1
|
Lin W, Zhou J, Ma Y, Ge L, Luo Y, Wang Y, Zhou S. Prognostic value of mitochondrial CKMT2 in Pan-cancer and its tumor immune correlation analysis. Sci Rep 2024; 14:342. [PMID: 38172162 PMCID: PMC10764887 DOI: 10.1038/s41598-023-46468-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/01/2023] [Indexed: 01/05/2024] Open
Abstract
Mitochondrial metabolism has been shown to play a key role in immune cell survival and function, but mitochondrial creatine kinase 2 (CKMT2) has been relatively little studied about tumor immunity. We aimed to explore the prognostic value of CKMT2 in 33 cancer types and investigate its potential immune function. We used a range of bioinformatics approaches to explore the potential carcinogenic role of CKMT2 in multiple cancers. CKMT2 was lowly expressed in 14 tumor tissues and highly expressed in 4 tumor tissues. Immunohistochemical assays showed overexpression of CKMT2 in colon cancer and rectal cancer. CKMT2 overexpression was positively correlated with the prognosis of lung adenocarcinoma and prostate cancer. CKMT2 overexpression is mainly enriched in the adaptive immune system and immune regulatory pathways of immunoglobulins. Seven cancers were positively correlated with low CKMT2 expression in tumor microenvironment analysis. Among the five cancers, low expression of CKMT2 resulted in better immunotherapy treatment outcomes. There was a strong correlation between CKMT2 and most immune-related genes in specific cancer types. CKMT2 plays an important role in tumorigenesis and cancer immunity and can be used as a prognostic biomarker and potential target for cancer immunotherapy.
Collapse
Affiliation(s)
- Wei Lin
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jiamin Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Yili Ma
- Department of Pathology, Affiliated Cancer Hospital of Guangxi Medical University, Nanning, China
| | - Liuxing Ge
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Yiling Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Yaobin Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Sufang Zhou
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China.
| |
Collapse
|
2
|
Dai X, Shi X, Luo M, Li P, Gao Y. Integrative analysis of transcriptomic and metabolomic profiles reveals enhanced arginine metabolism in androgen-independent prostate cancer cells. BMC Cancer 2023; 23:1241. [PMID: 38104097 PMCID: PMC10724921 DOI: 10.1186/s12885-023-11707-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/02/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND Prostate cancer is a common solid tumor that affects a significant number of men worldwide. Conventional androgen deprivation therapy (ADT) increases the risk of developing castration-resistant prostate cancer (CRPC). Effective clinical management of patients with CRPC is challenging due to the limited understanding. METHODS In this study, transcriptomic and metabolomic profiles of androgen-dependent prostate cancer cell line LNCaP and the androgen-independent cells developed from LNCaP cells (LNCaP-ADR) were investigated using RNA-sequencing and LC-MS/MS, respectively. The differentially expressed genes and metabolites were analyzed, and integrative analysis of transcriptomic and metabolomic data was further conducted to obtain a comprehensive understanding of the metabolic characteristics in LNCaP-ADR cells. Quantitative real-time PCR (QPCR) was employed to ascertain the mRNA expression levels of the selected differentially expressed genes. RESULTS The arginine and proline metabolism pathway was identified as a commonly altered pathway at both the transcriptional and metabolic levels. In the LNCaP-ADR cells, significant upregulation was observed for metabolites including 5-Aminopentanoic acid, L-Arginine, L-Glutamic acid, N-Acetyl-L-alanine, and Pyrrole-2-carboxylic acid at the metabolic level. At the transcriptional level, MAOA, ALDH3A2, ALDH2, ARG1, CKMT2, and CNDP1 were found to be significantly upregulated in the LNCaP-ADR cells. Gene set enrichment analysis (GSEA) identified various enriched gene sets in the LNCaP-ADR cells, encompassing inflammatory response, 9plus2 motile cilium, motile cilium, ciliary plasm, cilium or flagellum-dependent cell motility, cilium movement, cilium, response to endoplasmic reticulum stress, PTEN DN.V1 DN, SRC UP.V1 UP, IL15 UP.V1 DN, RB DN.V1 DN, AKT UP MTOR DN.V1 UP, VEGF A UP.V1 UP, and KRAS.LUNG.BREAST UP.V1 UP. CONCLUSIONS These findings highlight the substantial association between the arginine and proline metabolism pathway and CRPC, emphasizing the need to prioritize strategies that target dysregulated metabolites and differentially expressed genes as essential interventions in the clinical management of CRPC.
Collapse
Affiliation(s)
- Xingchen Dai
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
- Department of Nephrology, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xinyi Shi
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
- Ankang Central Hospital, Ankang, China
| | - Mingxiu Luo
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Pu Li
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yujing Gao
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China.
- National Health Commission Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
3
|
Zhang W, Lyu P, Andreev D, Jia Y, Zhang F, Bozec A. Hypoxia-immune-related microenvironment prognostic signature for osteosarcoma. Front Cell Dev Biol 2022; 10:974851. [PMID: 36578780 PMCID: PMC9791087 DOI: 10.3389/fcell.2022.974851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022] Open
Abstract
Introduction: Increasing evidences have shown that hypoxia and the immune microenvironment play vital roles in the development of osteosarcoma. However, reliable gene signatures based on the combination of hypoxia and the immune status for prognostic prediction of osteosarcoma have so far not been identified. Methods: The individual hypoxia and immune status of osteosarcoma patients were identified with transcriptomic profiles of a training cohort from the TARGET database using ssGSEA and ESTIMATE algorithms, respectively. Lasso regression and stepwise Cox regression were performed to develop a hypoxia-immune-based gene signature. An independent cohort from the GEO database was used for external validation. Finally, a nomogram was constructed based on the gene signature and clinical features to improve the risk stratification and to quantify the risk assessment for individual patients. Results: Hypoxia and the immune status were significantly associated with the prognosis of osteosarcoma patients. Seven hypoxia- and immune-related genes (BNIP3, SLC38A5, SLC5A3, CKMT2, S100A3, CXCL11 and PGM1) were identified to be involved in our prognostic signature. In the training cohort, the prognostic signature discriminated high-risk patients with osteosarcoma. The hypoxia-immune-based gene signature proved to be a stable and predictive method as determined in different datasets and subgroups of patients. Furthermore, a nomogram based on the prognostic signature was generated to optimize the risk stratification and to quantify the risk assessment. Similar results were validated in an independent GEO cohort, confirming the stability and reliability of the prognostic signature. Conclusion: The hypoxia-immune-based prognostic signature might contribute to the optimization of risk stratification for survival and personalized management of osteosarcoma patients.
