1
|
Zahergivar A, Singh S, Golagha M. Editorial for "Diffusion Tensor and Kurtosis MRI-Based Radiomics Analysis of Kidney Injury in Type 2 Diabetes". J Magn Reson Imaging 2024; 60:2088-2089. [PMID: 38329173 DOI: 10.1002/jmri.29290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024] Open
Affiliation(s)
- Aryan Zahergivar
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Shiva Singh
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Mahshid Golagha
- Urology Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Zhao K, Seeliger E, Niendorf T, Liu Z. Noninvasive Assessment of Diabetic Kidney Disease With MRI: Hype or Hope? J Magn Reson Imaging 2024; 59:1494-1513. [PMID: 37675919 DOI: 10.1002/jmri.29000] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023] Open
Abstract
Owing to the increasing prevalence of diabetic mellitus, diabetic kidney disease (DKD) is presently the leading cause of chronic kidney disease and end-stage renal disease worldwide. Early identification and disease interception is of paramount clinical importance for DKD management. However, current diagnostic, disease monitoring and prognostic tools are not satisfactory, due to their low sensitivity, low specificity, or invasiveness. Magnetic resonance imaging (MRI) is noninvasive and offers a host of contrast mechanisms that are sensitive to pathophysiological changes and risk factors associated with DKD. MRI tissue characterization involves structural and functional information including renal morphology (kidney volume (TKV) and parenchyma thickness using T1- or T2-weighted MRI), renal microstructure (diffusion weighted imaging, DWI), renal tissue oxygenation (blood oxygenation level dependent MRI, BOLD), renal hemodynamics (arterial spin labeling and phase contrast MRI), fibrosis (DWI) and abdominal or perirenal fat fraction (Dixon MRI). Recent (pre)clinical studies demonstrated the feasibility and potential value of DKD evaluation with MRI. Recognizing this opportunity, this review outlines key concepts and current trends in renal MRI technology for furthering our understanding of the mechanisms underlying DKD and for supplementing clinical decision-making in DKD. Progress in preclinical MRI of DKD is surveyed, and challenges for clinical translation of renal MRI are discussed. Future directions of DKD assessment and renal tissue characterization with (multi)parametric MRI are explored. Opportunities for discovery and clinical break-through are discussed including biological validation of the MRI findings, large-scale population studies, standardization of DKD protocols, the synergistic connection with data science to advance comprehensive texture analysis, and the development of smart and automatic data analysis and data visualization tools to further the concepts of virtual biopsy and personalized DKD precision medicine. We hope that this review will convey this vision and inspire the reader to become pioneers in noninvasive assessment and management of DKD with MRI. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Kaixuan Zhao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Erdmann Seeliger
- Institute of Translational Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Zaiyi Liu
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
3
|
Duan S, Geng L, Lu F, Chen C, Jiang L, Chen S, Zhang C, Huang Z, Zeng M, Sun B, Zhang B, Mao H, Xing C, Zhang Y, Yuan Y. Utilization of the corticomedullary difference in magnetic resonance imaging-derived apparent diffusion coefficient for noninvasive assessment of chronic kidney disease in type 2 diabetes. Diabetes Metab Syndr 2024; 18:102963. [PMID: 38373384 DOI: 10.1016/j.dsx.2024.102963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/25/2024] [Accepted: 02/04/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUNDS Accumulating data demonstrated that the cortico-medullary difference in apparent diffusion coefficient (ΔADC) of diffusion-weighted magnetic resonance imaging (DWI) was a better correlation with kidney fibrosis, tubular atrophy progression, and a predictor of kidney function evolution in chronic kidney disease (CKD). OBJECTIVES We aimed to assess the value of ΔADC in evaluating disease severity, differential diagnosis, and the prognostic risk stratification for patients with type 2 diabetes (T2D) and CKD. METHODS Total 119 patients with T2D and CKD who underwent renal MRI were prospectively enrolled. Of them, 89 patients had performed kidney biopsy for pathological examination, including 38 patients with biopsy-proven diabetic kidney disease (DKD) and 51 patients with biopsy-proven non-diabetic kidney disease (NDKD) and Mix (DKD + NDKD). Clinicopathological characteristics were compared according to different ΔADC levels. Moreover, univariate and multivariate-linear regression analyses were performed to explore whether ΔADC was independently associated with estimated glomerular filtration rate (eGFR) and urinary albumin creatinine ratio (UACR). The diagnostic performance of ΔADC for discriminating DKD from NDKD + Mix was evaluated by receiver operating characteristic (ROC) analysis. In addition, an individual's 2- or 5-year risk probability of progressing to end-stage kidney disease (ESKD) was calculated by the kidney failure risk equation (KFRE). The effect of ΔADC on prognostic risk stratification was assessed. Additionally, net reclassification improvement (NRI) was used to evaluate the model performance. RESULTS All enrolled patients had a median ΔADC level of 86 (IQR 28, 155) × 10-6 mm2/s. ΔADC significantly decreased across the increasing staging of CKD (P < 0.001). Moreover, those with pathological-confirmed DKD has a significantly lower level of ΔADC than those with NDKD and Mix (P < 0.001). It showed that ΔADC was independently associated with eGFR (β = 1.058, 95% CI = [1.002,1.118], P = 0.042) and UACR (β = -3.862, 95% CI = [-7.360, -0.365], P = 0.031) at multivariate linear regression analyses. Besides, ΔADC achieved an AUC of 0.707 (71% sensitivity and 75% specificity) and AUC of 0.823 (94% sensitivity and 67% specificity) for discriminating DKD from NDKD + Mix and higher ESKD risk categories (≥50% at 5 years; ≥10% at 2 years) from lower risk categories (<50% at 5 years; <10% at 2 years). Accordingly, the optimal cutoff value of ΔADC for higher ESKD risk categories was 66 × 10-6 mm2/s, and the group with the low-cutoff level of ΔADC group was associated with 1.232 -fold (95% CI 1.086, 1.398) likelihood of higher ESKD risk categories as compared to the high-cutoff level of ΔADC group in the fully-adjusted model. Reclassification analyses confirmed that the final adjusted model improved NRI. CONCLUSIONS ΔADC was strongly associated with eGFR and UACR in patients with T2D and CKD. More importantly, baseline ΔADC was predictive of higher ESKD risk, independently of significant clinical confounding. Specifically, ΔADC <78 × 10-6 mm2/s and <66 × 10-6 mm2/s would help to identify T2D patients with the diagnosis of DKD and higher ESKD risk categories, respectively.
