3
|
Lall D, Lorenzini I, Mota TA, Bell S, Mahan TE, Ulrich JD, Davtyan H, Rexach JE, Muhammad AKMG, Shelest O, Landeros J, Vazquez M, Kim J, Ghaffari L, O'Rourke JG, Geschwind DH, Blurton-Jones M, Holtzman DM, Sattler R, Baloh RH. C9orf72 deficiency promotes microglial-mediated synaptic loss in aging and amyloid accumulation. Neuron 2021; 109:2275-2291.e8. [PMID: 34133945 DOI: 10.1016/j.neuron.2021.05.020] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 02/13/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022]
Abstract
C9orf72 repeat expansions cause inherited amyotrophic lateral sclerosis (ALS)/frontotemporal dementia (FTD) and result in both loss of C9orf72 protein expression and production of potentially toxic RNA and dipeptide repeat proteins. In addition to ALS/FTD, C9orf72 repeat expansions have been reported in a broad array of neurodegenerative syndromes, including Alzheimer's disease. Here we show that C9orf72 deficiency promotes a change in the homeostatic signature in microglia and a transition to an inflammatory state characterized by an enhanced type I IFN signature. Furthermore, C9orf72-depleted microglia trigger age-dependent neuronal defects, in particular enhanced cortical synaptic pruning, leading to altered learning and memory behaviors in mice. Interestingly, C9orf72-deficient microglia promote enhanced synapse loss and neuronal deficits in a mouse model of amyloid accumulation while paradoxically improving plaque clearance. These findings suggest that altered microglial function due to decreased C9orf72 expression directly contributes to neurodegeneration in repeat expansion carriers independent of gain-of-function toxicities.
Collapse
Affiliation(s)
- Deepti Lall
- Center for Neural Science and Medicine, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA; Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Ileana Lorenzini
- Department of Neurobiology, Barrow Neurological Institute, 350 W. Thomas Road, Phoenix, AZ 85013, USA
| | - Thomas A Mota
- Center for Neural Science and Medicine, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA; Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Shaughn Bell
- Center for Neural Science and Medicine, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA; Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Thomas E Mahan
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Jason D Ulrich
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Hayk Davtyan
- Institute for Memory Impairments and Neurological Disorders, Sue & Bill Gross Stem Cell Research Center, 3200 Gross Hall, 845 Health Sciences Road, University of California, Irvine, Irvine, CA 92697, USA
| | - Jessica E Rexach
- Program in Neurogenetics, Department of Neurology, Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - A K M Ghulam Muhammad
- Center for Neural Science and Medicine, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA; Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Oksana Shelest
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Jesse Landeros
- Center for Neural Science and Medicine, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA; Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Michael Vazquez
- Center for Neural Science and Medicine, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA; Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Junwon Kim
- Department of Neurobiology, Barrow Neurological Institute, 350 W. Thomas Road, Phoenix, AZ 85013, USA
| | - Layla Ghaffari
- Department of Neurobiology, Barrow Neurological Institute, 350 W. Thomas Road, Phoenix, AZ 85013, USA
| | - Jacqueline Gire O'Rourke
- Center for Neural Science and Medicine, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA; Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Daniel H Geschwind
- Program in Neurogenetics, Department of Neurology, Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mathew Blurton-Jones
- Institute for Memory Impairments and Neurological Disorders, Sue & Bill Gross Stem Cell Research Center, 3200 Gross Hall, 845 Health Sciences Road, University of California, Irvine, Irvine, CA 92697, USA
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Rita Sattler
- Department of Neurobiology, Barrow Neurological Institute, 350 W. Thomas Road, Phoenix, AZ 85013, USA.
| | - Robert H Baloh
- Center for Neural Science and Medicine, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA; Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA; Department of Neurology, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA.