Collapse
|
4
|
Solernó LM, Sobol NT, Gottardo MF, Capobianco CS, Ferrero MR, Vásquez L, Alonso DF, Garona J. Propranolol blocks osteosarcoma cell cycle progression, inhibits angiogenesis and slows xenograft growth in combination with cisplatin-based chemotherapy. Sci Rep 2022; 12:15058. [PMID: 36075937 PMCID: PMC9458647 DOI: 10.1038/s41598-022-18324-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 08/09/2022] [Indexed: 11/09/2022] Open
Abstract
Osteosarcoma is still associated with limited response to standard-of-care therapy and alarmingly elevated mortality rates, especially in low- and middle-income countries. Despite multiple efforts to repurpose β-blocker propranolol in oncology, its potential application in osteosarcoma management remains largely unexplored. Considering the unsatisfied clinical needs of this aggressive disease, we evaluated the antitumoral activity of propranolol using different in vitro and in vivo osteosarcoma preclinical models, alone or in addition to chemotherapy. Propranolol significantly impaired cellular growth in β2-adrenergic receptor-expressing MG-63 and U-2OS cells, and was capable of blocking growth-stimulating effects triggered by catecholamines. siRNA-mediated ADRB2 knockdown in MG-63 cells was associated with decreased cell survival and a significant attenuation of PPN anti-osteosarcoma activity. Direct cytostatic effects of propranolol were independent of apoptosis induction and were associated with reduced mitosis, G0/G1 cell cycle arrest and a significant down-regulation of cell cycle regulator Cyclin D1. Moreover, colony formation, 3D spheroid growth, cell chemotaxis and capillary-like tube formation were drastically impaired after propranolol treatment. Interestingly, anti-migratory activity of β-blocker was associated with altered actin cytoskeleton dynamics. In vivo, propranolol treatment (10 mg/kg/day i.p.) reduced the early angiogenic response triggered by MG-63 cells in nude mice. Synergistic effects were observed in vitro after combining propranolol with chemotherapeutic agent cisplatin. Sustained administration of propranolol (10 mg/kg/day i.p., five days a week), alone and especially in addition to low-dose metronomic cisplatin (2 mg/kg/day i.p., three times a week), markedly reduced xenograft progression. After histological analysis, propranolol and cisplatin combination resulted in low tumor mitotic index and increased tumor necrosis. β-blockade using propranolol seems to be an achievable and cost-effective therapeutic approach to modulate osteosarcoma aggressiveness. Further translational studies of propranolol repurposing in osteosarcoma are warranted.
Collapse
Affiliation(s)
- Luisina M Solernó
- Center for Molecular and Translational Oncology (COMTra), Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina.,Center for Translational Medicine, El Cruce "Néstor Kirchner" Hospital, Buenos Aires, Argentina
| | - Natasha T Sobol
- Center for Molecular and Translational Oncology (COMTra), Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina.,Center for Translational Medicine, El Cruce "Néstor Kirchner" Hospital, Buenos Aires, Argentina
| | - María F Gottardo
- Center for Molecular and Translational Oncology (COMTra), Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina.,Center for Translational Medicine, El Cruce "Néstor Kirchner" Hospital, Buenos Aires, Argentina
| | - Carla S Capobianco
- Center for Molecular and Translational Oncology (COMTra), Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina
| | - Maximiliano R Ferrero
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Biomedicine Research Institute of Buenos Aires (IBioBA), Buenos Aires, Argentina
| | - Liliana Vásquez
- Precision Medicine Research Center, School of Medicine, University of San Martín de Porres, Lima, Perú
| | - Daniel F Alonso
- Center for Molecular and Translational Oncology (COMTra), Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina.,Center for Translational Medicine, El Cruce "Néstor Kirchner" Hospital, Buenos Aires, Argentina.,National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| | - Juan Garona
- Center for Molecular and Translational Oncology (COMTra), Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina. .,Center for Translational Medicine, El Cruce "Néstor Kirchner" Hospital, Buenos Aires, Argentina. .,National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
5
|
Chen H, Chen X, Zeng F, Fu A, Huang M. Prognostic value of SOX9 in cervical cancer: Bioinformatics and experimental approaches. Front Genet 2022; 13:939328. [PMID: 36003340 PMCID: PMC9394184 DOI: 10.3389/fgene.2022.939328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Among gynecological cancers, cervical cancer is a common malignancy and remains the leading cause of cancer-related death for women. However, the exact molecular pathogenesis of cervical cancer is not known. Hence, understanding the molecular mechanisms underlying cervical cancer pathogenesis will aid in the development of effective treatment modalities. In this research, we attempted to discern candidate biomarkers for cervical cancer by using multiple bioinformatics approaches. First, we performed differential expression analysis based on cervical squamous cell carcinoma and endocervical adenocarcinoma data from The Cancer Genome Atlas database, then used differentially expressed genes for weighted gene co-expression network construction to find the most relevant gene module for cervical cancer. Next, the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed on the module genes, followed by using protein–protein interaction network analysis and Cytoscape to find the key gene. Finally, we validated the key gene by using multiple online sites and experimental methods. Through weighted gene co-expression network analysis, we found the turquoise module was the highest correlated module with cervical cancer diagnosis. The biological process of the module genes focused on cell proliferation, cell adhesion, and protein binding processes, while the Kyoto Encyclopedia of Genes and Genomes pathway of the module significantly enriched pathways related to cancer and cell circle. Among the module genes, SOX9 was identified as the hub gene, and its expression was associated with cervical cancer prognosis. We found the expression of SOX9 correlates with cancer-associated fibroblast immune infiltration in immune cells by Timer2.0. Furthermore, cancer-associated fibroblast infiltration is linked to cervical cancer patients’ prognosis. Compared to those in normal adjacent, immunohistochemical and real-time quantitative polymerase chain reaction (qPCR) showed that the protein and mRNA expression of SOX9 in cervical cancer were higher. Therefore, the SOX9 gene acts as an oncogene in cervical cancer, interactive with immune infiltration of cancer-associated fibroblasts, thereby affecting the prognosis of patients with cervical cancer.