Collapse
Affiliation(s)
- Suyan Duan
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Luhan Geng
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Fang Lu
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Chen Chen
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Ling Jiang
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Si Chen
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Chengning Zhang
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Zhimin Huang
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Ming Zeng
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Bin Sun
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Bo Zhang
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Huijuan Mao
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Changying Xing
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China.
| | - Yudong Zhang
- Department of Radiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Yanggang Yuan
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
4
|
Gondaliya P, Jash K, Srivastava A, Kalia K. MiR-29b modulates DNA methylation in promoter region of miR-130b in mouse model of Diabetic nephropathy. J Diabetes Metab Disord 2023; 22:1105-1115. [PMID: 37975134 PMCID: PMC10638230 DOI: 10.1007/s40200-023-01208-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/05/2023] [Indexed: 11/19/2023]
Abstract
Epigenetic modifications play a role in Diabetic Nephropathy (DN). Downregulation of miR-29b leads to modulation of DNA methylation via DNA methyl transferases (DNMTs) and hence exaggerated renal fibrosis in DN. Therefore, the main aim of the study was to evaluate effect of miR-29b expression in vivo on DNMTs, renal fibrosis, glomerular and tubular damage as well as renal morphology in DN. In order to explore the role of miR-29b in DNA methylation of other miRNAs, methylation profiling study was performed. It revealed that miR-29b was involved in methylation on of miR-130b on the cytosine guanine dinucleotides rich DNA (CpG) island 1 located on promoter region. In conclusion, miR-29b expression was found to modulate DNA methylation via DNMTs and regulate methylation of miR-130b. The result of this study provides a future direction to unveil role of miRNA expression in DNA methylation and its consequent effect on other miRNAs in DN. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-023-01208-2.
Collapse
Affiliation(s)
- Piyush Gondaliya
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research- Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat 382355 India
| | - Kavya Jash
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research- Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat 382355 India
| | - Akshay Srivastava
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research- Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat 382355 India
| | - Kiran Kalia
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research- Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar, Gujarat 382355 India
| |
Collapse
|
5
|
Abstract
As a sign of chronic kidney disease (CKD) progression, renal fibrosis is an irreversible and alarming pathological change. The accurate diagnosis of renal fibrosis depends on the widely used renal biopsy, but this diagnostic modality is invasive and can easily lead to sampling error. With the development of imaging techniques, an increasing number of noninvasive imaging techniques, such as multipara meter magnetic resonance imaging (MRI) and ultrasound elastography, have gained attention in assessing kidney fibrosis. Depending on their ability to detect changes in tissue stiffness and diffusion of water molecules, ultrasound elastography and some MRI techniques can indirectly assess the degree of fibrosis. The worsening of renal tissue oxygenation and perfusion measured by blood oxygenation level-dependent MRI and arterial spin labeling MRI separately is also an indirect reflection of renal fibrosis. Objective and quantitative indices of fibrosis may be available in the future by using novel techniques, such as photoacoustic imaging and fluorescence microscopy. However, these imaging techniques are susceptible to interference or may not be convenient. Due to the lack of sufficient specificity and sensitivity, these imaging techniques are neither widely accepted nor proposed by clinicians. These obstructions must be overcome by conducting technology research and more prospective studies. In this review, we emphasize the recent advancement of these noninvasive imaging techniques and provide clinicians a continuously updated perspective on the assessment of kidney fibrosis.
