. Using quantitative real-time PCR (qRT-PCR), we showed that the relative expression of miR-1224 was significantly decreased in intestinal-type GC tissues compared to matched adjacent normal mucosa tissues (p < 0.01). We found that high miR-1224 expression was associated with no lymph-node metastasis (p < 0.05) and good prognosis (p = 0.028) in 90 intestinal-type GC tissues. Transfection of intestinal-type GC cells with miR-1224 mimics showed that miR-1224 suppressed cell migration in vitro (wound healing assay and Transwell migration assay), whereas the transfection of cells with miR-1224 inhibitor promoted cell migration in vitro. miR-1224 also suppressed intestinal-type GC cell metastasis in a xenograft mouse model. Furthermore, bioinformatics, luciferase reporter, Western blotting, and immunohistochemistry (IHC) studies demonstrated that miR-1224 directly bound to the focal adhesion kinase (FAK) gene, and downregulated its expression, which decreased STAT3 and NF-κB signaling and subsequent the epithelial-to-mesenchymal transition (EMT). Repression of FAK is required for the miR-1224-mediated inhibition of cell migration in intestinal-type GC. The present study demonstrated that miR-1224 is downregulated in intestinal-type GC. miR-1224 inhibits the metastasis of intestinal-type GC by suppressing FAK-mediated activation of the STAT3 and NF-κB pathways, and subsequent EMT. miR-1224 could represent an important prognostic factor in intestinal-type GC.
Collapse
Affiliation(s)
- Jin Wang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Ti Wen
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Zhi Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Xiaofang Che
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Libao Gong
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Xianghong Yang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jingdong Zhang
- Department of Medical Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Huali Tang
- Department of Medical Oncology, The Central Hospital of Zhuanghe, Zhuanghe, China
| | - Lingzi He
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Xiujuan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Yunpeng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
11
|
Cheng W, Liu G, Kong D, Huang W, Sun Y, Zhao D. Downregulation of miR‐1224 protects against oxidative stress‐induced acute liver injury by regulating hepatocyte growth factor. J Cell Biochem 2019; 120:12369-12375. [PMID: 30848506 DOI: 10.1002/jcb.28502] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Wenting Cheng
- Department of Clinical Laboratory Nanjing Gaochun People's Hospital Nanjing Jiangsu China
| | - Guo‐pan Liu
- Department of Clinical Laboratory Nanjing Gaochun People's Hospital Nanjing Jiangsu China
| | - Dehua Kong
- Department of Clinical Laboratory Nanjing Gaochun People's Hospital Nanjing Jiangsu China
| | - Wei Huang
- Department of Clinical Laboratory Nanjing Gaochun People's Hospital Nanjing Jiangsu China
| | - Ying Sun
- Department of Clinical Laboratory Nanjing Gaochun People's Hospital Nanjing Jiangsu China
| | - Danmei Zhao
- Department of Clinical Laboratory Nanjing Gaochun People's Hospital Nanjing Jiangsu China
| |
Collapse
|
12
|
|