| |
Collapse
|
4
|
Smeyers J, Banchi EG, Latouche M. C9ORF72: What It Is, What It Does, and Why It Matters. Front Cell Neurosci 2021; 15:661447. [PMID: 34025358 PMCID: PMC8131521 DOI: 10.3389/fncel.2021.661447] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/17/2021] [Indexed: 12/11/2022] Open
Abstract
When the non-coding repeat expansion in the C9ORF72 gene was discovered to be the most frequent cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) in 2011, this gene and its derived protein, C9ORF72, were completely unknown. The mutation appeared to produce both haploinsufficiency and gain-of-function effects in the form of aggregating expanded RNAs and dipeptide repeat proteins (DPRs). An unprecedented effort was then unleashed to decipher the pathogenic mechanisms and the functions of C9ORF72 in order to design therapies. A decade later, while the toxicity of accumulating gain-of-function products has been established and therapeutic strategies are being developed to target it, the contribution of the loss of function starts to appear more clearly. This article reviews the current knowledge about the C9ORF72 protein, how it is affected by the repeat expansion in models and patients, and what could be the contribution of its haploinsufficiency to the disease in light of the most recent findings. We suggest that these elements should be taken into consideration to refine future therapeutic strategies, compensating for the decrease of C9ORF72 or at least preventing a further reduction.
Collapse
Affiliation(s)
- Julie Smeyers
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, DMU Neuroscience 6, Paris, France
- PSL Research university, EPHE, Neurogenetics team, Paris, France
| | - Elena-Gaia Banchi
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, DMU Neuroscience 6, Paris, France
| | - Morwena Latouche
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, DMU Neuroscience 6, Paris, France
- PSL Research university, EPHE, Neurogenetics team, Paris, France
| |
Collapse
|
5
|
Traiffort E, Morisset-Lopez S, Moussaed M, Zahaf A. Defective Oligodendroglial Lineage and Demyelination in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2021; 22:ijms22073426. [PMID: 33810425 PMCID: PMC8036314 DOI: 10.3390/ijms22073426] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/15/2021] [Accepted: 03/24/2021] [Indexed: 01/23/2023] Open
Abstract
Motor neurons and their axons reaching the skeletal muscle have long been considered as the best characterized targets of the degenerative process observed in amyotrophic lateral sclerosis (ALS). However, the involvement of glial cells was also more recently reported. Although oligodendrocytes have been underestimated for a longer time than other cells, they are presently considered as critically involved in axonal injury and also conversely constitute a target for the toxic effects of the degenerative neurons. In the present review, we highlight the recent advances regarding oligodendroglial cell involvement in the pathogenesis of ALS. First, we present the oligodendroglial cells, the process of myelination, and the tight relationship between axons and myelin. The histological abnormalities observed in ALS and animal models of the disease are described, including myelin defects and oligodendroglial accumulation of pathological protein aggregates. Then, we present data that establish the existence of dysfunctional and degenerating oligodendroglial cells, the chain of events resulting in oligodendrocyte degeneration, and the most recent molecular mechanisms supporting oligodendrocyte death and dysfunction. Finally, we review the arguments in support of the primary versus secondary involvement of oligodendrocytes in the disease and discuss the therapeutic perspectives related to oligodendrocyte implication in ALS pathogenesis.
Collapse
Affiliation(s)
- Elisabeth Traiffort
- Diseases and Hormones of the Nervous System U1195 INSERM, Paris Saclay University, 80 Rue du Général Leclerc, 94276 Le Kremlin-Bicêtre, France;
- Correspondence:
| | - Séverine Morisset-Lopez
- Centre de Biophysique Moléculaire, UPR 4301 CNRS, Orléans University, INSERM, rue Charles Sadron, CEDEX 02, 45071 Orleans, France; (S.M.-L.); (M.M.)
| | - Mireille Moussaed
- Centre de Biophysique Moléculaire, UPR 4301 CNRS, Orléans University, INSERM, rue Charles Sadron, CEDEX 02, 45071 Orleans, France; (S.M.-L.); (M.M.)