Collapse
Affiliation(s)
- Buchun Jiang
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Fei Liu
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Haidong Fu
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China,CONTACT Haidong Fu
| | - Jianhua Mao
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China,Jianhua Mao The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, 3333 Bingsheng Rd, Hangzhou, Zhejiang310052, China
| |
Collapse
|
6
|
Alterations of Renal Function in Patients with Diabetic Kidney Disease: A BOLD and DTI Study. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:6844102. [PMID: 36210998 PMCID: PMC9546653 DOI: 10.1155/2022/6844102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/17/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022]
Abstract
Objectives Our study aims to determine the patterns of renal oxygenation changes and microstructural changes by BOLD and DTI with deteriorating kidney function in patients with diabetic kidney disease (DKD). Methods Seventy-two patients with type 2 diabetes mellitus (DM) and twenty healthy controls (HCs) underwent laboratory examinations, and renal BOLD and DTI images were obtained on a 3T-MRI machine. R2∗, fractional anisotropy (FA), and average diffusion coefficient (ADC) values were evaluated. DM patients were divided into three subgroups (Group-DI/DII/DIII, based on urinary albumin-creatinine ratio (UACR)) and a nondiabetic kidney disease group (Group-NDKD). D-value and MCR of R2∗ and FA were proposed to evaluate the differentiation between medulla and cortex of the individual kidney among HCs and three subgroups for reducing individual differences. Comparisons were made between NDKD and kidney function-matched DKD patients. Correlations between MRI parameters and renal clinical indices were analyzed. Results Compared with Group-HC/DI, medullary R2∗ and FA values were significantly different in Group-DII/III. The D-value of R2∗ and FA in Group-III were significantly smaller than that in Group-HC. However, only MCR of R2∗ in Group-III was significantly smaller than that in HCs. Medullary R2∗ and FA were negatively associated with serum creatinine (SCr) and cystatin C (Cys C) and positively associated with eGFR. Conclusions With renal function declining, BOLD and DTI could capture alterations including the first rising and then falling medullary R2∗, continuously declining medullary FA, and apparent cortex-medullary differentiation in DKD patients. The MRI parameters showed renal changes accompanied by varying degrees of albuminuria, sharing common involvement in DKD and NDKD patients, but it was hard to distinguish between them. BOLD seemed more sensitive than DTI in identifying renal cortex-medullary differentiation.
Collapse
|
7
|
Correlation between Blood Oxygen Level-Dependent Magnetic Resonance Imaging Images and Prognosis of Patients with Multicenter Diabetic Nephropathy on account of Artificial Intelligence Segmentation Algorithm. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:5700249. [PMID: 35860185 PMCID: PMC9293502 DOI: 10.1155/2022/5700249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022]
Abstract
This study was aimed to analyze the correlation between blood oxygen level-dependent magnetic resonance imaging (BOLD-MRI) images and prognosis of patients with diabetic nephropathy (DN) based on artificial intelligence (AI) segmentation algorithm, so as to provide references for diagnosis and treatment as well as prognosis analysis of patients DN. In this study, a kernel function-based fuzzy C-means algorithm (KFCM) model was proposed, and the FCM algorithm based on neighborhood pixel information (BCFCM) and the FCM algorithm based on efficiency improvement (EnFCM) were introduced for comparison to analyze the image segmentation effects of three algorithms. The results showed that the partition coefficient (Vpc) and partition entropy (Vpe) of the KFCM algorithm were 0.801 and 0.602, respectively, which were better than those of the traditional FCM, BCFCM, and EnFCM algorithm. At the same time, the effects of correlation between renal cortex R2∗ (RC-R2∗), renal medulla R2∗ (RM-R2∗), renal cortex D (RC-D), renal medulla D (RM-D) and renal function on the prognosis were compared. The results showed that the correlation coefficients between RC-R2∗, RM-R2∗, RC-D, RM-D and renal function were 0.57, 0.62, 0.49, and 0.38, respectively; among them, RC-R2∗ and RM-R2∗ were negatively correlated to the estimated glomerular filtration rate (eGFR), and the difference between the groups was statistically significant (P <0.05). Among the factors affecting the prognosis of DN patients, the GFR, hemoglobin (Hb), RC-R2∗, RM-R2∗, and RC-D were all related to the prognosis of DN, and the difference between groups was statistically obvious (P <0.05). It suggested that the KFCM algorithm proposed in this study showed the relatively best segmentation effect on BOLD-MRI images for DN patients; an increase in R2∗ indicated a poor prognosis, and an increase in the RC-D value indicated a better prognosis.
Collapse
|
8
|
Güven AT, Idilman IS, Cebrayilov C, Önal C, Kibar MÜ, Sağlam A, Yıldırım T, Yılmaz R, Altun B, Erdem Y, Karçaaltıncaba M, Arıcı M. Evaluation of renal fibrosis in various causes of glomerulonephritis by MR elastography: a clinicopathologic comparative analysis. Abdom Radiol (NY) 2022; 47:288-296. [PMID: 34633496 DOI: 10.1007/s00261-021-03296-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Renal parenchymal fibrosis is the most important determinant of kidney disease progression and it is determined via biopsy. The aim of this study is to evaluate the renal stiffness noninvasively by magnetic resonance elastography (MRE) and to compare it with clinicopathologic parameters in glomerulonephritis and AA amyloidosis patients. METHODS Thirty-four patients with glomerular filtration rate (GFR) over 20 ml/min/1.73m2 had non-contrast MRE prospectively. Kidney stiffness values were obtained from whole kidney, cortex, and medulla. Values were correlated with GFR, albuminuria, proteinuria, and degree of fibrosis that are assessed via renal biopsy. Patients were grouped clinicopathologically to assess the relation between stiffness and chronicity. RESULTS Mean whole kidney, cortex, and medulla stiffnesses were 3.78 (± 1.26), 3.63 (± 1.25), and 4.77 (± 2.03) kPa, respectively. Mean global glomerulosclerosis was 22% (± 18%) and median segmental glomerulosclerosis was 4% (min-max: 0%-100%). Extent of tubulointerstitial fibrosis was less than 25% in 26 of the patients (76.5%), 25%-50% in 6 of the patients (17.6%), and higher than 50% in 2 of the patients (5.9%). Fourteen patients were defined to have chronic renal parenchymal injury. MRE-derived stiffness values correlated negatively with parameters of fibrosis. Lower stiffness values were observed in patients with chronic renal injury compared to those without (P < 0.05 for whole kidney and medulla MRE-derived stiffness). CONCLUSION MRE-derived stiffness values were lower in patients with chronic injury. Stiffness decreases as glomerulosclerosis and tubulointerstitial fibrosis progresses in patients with primary glomerulonephritis and AA amyloidosis. With future studies, there may be a role for MRE to assess renal function in concert with conventional markers.