Collapse
Affiliation(s)
- Huan Chen
- Department of Obstetrics and Gynecology, Zhu Zhou Central Hospital, Zhuzhou, Hunan China
| | - Xupeng Chen
- Laboratory Medicine Center, Zhu Zhou Central Hospital, Zhuzhou, Hunan China
| | - Fanhua Zeng
- Department of Obstetrics and Gynecology, Zhu Zhou Central Hospital, Zhuzhou, Hunan China
| | - Aizhen Fu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Meiyuan Huang
- Department of Pathology, Zhu Zhou Central Hospital, Zhuzhou, Hunan China
- *Correspondence: Meiyuan Huang,
| |
Collapse
|
6
|
Huang Y, Shen Z, Yao Y, He A, Min D. The Plasma Concentration of D-Dimer is Associated with Neoadjuvant-Chemotherapy Efficacy and the Prognosis in Osteosarcoma. Onco Targets Ther 2021; 14:213-220. [PMID: 33469302 PMCID: PMC7810700 DOI: 10.2147/ott.s278139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/23/2020] [Indexed: 01/13/2023] Open
Abstract
PURPOSE This retrospective study explored the clinical value of the plasma D-dimer level in osteosarcoma. MATERIALS AND METHODS We measured the plasma D-dimer level before neoadjuvant chemotherapy (D0) and the plasma D-dimer level after four courses of neoadjuvant chemotherapy (D1) in 103 patients with stage-IIB high-grade osteosarcoma of the limb. The change in the D-dimer level (ΔD) was defined as D1 minus D0. The chi-square test was used to compare categorical variables. Analyses of receiver operating characteristic (ROC) curves were undertaken to determine the optimal cutoff points for D0, D1, and ΔD. The area under the ROC (AUC) of D0, D1, and ΔD was calculated to evaluate their discriminatory abilities in monitoring the response to neoadjuvant chemotherapy (tumor necrosis). Survival curves were generated according to Kaplan-Meier analyses and compared using the Log rank test. Univariate analyses and multivariate analyses were carried out to determine independent prognostic factors. RESULTS Kaplan-Meier curves showed that a high D-dimer level at D0 and tumor diameter ≥8 cm were associated significantly with worse overall survival (OS) (P<0.05). Multivariate Cox regression analyses revealed a high D-dimer level at D0 (hazard ratio, 3.92; 95% confidence interval, 1.756-5.804; P=0.000) was an independent unfavorable prognostic factor. The chi-square test showed ΔD to be associated significantly with tumor necrosis. Analyses of ROC curves showed the D-dimer level at D0 and ΔD had better ability compared to that at D1 to discriminate the response to neoadjuvant chemotherapy. CONCLUSION The D-dimer level was correlated with the prognosis and response to chemotherapy in patients with stage-IIB high-grade osteosarcoma of the limb. The D-dimer level may serve as a risk factor of the response to chemotherapy and prognosis of localized osteosarcoma.
Collapse
Affiliation(s)
- Yujing Huang
- Department of Oncology, Affiliated Sixth People’s Hospital of Shanghai Jiaotong University, Shanghai, People’s Republic of China
| | - Zan Shen
- Department of Oncology, Affiliated Sixth People’s Hospital of Shanghai Jiaotong University, Shanghai, People’s Republic of China
| | - Yang Yao
- Department of Oncology, Affiliated Sixth People’s Hospital of Shanghai Jiaotong University, Shanghai, People’s Republic of China
| | - Aina He
- Department of Oncology, Affiliated Sixth People’s Hospital of Shanghai Jiaotong University, Shanghai, People’s Republic of China
| | - Daliu Min
- Department of Oncology, Affiliated Sixth People’s Hospital of Shanghai Jiaotong University, Shanghai, People’s Republic of China
| |
Collapse
|
7
|
Kim EH, Kim JY, Kim MS, Vares G, Ohno T, Takahashi A, Uzawa A, Seo SJ, Sai S. Molecular mechanisms underlying the enhancement of carbon ion beam radiosensitivity of osteosarcoma cells by miR-29b. Am J Cancer Res 2020; 10:4357-4371. [PMID: 33415004 PMCID: PMC7783744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/28/2020] [Indexed: 06/12/2023] Open
Abstract
Carbon ion radiotherapy (CIRT) is more effective than conventional photon beam radiotherapy in treating osteosarcoma (OSA); however, the outcomes of CIRT alone are still unsatisfactory. In this study, we aimed to investigate whether miR-29b acts as a radiosensitizer for CIRT. The OSA cell lines U2OS and KHOS were treated with carbon ion beam alone, γ-ray irradiation alone, or in combination with an miR-29b mimic. OSA cell death as well as invasive and migratory abilities were analyzed through viability, colony formation, Transwell, and apoptosis assays. miR-29 expression was downregulated in OSA tissues compared to that in normal tissues and was associated with metastasis and relapse in patients with OSA. Further, miR-29b was found to directly target the transcription factor Sp1 and suppress the activation of the phosphatase and tensin homolog (PTEN)-AKT pathway. Conversely, Sp1 was found to attenuate the inhibitory effects of miR-29b in OSA cells. When used in combination with miR-29b mimic, carbon ion beam markedly inhibited invasion, migration, and proliferation of OSA cells and promoted apoptosis by inhibiting AKT phosphorylation in a Sp1/PTEN-mediated manner. Taken together, miR-29b mimic improved the radiosensitivity of OSA cells via the PTEN-AKT-Sp1 signaling pathway, presenting a novel strategy for the development of carbon ion beam combination therapy.