| | - Amina Zahaf
- Diseases and Hormones of the Nervous System U1195 INSERM, Paris Saclay University, 80 Rue du Général Leclerc, 94276 Le Kremlin-Bicêtre, France;
| |
Collapse
|
6
|
Cihankaya H, Theiss C, Matschke V. Little Helpers or Mean Rogue-Role of Microglia in Animal Models of Amyotrophic Lateral Sclerosis. Int J Mol Sci 2021; 22:ijms22030993. [PMID: 33498186 PMCID: PMC7863915 DOI: 10.3390/ijms22030993] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is one of the most common neurodegenerative diseases, causing degeneration of both upper and lower motor neurons in the central nervous system (CNS). ALS patients suffer from hyperreflexia, spasticity, paralysis and muscle atrophy and typically die due to respiratory failure 1–5 years after disease onset. In addition to the degeneration of motor neurons on the cellular level, ALS has been associated with neuroinflammation, such as microgliosis. Microglial activation in ALS can either be protective or degenerative to the neurons. Among others, mutations in superoxide dismutase 1 (SOD1), chromosome 9 open reading frame 72 (C9Orf72), transactive response DNA binding protein (TDP) 43 and vacuolar protein sorting-associated protein 54 (VPS54) genes have been associated with ALS. Here, we describe the dual role and functionality of microglia in four different in vivo ALS models and search for the lowest common denominator with respect to the role of microglia in the highly heterogeneous disease of ALS.
Collapse
Affiliation(s)
- Hilal Cihankaya
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, D-44801 Bochum, Germany; (H.C.); (C.T.)
- International Graduate School of Neuroscience (IGSN), Ruhr-University Bochum, D-44801 Bochum, Germany
| | - Carsten Theiss
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, D-44801 Bochum, Germany; (H.C.); (C.T.)
- International Graduate School of Neuroscience (IGSN), Ruhr-University Bochum, D-44801 Bochum, Germany
| | - Veronika Matschke
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, D-44801 Bochum, Germany; (H.C.); (C.T.)
- Correspondence: ; Tel.: +49-234-32-25018
| |
Collapse
|
7
|
Braems E, Swinnen B, Van Den Bosch L. C9orf72 loss-of-function: a trivial, stand-alone or additive mechanism in C9 ALS/FTD? Acta Neuropathol 2020; 140:625-643. [PMID: 32876811 PMCID: PMC7547039 DOI: 10.1007/s00401-020-02214-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/28/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022]
Abstract
A repeat expansion in C9orf72 is responsible for the characteristic neurodegeneration in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) in a still unresolved manner. Proposed mechanisms involve gain-of-functions, comprising RNA and protein toxicity, and loss-of-function of the C9orf72 gene. Their exact contribution is still inconclusive and reports regarding loss-of-function are rather inconsistent. Here, we review the function of the C9orf72 protein and its relevance in disease. We explore the potential link between reduced C9orf72 levels and disease phenotypes in postmortem, in vitro, and in vivo models. Moreover, the significance of loss-of-function in other non-coding repeat expansion diseases is used to clarify its contribution in C9orf72 ALS/FTD. In conclusion, with evidence pointing to a multiple-hit model, loss-of-function on itself seems to be insufficient to cause neurodegeneration in C9orf72 ALS/FTD.
Collapse
Affiliation(s)
- Elke Braems
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, 3000, Leuven, Belgium
- Laboratory of Neurobiology, Experimental Neurology, Center for Brain and Disease Research, VIB, Campus Gasthuisberg, O&N4, Herestraat 49, PB 602, 3000, Leuven, Belgium
| | - Bart Swinnen
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, 3000, Leuven, Belgium
- Laboratory of Neurobiology, Experimental Neurology, Center for Brain and Disease Research, VIB, Campus Gasthuisberg, O&N4, Herestraat 49, PB 602, 3000, Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, 3000, Leuven, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, 3000, Leuven, Belgium.