Collapse
|
9
|
Perspectives on the Role of Magnetic Resonance Imaging (MRI) for Noninvasive Evaluation of Diabetic Kidney Disease. J Clin Med 2021; 10:jcm10112461. [PMID: 34199385 PMCID: PMC8199575 DOI: 10.3390/jcm10112461] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 01/09/2023] Open
Abstract
Renal magnetic resonance imaging (MRI) techniques are currently in vogue, as they provide in vivo information on renal volume, function, metabolism, perfusion, oxygenation, and microstructural alterations, without the need for exogenous contrast media. New imaging biomarkers can be identified using these tools, which represent a major advance in the understanding and study of the different pathologies affecting the kidney. Diabetic kidney disease (DKD) is one of the most important diseases worldwide due to its high prevalence and impact on public health. However, its multifactorial etiology poses a challenge for both basic and clinical research. Therefore, the use of novel renal MRI techniques is an attractive step forward in the comprehension of DKD, both in its pathogenesis and in its detection and surveillance in the clinical practice. This review article outlines the most promising MRI techniques in the study of DKD, with the purpose of stimulating their clinical translation as possible tools for the diagnosis, follow-up, and monitoring of the clinical impacts of new DKD treatments.
Collapse
|
10
|
Srivastava A, Tomar B, Prajapati S, Gaikwad AB, Mulay SR. Advanced non-invasive diagnostic techniques for visualization and estimation of kidney fibrosis. Drug Discov Today 2021; 26:2053-2063. [PMID: 33617976 DOI: 10.1016/j.drudis.2021.02.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/22/2020] [Accepted: 02/12/2021] [Indexed: 12/17/2022]
Abstract
Kidney fibrosis is marked by excessive extracellular matrix deposition during disease progression. Unfortunately, existing kidney function parameters do not predict the extent of kidney fibrosis. Moreover, the traditional histology methods for the assessment of kidney fibrosis require liquid and imaging biomarkers as well as needle-based biopsies, which are invasive and often associated with kidney injury. The repetitive analyses required to monitor the disease progression are therefore difficult. Hence, there is an unmet medical need for non-invasive and informative diagnostic approaches to monitor kidney fibrosis during the progression of chronic kidney disease. Here, we summarize the modern advances in diagnostic imaging techniques that have shown promise for non-invasive estimation of kidney fibrosis in pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Anjali Srivastava
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Bhawna Tomar
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Smita Prajapati
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Anil Bhanudas Gaikwad
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, 333031, India
| | - Shrikant R Mulay
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India.
| |
Collapse
|
11
|
Alnazer I, Bourdon P, Urruty T, Falou O, Khalil M, Shahin A, Fernandez-Maloigne C. Recent advances in medical image processing for the evaluation of chronic kidney disease. Med Image Anal 2021; 69:101960. [PMID: 33517241 DOI: 10.1016/j.media.2021.101960] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/18/2020] [Accepted: 12/31/2020] [Indexed: 12/31/2022]
Abstract
Assessment of renal function and structure accurately remains essential in the diagnosis and prognosis of Chronic Kidney Disease (CKD). Advanced imaging, including Magnetic Resonance Imaging (MRI), Ultrasound Elastography (UE), Computed Tomography (CT) and scintigraphy (PET, SPECT) offers the opportunity to non-invasively retrieve structural, functional and molecular information that could detect changes in renal tissue properties and functionality. Currently, the ability of artificial intelligence to turn conventional medical imaging into a full-automated diagnostic tool is widely investigated. In addition to the qualitative analysis performed on renal medical imaging, texture analysis was integrated with machine learning techniques as a quantification of renal tissue heterogeneity, providing a promising complementary tool in renal function decline prediction. Interestingly, deep learning holds the ability to be a novel approach of renal function diagnosis. This paper proposes a survey that covers both qualitative and quantitative analysis applied to novel medical imaging techniques to monitor the decline of renal function. First, we summarize the use of different medical imaging modalities to monitor CKD and then, we show the ability of Artificial Intelligence (AI) to guide renal function evaluation from segmentation to disease prediction, discussing how texture analysis and machine learning techniques have emerged in recent clinical researches in order to improve renal dysfunction monitoring and prediction. The paper gives a summary about the role of AI in renal segmentation.
Collapse
Affiliation(s)
- Israa Alnazer
- XLIM-ICONES, UMR CNRS 7252, Université de Poitiers, France; Laboratoire commune CNRS/SIEMENS I3M, Poitiers, France; AZM Center for Research in Biotechnology and its Applications, EDST, Lebanese University, Beirut, Lebanon.