Collapse
Affiliation(s)
- Eun Ho Kim
- Department of Biochemistry, School of Medicine, Daegu Catholic UniversityNam-gu, Daegu 42472, South Korea
| | - Jeong Yub Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical SciencesSeoul 01812, Republic of Korea
| | - Mi-Sook Kim
- Department of Radiation Oncology, Korea Institute of Radiological and Medical SciencesSeoul 139-706, South Korea
| | - Guillaume Vares
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University (OIST)Japan
| | - Tatsuya Ohno
- Gunma University Heavy Ion Medical Center3-39-22 Showa-machi, Maebashi 371-8511, Gunma, Japan
| | - Akihisa Takahashi
- Gunma University Heavy Ion Medical Center3-39-22 Showa-machi, Maebashi 371-8511, Gunma, Japan
| | - Akiko Uzawa
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and TechnologyChiba, Japan
| | - Seung-Jun Seo
- Department of Biochemistry, School of Medicine, Daegu Catholic UniversityNam-gu, Daegu 42472, South Korea
| | - Sei Sai
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and TechnologyChiba, Japan
| |
Collapse
|
8
|
Identification of Kinesin Family Member 2A (KIF2A) as a Promising Therapeutic Target for Osteosarcoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7102757. [PMID: 33204709 PMCID: PMC7655250 DOI: 10.1155/2020/7102757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/07/2019] [Accepted: 08/12/2020] [Indexed: 12/30/2022]
Abstract
Background Osteosarcoma is known as a type of common human bone malignancy, and more therapeutic targets are still required to combat this disease. In recent years, the involvement of KIF2A in cancer progression has been widely revealed; however, its potential effect on osteosarcoma development remains unknown. This study is to assess the KIF2A expression levels in human osteosarcoma tissues and explore its potential role in osteosarcoma development. Methods Immunohistochemical (IHC) assays were conducted to evaluate the expression levels of KIF2A in a total of 74 samples of osteosarcoma tissues and adjacent nontumor tissues. According to the staining intensity in tumor tissues, patients were divided into highly expressed and low expression KIF2A groups. The possible links between the KIF2A expression and the clinical pathological features were explored and analyzed, and the effects of KIF2A on osteosarcoma cell proliferation, migration, and invasion were detected through colony formation assay, MTT assay, wound closure assay, and transwell assay, respectively. The effects of KIF2A on tumor growth and metastasis were detected by the use of animal models. Results KIF2A was highly expressed in human osteosarcoma tissues. Meanwhile, KIF2A was obviously correlated to the tumor size (P = 0.001∗) and clinical stage (P = 0.014∗) of osteosarcoma patients. Our results also revealed that the ablation of KIF2A dramatically blocked the proliferation, migration, and invasion capacity of osteosarcoma cells in vitro and blocked tumor growth and metastasis in mice. Conclusions We investigated the involvement of KIF2A in the development and metastasis of osteosarcoma and therefore thought KIF2A as a promising therapeutic target for osteosarcoma treatment.
Collapse
|
9
|
Wen F, Huang J, Lu X, Huang W, Wang Y, Bai Y, Ruan S, Gu S, Chen X, Shu P. Identification and prognostic value of metabolism-related genes in gastric cancer. Aging (Albany NY) 2020; 12:17647-17661. [PMID: 32920549 PMCID: PMC7521523 DOI: 10.18632/aging.103838] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
Gastric cancer (GC) is one of the most commonly occurring cancers, and metabolism-related genes (MRGs) are associated with its development. Transcriptome data and the relevant clinical data were downloaded from The Cancer Genome Atlas and Gene Expression Omnibus databases, and we identified 194 MRGs differentially expressed between GC and adjacent nontumor tissues. Through univariate Cox and lasso regression analyses we identified 13 potential prognostic differentially expressed MRGs (PDEMRGs). These PDEMRGs (CKMT2, ME1, GSTA2, ASAH1, GGT5, RDH12, NNMT, POLR1A, ACYP1, GLA, OPLAH, DCK, and POLD3) were used to build a Cox regression risk model to predict the prognosis of GC patients. Further univariate and multivariate Cox regression analyses showed that this model could serve as an independent prognostic parameter. Gene Set Enrichment Analysis showed significant enrichment pathways that could potentially contribute to pathogenesis. This model also revealed the probability of genetic alterations of PDEMRGs. We have thus identified a valuable metabolic model for predicting the prognosis of GC patients. The PDEMRGs in this model reflect the dysregulated metabolic microenvironment of GC and provide useful noninvasive biomarkers.
Collapse
Affiliation(s)
- Fang Wen
- Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China,Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China,Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Jiani Huang
- Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China,College of Traditional Chinese Medicine, College of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaona Lu
- Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China,Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China,Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Wenjie Huang
- Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China,Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China,Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Yulan Wang
- Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China,Department of Hematology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Yingfeng Bai
- Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China,College of Traditional Chinese Medicine, College of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shuai Ruan
- Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China,Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China,Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Suping Gu
- Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China,Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China,Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Xiaoxue Chen
- Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China,Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China,Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Peng Shu
- Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China,Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China,Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| |
Collapse
|
10
|
Zheng M, Wu Y. Piceatannol suppresses proliferation and induces apoptosis by regulation of the microRNA‑21/phosphatase and tensin homolog/protein kinase B signaling pathway in osteosarcoma cells. Mol Med Rep 2020; 22:3985-3993. [PMID: 32901863 PMCID: PMC7533446 DOI: 10.3892/mmr.2020.11484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 08/22/2019] [Indexed: 12/13/2022] Open
Abstract
Piceatannol (Pice), a natural analog of resveratrol, has been identified as an anticancer agent in various cancers by modulating the expression of microRNAs (miRNAs/miRs). However, the molecular mechanisms underlying the anticancer effects of Pice in osteosarcoma (OS) cells remain unclear. Thus, we hypothesized that Pice exerts anticancer effects on OS cells via the regulation of miRNA expression. Herein, we performed a MTT assay and flow cytometric analysis to determine cell viability and apoptosis in OS cells treated with Pice, respectively. Our results showed that Pice inhibits proliferation in a dose-dependent manner induces the apoptosis of OS cells. More importantly, miRNA microarray analysis identified that Pice alters miRNA expression profiles in human OS cells after treatment with Pice, and miR-21 was the most significantly downregulated. In addition, the therapeutic effects of Pice on OS cells were weakened by restoration of miR-21. In addition, we further verified that phosphatase and tensin homolog (PTEN), a tumor suppressor gene, is the functional target of miR-21 and Pice blocks the PTEN/AKT signaling pathway through inhibiting miR-21 expression in OS cells. Our findings suggested that Pice may exert anticancer effects on OS cells via mediating the miR-21/PTEN/AKT signaling pathway and could be considered to be a potential anticancer agent for treating OS.