- Laboratory of Neurobiology, Experimental Neurology, Center for Brain and Disease Research, VIB, Campus Gasthuisberg, O&N4, Herestraat 49, PB 602, 3000, Leuven, Belgium.
| |
Collapse
|
8
|
Saba L, Viscomi MT, Martini A, Caioli S, Mercuri NB, Guatteo E, Zona C. Modified age-dependent expression of NaV1.6 in an ALS model correlates with motor cortex excitability alterations. Neurobiol Dis 2019; 130:104532. [PMID: 31302244 DOI: 10.1016/j.nbd.2019.104532] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/28/2019] [Accepted: 07/10/2019] [Indexed: 12/13/2022] Open
Abstract
Cortical hyperexcitability is an early and intrinsic feature of Amyotrophic Lateral Sclerosis (ALS), but the mechanisms underlying this critical neuronal dysfunction are poorly understood. Recently, we have demonstrated that layer V pyramidal neurons (PNs) in the primary motor cortex (M1) of one-month old (P30) G93A ALS mice display an early hyperexcitability status compared to Control mice. In order to investigate the time-dependent evolution of the cortical excitability in the G93A ALS model, here we have performed an electrophysiological and immunohistochemical study at three different mouse ages. M1 PNs from 14-days old (P14) G93A mice have shown no excitability alterations, while M1 PNs from 3-months old (P90) G93A mice have shown a hypoexcitability status, compared to Control mice. These age-dependent cortical excitability dysfunctions correlate with a similar time-dependent trend of the persistent sodium current (INaP) amplitude alterations, suggesting that INaP may play a crucial role in the G93A cortical excitability aberrations. Specifically, immunohistochemistry experiments have indicated that the expression level of the NaV1.6 channel, one of the voltage-gated Na+ channels mainly distributed within the central nervous system, varies in G93A primary motor cortex during disease progression, according to the excitability and INaP alterations, but not in other cortical areas. Microfluorometry experiments, combined with electrophysiological recordings, have verified that P30 G93A PNs hyperexcitability is associated to a greater accumulation of intracellular calcium ([Ca2+]i) compared to Control PNs, and that this difference is still present when G93A and Control PNs fire action potentials at the same frequency. These results suggest that [Ca2+]i de-regulation in G93A PNs may contribute to neuronal demise and that the NaV1.6 channels could be a potential therapeutic target to ameliorate ALS disease progression.
Collapse
Affiliation(s)
- Luana Saba
- Department of Systems Medicine, University of Rome "Tor Vergata" via Montpellier 1, Rome 00133, Italy
| | - Maria Teresa Viscomi
- Università Cattolica del Sacro Cuore, Istituto di Istologia ed Embriologia, Fondazione Policlinico Universitario A. Gemelli, Largo F. Vito 1, Rome 00168, Italy
| | - Alessandro Martini
- IRCCS Fondazione Santa Lucia, via del Fosso di Fiorano 64, Rome 00143, Italy
| | - Silvia Caioli
- IRCCS Fondazione Santa Lucia, via del Fosso di Fiorano 64, Rome 00143, Italy
| | - Nicola Biagio Mercuri
- Department of Systems Medicine, University of Rome "Tor Vergata" via Montpellier 1, Rome 00133, Italy; IRCCS Fondazione Santa Lucia, via del Fosso di Fiorano 64, Rome 00143, Italy
| | - Ezia Guatteo
- IRCCS Fondazione Santa Lucia, via del Fosso di Fiorano 64, Rome 00143, Italy; Department of Motor Science and Wellness, University of Naples 'Parthenope', Via Medina 40, Naples 80133, Italy
| | - Cristina Zona
- Department of Systems Medicine, University of Rome "Tor Vergata" via Montpellier 1, Rome 00133, Italy; IRCCS Fondazione Santa Lucia, via del Fosso di Fiorano 64, Rome 00143, Italy.
| |
Collapse
|