| | - Pascal Bourdon
- XLIM-ICONES, UMR CNRS 7252, Université de Poitiers, France; Laboratoire commune CNRS/SIEMENS I3M, Poitiers, France
| | - Thierry Urruty
- XLIM-ICONES, UMR CNRS 7252, Université de Poitiers, France; Laboratoire commune CNRS/SIEMENS I3M, Poitiers, France
| | - Omar Falou
- AZM Center for Research in Biotechnology and its Applications, EDST, Lebanese University, Beirut, Lebanon; American University of Culture and Education, Koura, Lebanon; Lebanese University, Faculty of Science, Tripoli, Lebanon
| | - Mohamad Khalil
- AZM Center for Research in Biotechnology and its Applications, EDST, Lebanese University, Beirut, Lebanon
| | - Ahmad Shahin
- AZM Center for Research in Biotechnology and its Applications, EDST, Lebanese University, Beirut, Lebanon
| | - Christine Fernandez-Maloigne
- XLIM-ICONES, UMR CNRS 7252, Université de Poitiers, France; Laboratoire commune CNRS/SIEMENS I3M, Poitiers, France
| |
Collapse
|
12
|
Li J, Liu H, Srivastava SP, Hu Q, Gao R, Li S, Kitada M, Wu G, Koya D, Kanasaki K. Endothelial FGFR1 (Fibroblast Growth Factor Receptor 1) Deficiency Contributes Differential Fibrogenic Effects in Kidney and Heart of Diabetic Mice. Hypertension 2020; 76:1935-1944. [PMID: 33131311 DOI: 10.1161/hypertensionaha.120.15587] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Endothelial-to-mesenchymal transition (EndMT) has been shown to contribute to organ fibrogenesis. We have reported that N-acetyl-seryl-aspartyl- lysyl-proline (AcSDKP) restored levels of diabetes mellitus-suppressed FGFR1 (fibroblast growth factor receptor 1), the endothelial receptor essential for combating EndMT. However, the molecular regulation and biological/pathological significance of the AcSDKP-FGFR1 relationship has not been elucidated yet. Here, we demonstrated that endothelial FGFR1 deficiency led to AcSDKP-resistant EndMT and severe fibrosis associated with EndMT-stimulated fibrogenic programming in neighboring cells. Diabetes mellitus induced severe kidney fibrosis in endothelial FGFR1-deficient mice (FGFR1fl/fl; VE-cadherin-Cre: FGFR1EKO) but not in control mice (FGFR1fl/fl); AcSDKP completely or partially suppressed kidney fibrosis in control or FGFR1EKO mice. Severe fibrosis was also induced in hearts of diabetic FGFR1EKO mice; however, AcSDKP had no effect on heart fibrosis in FGFR1EKO mice. AcSDKP also had no effect on EndMT in either kidney or heart but partially suppressed epithelial-to-mesenchymal transition in kidneys of diabetic FGFR1EKO mice. The medium from FGFR1-deficient endothelial cells stimulated TGFβ (transforming growth factor β)/Smad-dependent epithelial-to-mesenchymal transition in cultured human proximal tubule epithelial cell line, AcSDKP inhibited such epithelial-to-mesenchymal transition. These data demonstrated that endothelial FGFR1 is essential as an antifibrotic core molecule as the target of AcSDKP.
Collapse
Affiliation(s)
- Jinpeng Li
- From the Department of Diabetology & Endocrinology (J.L., H.L., S.P.S., Q.H., R.G., S., M.K., D.K., K.K.), Kanazawa Medical University, Uchinada, Ishikawa, Japan.,Department of Thyroid and Breast Surgery, Wuhan University Zhongnan Hospital, PR China (J.L., G.W.)
| | - Haijie Liu
- From the Department of Diabetology & Endocrinology (J.L., H.L., S.P.S., Q.H., R.G., S., M.K., D.K., K.K.), Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Swayam Prakash Srivastava
- From the Department of Diabetology & Endocrinology (J.L., H.L., S.P.S., Q.H., R.G., S., M.K., D.K., K.K.), Kanazawa Medical University, Uchinada, Ishikawa, Japan.,Department of Pediatrics Yale University School of Medicine, New Haven, CT (S.P.S.).,Vascular Biology and Therapeutics Program, Yale University School of Medicine New Haven, CT (S.P.S.)
| | - Qiongying Hu
- From the Department of Diabetology & Endocrinology (J.L., H.L., S.P.S., Q.H., R.G., S., M.K., D.K., K.K.), Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Rongfen Gao
- From the Department of Diabetology & Endocrinology (J.L., H.L., S.P.S., Q.H., R.G., S., M.K., D.K., K.K.), Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Shaolan Li
- From the Department of Diabetology & Endocrinology (J.L., H.L., S.P.S., Q.H., R.G., S., M.K., D.K., K.K.), Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Munehiro Kitada
- From the Department of Diabetology & Endocrinology (J.L., H.L., S.P.S., Q.H., R.G., S., M.K., D.K., K.K.), Kanazawa Medical University, Uchinada, Ishikawa, Japan.,Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute (M.K., D.K., K.K.), Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Gaosong Wu
- Department of Thyroid and Breast Surgery, Wuhan University Zhongnan Hospital, PR China (J.L., G.W.)
| | - Daisuke Koya
- From the Department of Diabetology & Endocrinology (J.L., H.L., S.P.S., Q.H., R.G., S., M.K., D.K., K.K.), Kanazawa Medical University, Uchinada, Ishikawa, Japan.,Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute (M.K., D.K., K.K.), Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Keizo Kanasaki
- From the Department of Diabetology & Endocrinology (J.L., H.L., S.P.S., Q.H., R.G., S., M.K., D.K., K.K.), Kanazawa Medical University, Uchinada, Ishikawa, Japan.,Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute (M.K., D.K., K.K.), Kanazawa Medical University, Uchinada, Ishikawa, Japan.,Department of Internal Medicine 1, Faculty of Medicine, Shimane University, Japan (K.K.)