Collapse
Affiliation(s)
- Mingyue Zheng
- Department of Acu‑mox and Tuina, The Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| | - Yaochi Wu
- Department of Acu‑mox and Tuina, The Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, P.R. China
| |
Collapse
|
11
|
Wang R, Lu A, Liu W, Yue J, Sun Q, Chen J, Luan H, Zhai Y, Li B, Jiang Z, Li Y. Searching for valuable differentially expressed miRNAs in postmenopausal osteoporosis by RNA sequencing. J Obstet Gynaecol Res 2020; 46:1183-1192. [PMID: 32429001 DOI: 10.1111/jog.14307] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/20/2020] [Accepted: 04/30/2020] [Indexed: 12/24/2022]
Abstract
AIM Postmenopausal osteoporosis is a systemic and chronic bone disease in women. In order to understand the pathological mechanism of postmenopausal osteoporosis, we aimed to find the potential differentially expressed miRNAs in the disease. METHODS Firstly, RNA sequencing was used to identify differentially expressed miRNAs, followed by the construction of the miRNA-target mRNA regulatory network. Then, Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes were used to analyze the biological function of target mRNAs. Finally, electronic validation of identified differentially expressed miRNAs and target mRNAs was performed. RESULTS A total of 33 differentially expressed miRNAs (18 upregulated and 15 downregulated miRNAs) and 6820 miRNA-mRNA pairs were identified. Among which, seven miRNAs with high degree including hsa-miR-17-5p, hsa-miR-1-3p, hsa-miR-193b-3p, hsa-miR-125b-5p, hsa-miR-10b-5p, hsa-miR-100-5p and hsa-miR-30a-3p were obtained in the miRNA-mRNA regulatory network. TGF-beta was the most significantly enriched signaling pathway of target mRNAs. The electronic validation result of hsa-miR-1-3p, hsa-miR-193b-3p, hsa-miR-10b-5p, hsa-miR-100-5p, hsa-miR-133b, hsa-miR-708-5p, CRK, RAB5C, CCND1 and PCYOX1 was consisted with the RNA sequencing analysis. CONCLUSION Dysfunctional miRNAs may play significant roles in postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Randong Wang
- Department of Orthopaedics, Aviation General Hospital, Beijing, China
| | - Aiping Lu
- Department of Anesthesiology, Aviation General Hospital, Beijing, China
| | - Wangyan Liu
- Department of Orthopaedics, Aviation General Hospital, Beijing, China
| | - Juan Yue
- Department of Orthopaedics, Aviation General Hospital, Beijing, China
| | - Qiang Sun
- Department of Orthopaedics, Aviation General Hospital, Beijing, China
| | - Jiao Chen
- Department of Orthopaedics, Aviation General Hospital, Beijing, China
| | - Huijie Luan
- Department of Orthopaedics, Aviation General Hospital, Beijing, China
| | - Yaling Zhai
- Department of Orthopaedics, Aviation General Hospital, Beijing, China
| | - Bing Li
- Department of Orthopaedics, Aviation General Hospital, Beijing, China
| | - Zhongcai Jiang
- Department of Pathology, Aviation General Hospital, Beijing, China
| | - Yingnan Li
- Department of Orthopaedics, Aviation General Hospital, Beijing, China
| |
Collapse
|
12
|
Chen Y, Wang G, Lin B, Huang J. MicroRNA‐93‐5p expression in tumor tissue and its tumor suppressor function via targeting programmed death ligand‐1 in colorectal cancer. Cell Biol Int 2020; 44:1224-1236. [PMID: 32068322 DOI: 10.1002/cbin.11323] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/16/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Yi‐Lin Chen
- Department of General SurgeryThe Second Affiliated Hospital of Fujian Medical University Quanzhou 362000 Fujian China
| | - Gao‐Xiong Wang
- Department of General SurgeryThe Second Affiliated Hospital of Fujian Medical University Quanzhou 362000 Fujian China
| | - Bei‐An Lin
- Department of General SurgeryThe Second Affiliated Hospital of Fujian Medical University Quanzhou 362000 Fujian China
| | - Jing‐Shan Huang
- Department of General SurgeryThe Second Affiliated Hospital of Fujian Medical University Quanzhou 362000 Fujian China
| |
Collapse
|
13
|
Feng T, Zhu Z, Jin Y, Wang H, Mao X, Liu D, Li Y, Lu L, Zuo G. The microRNA‑708‑5p/ZEB1/EMT axis mediates the metastatic potential of osteosarcoma. Oncol Rep 2019; 43:491-502. [PMID: 31894343 PMCID: PMC6967104 DOI: 10.3892/or.2019.7452] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/22/2019] [Indexed: 12/19/2022] Open
Abstract
MicroRNA‑708‑5p (miR‑708‑5p) and epithelial‑to‑mesenchymal transition (EMT) have been widely identified to contribute to the pathogenesis and progression of multiple cancers. However, the connection between miR‑708‑5p and EMT has not been sufficiently clarified. Therefore, our research aimed to investigate the impact of miR‑708‑5p on EMT and the metastasis of osteosarcoma (OS). We first analyzed the differentially expressed microRNAs (DEmiRNAs) from the GSE70367 dataset. We found that the expression of miR‑708‑5p was lower in OS cells. Overexpression of miR‑708‑5p was able to impair the migration and invasion of OS cells. Moreover, miR‑708‑5p inhibited EMT of OS cells MG63 and SaOS‑2, wherein E‑cadherin was increased, and N‑cadherin, vimentin, and Snail were decreased. Semaphorin 4C (SEMA4C), mitogen‑activated protein kinase kinase kinase 3 (MAP3K3), and zinc finger E‑box‑binding homeobox 1 (ZEB1) were predicted as target genes of miR‑708‑5p by bioinformatics method. Only ZEB1, one of the EMT‑inducing transcription factors, was validated as the direct target gene of miR‑708‑5p in OS cells through dual‑luciferase reporter assay and Western blot analysis. Knockdown of ZEB1 was found to inhibit the metastasis of MG63 and SaOS‑2 cells, whereas ZEB1 over-expression promoted their metastasis. In summary, miR‑708‑5p impaired the metastasis and EMT of OS, which was found to be mediated by inhibition of ZEB1.