| |
Collapse
|
13
|
Jayachandran I, Sundararajan S, Venkatesan S, Paadukaana S, Balasubramanyam M, Mohan V, Manickam N. Asymmetric dimethylarginine (ADMA) accelerates renal cell fibrosis under high glucose condition through NOX4/ROS/ERK signaling pathway. Sci Rep 2020; 10:16005. [PMID: 32994511 PMCID: PMC7525240 DOI: 10.1038/s41598-020-72943-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 08/25/2020] [Indexed: 02/07/2023] Open
Abstract
We previously reported that the circulatory level of Asymmetric dimethylarginine (ADMA), an endogenous competitive inhibitor of nitric oxide synthase, was increased in diabetic kidney disease patients. However, the mechanism and the role of ADMA in diabetic kidney injury remain unclear. Hence, our principal aim is to investigate the causal role of ADMA in the progression of renal cell fibrosis under high glucose (HG) treatment and to delineate its signaling alterations in kidney cell injury. High Glucose/ADMA significantly increased fibrotic events including cell migration, invasion and proliferation along with fibrotic markers in the renal cells; whereas ADMA inhibition reversed the renal cell fibrosis. To delineate the central role of ADMA induced fibrotic signaling pathway and its downstream signaling, we analysed the expression levels of fibrotic markers, NOX4, ROS and ERK activity by using specific inhibitors and genetic manipulation techniques. ADMA stimulated the ROS generation along with a significant increase in NOX4 and ERK activity. Further, we observed that ADMA activated NOX-4 and ERK are involved in the extracellular matrix proteins accumulation. Also, we observed that ADMA induced ERK1/2 phosphorylation was decreased after NOX4 silencing. Our study mechanistically demonstrates that ADMA is involved in the progression of kidney cell injury under high glucose condition by targeting coordinated complex mechanisms involving the NOX4- ROS-ERK pathway.
Collapse
Affiliation(s)
- Isaivani Jayachandran
- Department of Vascular Biology, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, WHO Collaborating Centre for Non-Communicable Diseases Prevention and Control & ICMR Center for Advanced Research On Diabetes, Chennai, India
| | - Saravanakumar Sundararajan
- Department of Vascular Biology, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, WHO Collaborating Centre for Non-Communicable Diseases Prevention and Control & ICMR Center for Advanced Research On Diabetes, Chennai, India
| | - Saravanakumar Venkatesan
- Department of Vascular Biology, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, WHO Collaborating Centre for Non-Communicable Diseases Prevention and Control & ICMR Center for Advanced Research On Diabetes, Chennai, India
| | - Sairaj Paadukaana
- Department of Vascular Biology, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, WHO Collaborating Centre for Non-Communicable Diseases Prevention and Control & ICMR Center for Advanced Research On Diabetes, Chennai, India
| | - Muthuswamy Balasubramanyam
- Department of Vascular Biology, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, WHO Collaborating Centre for Non-Communicable Diseases Prevention and Control & ICMR Center for Advanced Research On Diabetes, Chennai, India
| | - Viswanathan Mohan
- Department of Vascular Biology, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, WHO Collaborating Centre for Non-Communicable Diseases Prevention and Control & ICMR Center for Advanced Research On Diabetes, Chennai, India
| | - Nagaraj Manickam
- Department of Vascular Biology, Madras Diabetes Research Foundation & Dr. Mohan's Diabetes Specialities Centre, WHO Collaborating Centre for Non-Communicable Diseases Prevention and Control & ICMR Center for Advanced Research On Diabetes, Chennai, India.
| |
Collapse
|
14
|
Abstract
OBJECTIVE To explore whether a radiomics signature based on diffusion tensor imaging (DTI) can detect early kidney damage in diabetic patients. MATERIALS AND METHODS Twenty-eight healthy volunteers (group A) and thirty type 2 diabetic patients (group B) with micro-normoalbuminuria, a urinary albumin-to-creatinine ratio (ACR) < 30 mg/g and an estimated glomerular filtration rate (eGFR) of 60-120 mL/(min 1.73 m2) were recruited. Kidney DTI was performed using 1.5T magnetic resonance imaging (MRI).The radiologist manually drew regions of interest (ROI) on the fractional anisotropy (FA) map of the right kidney ROI including the cortex and medulla. The texture features of the ROIs were extracted using MaZda software. The Fisher coefficient, mutual information (MI), and probability of classification error and average correlation coefficient (POE + ACC) methods were used to select the texture features. The most valuable texture features were further selected by the least absolute shrinkage and selection operator (LASSO) algorithm. A LASSO regression model based on the radiomics signature was established. The diagnostic performance of the model for detecting early diabetic kidney changes was evaluated by the area under the receiver operating characteristic (ROC) curve (AUC). Empower (R), R, and MedCalc15.8 software were used for statistical analysis RESULTS: A total of 279 texture features were extracted from ROI of the kidney, and 30 most valuable texture features were selected from groups A and B using MaZda software. After LASSO-logistic regression, a diagnostic model of diabetic kidney damage based on texture features was established. Model discrimination evaluation: AUC = 0.882 (0.770 ± 0.952). Model calibration evaluation: Hosmer-Lemeshow X2 = 5.3611, P = 0.7184, P > 0.05, the model has good calibration. CONCLUSION The texture features based on DTI could play a promising role in detecting early diabetic kidney damage.
Collapse
|
15
|
Gandhi D, Kalra P, Raterman B, Mo X, Dong H, Kolipaka A. Magnetic resonance elastography-derived stiffness of the kidneys and its correlation with water perfusion. NMR IN BIOMEDICINE 2020; 33:e4237. [PMID: 31889353 PMCID: PMC7060814 DOI: 10.1002/nbm.4237] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 09/23/2019] [Accepted: 11/10/2019] [Indexed: 05/09/2023]
Abstract
Stiffness plays an important role in diagnosing renal fibrosis. However, kidney stiffness is altered by perfusion changes in many kidney diseases. Therefore, the aim of the current study is to determine the correlation of kidney stiffness with water intake. We hypothesize that kidney stiffness will increase with 1 L of water intake due to increased water perfusion to the kidneys. Additionally, stiffness of the kidneys will correlate with apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values before and after water intake. A 3 T MRI scanner was used to perform magnetic resonance elastography and diffusion tensor imaging of the kidneys on 24 healthy subjects (age range: 22-66 years) before and after water intake of 1 L. A 3D T1-weighted bladder scan was also performed to measure bladder volume before and after water intake. A paired t-test was performed to evaluate the effect of water intake on the stiffness of kidneys, in addition to bladder volume. A Spearman correlation test was performed to determine the association between stiffness, bladder volume, ADC and FA values of both kidneys before and after water intake. The results show a significant increase in stiffness in different regions of the kidney (ie, percentage increase ranged from 3.6% to 7.5%) and bladder volume after water intake (all P < 0.05). A moderate significant negative correlation was observed between change in kidney stiffness and bladder volume (concordance correlation coefficient = -0.468, P < 0.05). No significant correlation was observed between stiffness and ADC or FA values before and after water intake in both kidneys (P > 0.05). Water intake caused a significant increase in the stiffness of the kidneys. The negative correlation between the change in kidney stiffness and bladder volume, before and after water intake, indicates higher perfusion pressure in the kidneys, leading to increased stiffness.
Collapse
Affiliation(s)
- Deep Gandhi
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Prateek Kalra
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Brian Raterman
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Xiaokui Mo
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, Columbus, OH
| | - Huiming Dong
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Arunark Kolipaka
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH
- Department of Radiology, The Ohio State University Wexner Medical Center, Columbus, OH
| |
Collapse
|
16
|
Bane O, Hectors SJ, Gordic S, Kennedy P, Wagner M, Weiss A, Khaim R, Yi Z, Zhang W, Delaney V, Salem F, He C, Menon MC, Lewis S, Taouli B. Multiparametric magnetic resonance imaging shows promising results to assess renal transplant dysfunction with fibrosis. Kidney Int 2019; 97:414-420. [PMID: 31874802 DOI: 10.1016/j.kint.2019.09.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/31/2019] [Accepted: 09/26/2019] [Indexed: 12/28/2022]
Abstract
Here we assessed the diagnostic value of a quantitative multiparametric magnetic resonance imaging (mpMRI) protocol for evaluation of renal allograft dysfunction with fibrosis. Twenty-seven renal transplant patients, including 15 with stable functional allografts (eGFR mean 71.5 ml/min/1.73m2), and 12 with chronic dysfunction/established fibrosis (eGFR mean 30.1 ml/min/1.73m2), were enrolled in this prospective single-center study. Sixteen of the patients had renal biopsy (mean 150 days) before the MRI. All patients underwent mpMRI at 1.5T including intravoxel-incoherent motion diffusion-weighted imaging, diffusion tensor imaging, blood oxygen level dependent (BOLD R2*) and T1 quantification. True diffusion D, pseudodiffusion D*, perfusion fraction PF, apparent diffusion coefficient (ADC), fractional anisotropy (FA), R2* and T1 were calculated for cortex and medulla. ΔT1 was calculated as (100x(T1 Cortex-T1 Medulla)/T1 Cortex). Test-retest repeatability and inter-observer reproducibility were assessed in four and ten patients, respectively. mpMRI parameters had substantial test-retest and interobserver repeatability (coefficient of variation under 15%), except for medullary PF and D* (coefficient of variation over 25%). Cortical ADC, D, medullary ADC and ΔT1 were all significantly decreased, while cortical T1 was significantly elevated in fibrotic allografts. Cortical T1 showed positive correlation to the Banff fibrosis and tubular atrophy scores. The combination of ΔT1 and cortical ADC had excellent cross-validated diagnostic performance for detection of chronic dysfunction with fibrosis. Cortical ADC and T1 had good performance for predicting eGFR decline at 18 months (4 or more ml/min/1.73m2/year). Thus, the combination of cortical ADC and T1 measurements shows promising results for the non-invasive assessment of renal allograft histology and outcomes.