Collapse
Affiliation(s)
- Tianyu Feng
- Key Laboratory of Diagnostic Medicine Designated by The Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Zhongkai Zhu
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yaqian Jin
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Hao Wang
- Key Laboratory of Diagnostic Medicine Designated by The Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xiaohan Mao
- Key Laboratory of Diagnostic Medicine Designated by The Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Dan Liu
- Key Laboratory of Diagnostic Medicine Designated by The Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yiling Li
- Key Laboratory of Diagnostic Medicine Designated by The Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Lixia Lu
- Key Laboratory of Diagnostic Medicine Designated by The Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Guowei Zuo
- Key Laboratory of Diagnostic Medicine Designated by The Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
14
|
Viera GM, Salomao KB, de Sousa GR, Baroni M, Delsin LEA, Pezuk JA, Brassesco MS. miRNA signatures in childhood sarcomas and their clinical implications. Clin Transl Oncol 2019; 21:1583-1623. [PMID: 30949930 DOI: 10.1007/s12094-019-02104-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/27/2019] [Indexed: 02/06/2023]
Abstract
Progresses in multimodal treatments have significantly improved the outcomes for childhood cancer. Nonetheless, for about one-third of patients with Ewing sarcoma, rhabdomyosarcoma, or osteosarcoma steady remission has remained intangible. Thus, new biomarkers to improve early diagnosis and the development of precision-targeted medicine remain imperative. Over the last decade, remarkable progress has been made in the basic understanding of miRNAs function and in interpreting the contribution of their dysregulation to cancer development and progression. On this basis, this review focuses on what has been learned about the pivotal roles of miRNAs in the regulation of key genes implicated in childhood sarcomas.
Collapse
Affiliation(s)
- G M Viera
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - K B Salomao
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - G R de Sousa
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - M Baroni
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - L E A Delsin
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - J A Pezuk
- Anhanguera University of Sao Paulo, UNIAN/SP, Sao Paulo, Brasil
| | - M S Brassesco
- Faculty of Philosophy, Sciences and Letters at Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brasil.
- Departamento de Biologia, FFCLRP-USP, Av. Bandeirantes, 3900, Bairro Monte Alegre, Ribeirao Preto, SP, CEP 14040-901, Brazil.
| |
Collapse
|
15
|
Zhang C, Wan J, Long F, Liu Q, He H. Identification and validation of microRNAs and their targets expressed in osteosarcoma. Oncol Lett 2019; 18:5628-5636. [PMID: 31656545 DOI: 10.3892/ol.2019.10864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 08/15/2018] [Indexed: 12/14/2022] Open
Abstract
Osteosarcoma (OS) is the most common type of bone cancer in children and adolescents, and has a poor prognosis. Previous studies have demonstrated that a number of microRNAs (miRNAs) were deregulated in OS, and that the expression of certain miRNAs was correlated with the stage of OS. Therefore, miRNAs may serve a role as a diagnostic and prognostic biomarker of OS. miRNA and mRNA integrated analysis of public expression profiles in the Gene Expression Omnibus database for OS was performed, and the regulated targets of miRNA in OS were predicted. Next, the regulatory network of miRNAs/genes was constructed and verified by reverse transcription-quantitative polymerase chain reaction in tissues and MG-63 cell lines. Two miRNA expression profiling studies and four eligible mRNA expression profiling studies were selected. Ten upregulated miRNAs, 5 downregulated miRNAs and 5 DGEs were identified in OS compared with normal tissues. hsa-miR-346 was inversely correlated with the target gene c-FLIP, which was consistent with the results of integrated analysis. In vitro, pre-miRNA-346 can downregulate the protein expression of c-FLIP, while not changing the mRNA level of c-FLIP. In the regulatory network, hsa-miR-346 and its target gene, c-FLIP, can be used as biomarkers for an earlier diagnosis of OS.
Collapse
Affiliation(s)
- Can Zhang
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Jun Wan
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Feng Long
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Qing Liu
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Hongbo He
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
16
|
Jiang W, Yu Y, Liu J, Zhao Q, Wang J, Zhang J, Dang X. Downregulation of Cdc6 inhibits tumorigenesis of osteosarcoma in vivo and in vitro. Biomed Pharmacother 2019; 115:108949. [DOI: 10.1016/j.biopha.2019.108949] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 02/06/2023] Open
|
17
|
Lv D, Zhen Z, Huang D. MicroRNA-432 is downregulated in osteosarcoma and inhibits cell proliferation and invasion by directly targeting metastasis-associated in colon cancer-1. Exp Ther Med 2018; 17:919-926. [PMID: 30651881 DOI: 10.3892/etm.2018.7029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/12/2018] [Indexed: 01/05/2023] Open
Abstract
The aberrant expression of microRNAs (miRNAs/miRs) in osteosarcoma (OS) has been demonstrated in previous studies, and deregulation of miRNA expression has been associated with several types of cancer, including OS development and progression. Therefore, identifying the functional role of miRNAs in OS onset and development may facilitate the identification of novel and effective therapeutic targets for the treatment of patients with OS. Previous studies have demonstrated that miR-432 is involved in tumor formation and progression in several types of cancer. However, the expression pattern, functional role and underlying mechanism of miR-432 in OS remain unknown. In the current study, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to measure miR-432 expression levels in OS tissue samples and cell lines. The effect of miR-432 overexpression on OS cell proliferation and invasion was detected using Cell Counting Kit-8 and Transwell invasion assays, respectively. Bioinformatics analysis was used to predict metastasis-associated in colon cancer 1 (MACC1) as a putative target of miR-432 and this was confirmed using a dual-luciferase reporter assay, RT-qPCR and western blot analysis. The current study demonstrated that miR-432 expression levels were significantly reduced in OS tissue samples and cell lines. In addition, functional assays revealed that overexpression of miR-432 significantly decreased OS cell proliferation and invasion. Furthermore, MACC1 was identified as a direct target gene of miR-432 in OS. MACC1 expression levels were significantly increased in OS tissue samples and an inverse correlation was observed between miR-432 and MACC1 expression in OS tissue samples. In addition, rescue experiments demonstrated that overexpression of MACC1 partially reversed the anti-proliferative and anti-invasive effects of miR-432 in OS cells. In conclusion, the present study demonstrated that miR-432 inhibited OS cell proliferation and invasion in vitro through direct targeting of MACC1, and miR-432 may be a potential therapeutic target for the treatment of OS.
Collapse
Affiliation(s)
- Dengkun Lv
- Department of Pediatric Surgery, Jining No. 1 People's Hospital, Jinan, Shandong 272011, P.R. China
| | - Zhen Zhen
- Department of Emergency Surgery, Jining No. 1 People's Hospital, Jinan, Shandong 272011, P.R. China
| | - Defa Huang
- Department of Pediatric Surgery, Jining No. 1 People's Hospital, Jinan, Shandong 272011, P.R. China
| |
Collapse
|
18
|
Zhang L, Yu S. Role of miR-520b in non-small cell lung cancer. Exp Ther Med 2018; 16:3987-3995. [PMID: 30402147 PMCID: PMC6200959 DOI: 10.3892/etm.2018.6732] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 05/11/2018] [Indexed: 12/14/2022] Open
Abstract
The aim of the present study was to investigate the expression of microRNA (miR)-520b in non-small cell lung cancer (NSCLC) and its biological functions. Reverse transcription-quantitative polymerase chain reaction was used to detect the expression of miR-520b in 52 cases of NSCLC tissues, and its associations with tumor clinical staging and lymph node metastasis were analyzed. miR-520b mimics was transfected into A549 and Calu-3 cells. Cell proliferation, cell cycle, and cell invasion and migration abilities were assessed via cell counting kit-8 assay, flow cytometry and Transwell chamber assay, respectively. Western blot analysis was performed to detected protein expression levels, and dual luciferase reporter assay was used to detect the gene interaction. miR-520b expression was significantly downregulated in NSCLC. The expression of miR-520b in tumor tissues at N1 stage was lower than that at the N0 stage. miR-520b expression was negatively associated with clinical TNM staging. Furthermore, miR-520b mimic transfection inhibited the proliferation and invasion and metastasis abilities of A549 and Calu-3 cells. The expression of Rab22A was downregulated in the miR-520b mimics-transfected cells, whereas E-cadherin expression was increased, and vimentin expression was downregulated. Dual luciferase reporter assay demonstrated that miR-520b directly targeted the expression of Rab22A. Furthermore, Rab22A reversal downregulated the inhibitory effect of miR-520b. miR-520b expression was downregulated in NSCLC, which was negatively correlated with lymph node metastasis and TNM staging. miR-520b targeted on Rab22A to work as a tumor suppressor, inhibiting tumor proliferation and metastasis.
Collapse
Affiliation(s)
- Linlin Zhang
- Respiratory Department, Shandong Chest Hospital, Jinan No. 5 People's Hospital, Jinan, Shandong 250000, P.R. China
| | - Shuangquan Yu
- Department of General Surgery, Jinan No. 5 People's Hospital, Jinan, Shandong 250000, P.R. China
| |
Collapse
|
19
|
Xie L, Yao Z, Zhang Y, Li D, Hu F, Liao Y, Zhou L, Zhou Y, Huang Z, He Z, Han L, Yang Y, Yang Z. Deep RNA sequencing reveals the dynamic regulation of miRNA, lncRNAs, and mRNAs in osteosarcoma tumorigenesis and pulmonary metastasis. Cell Death Dis 2018; 9:772. [PMID: 29991755 PMCID: PMC6039476 DOI: 10.1038/s41419-018-0813-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/23/2018] [Accepted: 05/25/2018] [Indexed: 02/06/2023]
Abstract
Osteosarcoma (OS) is the most common pediatric malignant bone tumor, and occurrence of pulmonary metastasis generally causes a rapid and fatal outcome. Here we aimed to provide clues for exploring the mechanism of tumorigenesis and pulmonary metastasis for OS by comprehensive analysis of microRNA (miRNA), long non-coding RNA (lncRNA), and mRNA expression in primary OS and OS pulmonary metastasis. In this study, deep sequencing with samples from primary OS (n = 3), pulmonary metastatic OS (n = 3), and normal controls (n = 3) was conducted and differentially expressed miRNAs (DEmiRNAs), lncRNAs (DElncRNAs), and mRNAs (DEmRNAs) between primary OS and normal controls as well as pulmonary metastatic and primary OS were identified. A total of 65 DEmiRNAs, 233 DElncRNAs, and 1405 DEmRNAs were obtained between primary OS and normal controls; 48 DEmiRNAs, 50 DElncRNAs, and 307 DEmRNAs were obtained between pulmonary metastatic and primary OS. Then, the target DEmRNAs and DElncRNAs regulated by the same DEmiRNAs were searched and the OS tumorigenesis-related and OS pulmonary metastasis-related competing endogenous RNA (ceRNA) networks were constructed, respectively. Based on these ceRNA networks and Venn diagram analysis, we obtained 3 DEmiRNAs, 15 DElncRNAs, and 100 DEmRNAs, and eight target pairs including miR-223-5p/(CLSTN2, AC009951.1, LINC01705, AC090673.1), miR-378b/(ALX4, IGSF3, SULF1), and miR-323b-3p/TGFBR3 were involved in both tumorigenesis and pulmonary metastasis of OS. The TGF-β superfamily co-receptor TGFBR3, which is regulated by miR-323b-3p, acts as a tumor suppressor in OS tumorigenesis and acts as a tumor promoter in pulmonary metastatic OS via activation of the epithelial-mesenchymal transition (EMT) program.In conclusion, the OS transcriptome (miRNA, lncRNA, and mRNA) is dynamically regulated. These analyses might provide new clues to uncover the molecular mechanisms and signaling networks that contribute to OS progression, toward patient-tailored and novel-targeted treatments.
Collapse
MESH Headings
- Adolescent
- Adult
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinogenesis/genetics
- Carcinogenesis/metabolism
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Computational Biology
- Female
- Gene Expression Regulation, Neoplastic/genetics
- Gene Expression Regulation, Neoplastic/physiology
- High-Throughput Nucleotide Sequencing/methods
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Male
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Osteosarcoma/genetics
- Osteosarcoma/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Analysis, RNA/methods
- Young Adult
Collapse
Affiliation(s)
- Lin Xie
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, 650118, Yunnan, China
- Department of Medical Oncology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, 650118, Yunnan, China
| | - Zhihong Yao
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, 650118, Yunnan, China
| | - Ya Zhang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, 650118, Yunnan, China
| | - Dongqi Li
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, 650118, Yunnan, China
| | - Fengdi Hu
- Department of Medical Oncology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, 650118, Yunnan, China
| | - Yedan Liao
- Department of Medical Oncology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, 650118, Yunnan, China
| | - Ling Zhou
- Department of Medical Oncology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, 650118, Yunnan, China
| | - Yonghong Zhou
- Department of Medical Oncology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, 650118, Yunnan, China
| | - Zeyong Huang
- Medical School, Kunming University of Science and Technology, Kunming, 650504, Yunnan, China
| | - Zewei He
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, 650118, Yunnan, China
| | - Lei Han
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, 650118, Yunnan, China
| | - Yihao Yang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, 650118, Yunnan, China
| | - Zuozhang Yang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, 650118, Yunnan, China.
| |
Collapse
|
20
|
Ye Y, Li Y, Wei Y, Xu Y, Wang R, Fu Z, Zheng S, Zhou Q, Zhou Y, Chen R, Chen T. Anticancer effect of HOTTIP regulates human pancreatic cancer via the metabotropic glutamate receptor 1 pathway. Oncol Lett 2018; 16:1937-1942. [PMID: 30008887 DOI: 10.3892/ol.2018.8870] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 10/20/2017] [Indexed: 12/24/2022] Open
Abstract
The present study aimed to determine how the expression and function of HOTTIP modifies, and regulates the metabotropic glutamate receptor 1 (mGluR1) to affect human pancreatic cancer cell viability. HOTTIP expression was higher in human pancreatic cancer tissue compared with in para-carcinoma tissue. However, downregulation of HOTTIP expression was revealed to significantly reduce cell viability, induce apoptosis, promote caspase-3 and caspase-8 activities and increase Bax expression in pancreatic cancer cells. Additionally, downregulation of HOTTIP expression significantly suppressed mGluR1 and mitigated activation of the phosphoinositide 3-kinase (PI3K)/Akt/mechanistic target of rapamycin (mTOR) pathway in pancreatic cancer cells. To the best of our knowledge, the present study is the first to identify that the anticancer effect of HOTTIP against human pancreatic cancer functions the mGluR1 pathway.
Collapse
Affiliation(s)
- Yibiao Ye
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Guangzhou, Guangdong 510120, P.R. China
| | - Yanshan Li
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Guangzhou, Guangdong 510120, P.R. China.,Department of Blood Transfusion, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Yunping Wei
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Guangzhou, Guangdong 510120, P.R. China
| | - Yunxiuxiu Xu
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Guangzhou, Guangdong 510120, P.R. China
| | - Ruomei Wang
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Guangzhou, Guangdong 510120, P.R. China
| | - Zhiqiang Fu
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Guangzhou, Guangdong 510120, P.R. China.,Department of Biliary Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Shangyou Zheng
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Guangzhou, Guangdong 510120, P.R. China.,Department of Biliary Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Quanbo Zhou
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Guangzhou, Guangdong 510120, P.R. China.,Department of Biliary Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Yu Zhou
- Department of General Surgery, Guangdong General Hospital, Guangzhou, Guangdong 510080, P.R. China
| | - Rufu Chen
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Guangzhou, Guangdong 510120, P.R. China.,Department of Biliary Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Tao Chen
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
21
|
Huang S, Sun C, Hou Y, Tang Y, Zhu Z, Zhang Z, Zhang Y, Wang L, Zhao Q, Chen MG, Guo Z, Wang D, Ju W, Zhou Q, Wu L, He X. A comprehensive bioinformatics analysis on multiple Gene Expression Omnibus datasets of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Sci Rep 2018; 8:7630. [PMID: 29769552 PMCID: PMC5955936 DOI: 10.1038/s41598-018-25658-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/19/2018] [Indexed: 12/12/2022] Open
Abstract
Fatty liver disease is one of the leading causes of chronic damage in western countries. Approximately 25% of adults in the United States have fatty livers in the absence of excessive alcohol consumption, a condition termed nonalcoholic fatty liver disease (NAFLD). Little is known about the prevalence and genetic background of NAFLD or the factors that determine its development. In this study, we used the Gene-Cloud of Biotechnology Information bioinformatics platform to carry out a comprehensive bioinformatics analysis identifying differentially expressed genes (DEGs), key biological processes and intersecting pathways. We imported 3 Gene Expression Omnibus datasets (GSE31803, GSE49541, and GSE63067). Then, we assessed the expression of the DEGs in clinical samples. We found that CD24 was the only gene co-expressed in all 3 datasets. "Glycolysis/gluconeogenesis", "p53 signaling pathway" and "glycine, serine and threonine metabolism" were 3 common pathways related to the fatty liver process. In NAFLD tissues, CD24, COL1A1, LUM, THBS2 and EPHA3 were upregulated, and PZP was downregulated. CD24 is a core gene among these DEGs and have not yet been studied of its impact on NAFLD. Co-expressed genes, common biological processes and intersecting pathways identified in the study might play an important role in NAFLD progression. Further studies are needed to elucidate the mechanism of these potential genes and pathways in NAFLD.
Collapse
Affiliation(s)
- Shanzhou Huang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Chengjun Sun
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Yuchen Hou
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Yunhua Tang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Zebin Zhu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Zhiheng Zhang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Yixi Zhang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Linhe Wang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Qiang Zhao
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Mao-Gen Chen
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Zhiyong Guo
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Dongping Wang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Weiqiang Ju
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Qi Zhou
- Department of General Surgery, Hui Ya Hospital of The First Affiliated Hospital, Sun Yat-sen University, Huizhou, Guangdong, 516081, China.
| | - Linwei Wu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China.
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China.
| | - Xiaoshun He
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China.
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China.
| |
Collapse
|