Collapse
Affiliation(s)
- Octavia Bane
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Stefanie J Hectors
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Sonja Gordic
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Radiology, University Hospital Zürich, Zürich, Switzerland
| | - Paul Kennedy
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mathilde Wagner
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Amanda Weiss
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rafael Khaim
- Division of Nephrology and Recanati Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Zhengzi Yi
- Division of Nephrology and Recanati Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Weijia Zhang
- Division of Nephrology and Recanati Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Veronica Delaney
- Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Fadi Salem
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Cijiang He
- Division of Nephrology and Recanati Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Madhav C Menon
- Division of Nephrology and Recanati Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sara Lewis
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Bachir Taouli
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
17
|
Jiang K, Ferguson CM, Lerman LO. Noninvasive assessment of renal fibrosis by magnetic resonance imaging and ultrasound techniques. Transl Res 2019; 209:105-120. [PMID: 31082371 PMCID: PMC6553637 DOI: 10.1016/j.trsl.2019.02.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/12/2019] [Accepted: 02/20/2019] [Indexed: 02/06/2023]
Abstract
Renal fibrosis is a useful biomarker for diagnosis and guidance of therapeutic interventions of chronic kidney disease (CKD), a worldwide disease that affects more than 10% of the population and is one of the major causes of death. Currently, tissue biopsy is the gold standard for assessment of renal fibrosis. However, it is invasive, and prone to sampling error and observer variability, and may also result in complications. Recent advances in diagnostic imaging techniques, including magnetic resonance imaging (MRI) and ultrasonography, have shown promise for noninvasive assessment of renal fibrosis. These imaging techniques measure renal fibrosis by evaluating its impacts on the functional, mechanical, and molecular properties of the kidney, such as water mobility by diffusion MRI, tissue hypoxia by blood oxygenation level dependent MRI, renal stiffness by MR and ultrasound elastography, and macromolecule content by magnetization transfer imaging. Other MR techniques, such as T1/T2 mapping and susceptibility-weighted imaging have also been explored for measuring renal fibrosis. Promising findings have been reported in both preclinical and clinical studies using these techniques. Nevertheless, limited specificity, sensitivity, and practicality in these techniques may hinder their immediate application in clinical routine. In this review, we will introduce methodologies of these techniques, outline their applications in fibrosis imaging, and discuss their limitations and pitfalls.
Collapse
Affiliation(s)
- Kai Jiang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | | | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
18
|
Mayyas F, Alzoubi KH. Impact of cigarette smoking on kidney inflammation and fibrosis in diabetic rats. Inhal Toxicol 2019; 31:45-51. [DOI: 10.1080/08958378.2019.1597219] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Fadia Mayyas
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Karem H. Alzoubi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
19
|
Sankrityayan H, Kulkarni YA, Gaikwad AB. Diabetic nephropathy: The regulatory interplay between epigenetics and microRNAs. Pharmacol Res 2019; 141:574-585. [PMID: 30695734 DOI: 10.1016/j.phrs.2019.01.043] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/25/2019] [Accepted: 01/25/2019] [Indexed: 12/20/2022]
Abstract
Diabetic nephropathy (DN) is still one of the leading causes of end-stage renal disease despite the emergence of different therapies to counter the metabolic, hemodynamic and fibrotic pathways, implicating a prominent role of genetic and epigenetic factors in its progression. Epigenetics is the study of changes in the expression of genes which may be inheritable and does not involve a change in the genome sequence. Thrust areas of epigenetic research are DNA methylation and histone modifications. Noncoding RNAs (ncRNAs), particularly microRNAs (miRNAs) control the expression of genes via post-transcriptional mechanisms. However, the regulation by epigenetic mechanisms and miRNAs are not completely distinct. A number of emerging reports have revealed the interplay between epigenetic machinery and miRNA expression, particularly in cancer. Further research has proved that a feedback loop exists between miRNA expression and epigenetic regulation in disorders including DN. Studies showed that different miRNAs (miR-200, miR-29 etc.) were found to be regulated by epigenetic mechanisms viz. DNA methylation and histone modifications. Conversely, miRNAs (miR-301, miR-449 etc.) themselves modulated levels of DNA methyltranferases (DNMTs) and Histone deacetylases (HDACs), enzymes vital to epigenetic modifications. With already few FDA approved epigenetic -modulating drugs (Vorinostat, Decitabine) in the market and miRNA therapeutic drugs under clinical trial it becomes imperative to analyze the possible interaction between the two classes of drugs in the modulation of a disease process. The purpose of this review is to articulate the interplay between miRNA expression and epigenetic modifications with a particular focus on its impact on the development and progression of DN.
Collapse
Affiliation(s)
- Himanshu Sankrityayan
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India
| | - Anil Bhanudas Gaikwad
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India.
| |
Collapse
|
20
|
Using magnetic resonance diffusion tensor imaging to evaluate renal function changes in diabetic patients with early-stage chronic kidney disease. Clin Radiol 2018; 74:116-122. [PMID: 30360880 DOI: 10.1016/j.crad.2018.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/25/2018] [Indexed: 12/15/2022]
Abstract
AIM To investigate the clinical value of diffusion tensor imaging (DTI) in assessing renal function changes in diabetic patients with early-stage chronic kidney disease (CKD), and the relationship of DTI parameters with estimated glomerular filtration rate (eGFR) and urinary biomarkers. MATERIALS AND METHODS Thirty-six patients with diabetes mellitus (DM; 30 CKD stage 1 and 6 CKD stage 2) and 26 healthy control subjects were enrolled. DTI was performed using a clinical 3 T MRI system. Apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values were calculated from the renal cortex and medulla. The correlation of the DTI parameters with eGFR and urinary biomarkers was evaluated. RESULTS FA values were significantly reduced in the renal cortex and medulla of DM group compared with the control group (cortical FA, Z=-2.834, p=0.005; medullary FA, t=2.768, p=0.007). In the DM group, FA values in the renal cortex and medulla were positively correlated with eGFR, while FA values in the medulla were negatively correlated with the urinary albumin/creatinine ratio, urinary alpha-1 microglobulin/creatinine ratio, and urinary transferring/creatinine ratio. ADC values in the renal cortex and medulla showed a trend towards an increase in the DM group compared with the control group. CONCLUSIONS Renal DTI is a promising method for assessing early renal function changes in DM patients.
Collapse
|
21
|
Selby NM, Blankestijn PJ, Boor P, Combe C, Eckardt KU, Eikefjord E, Garcia-Fernandez N, Golay X, Gordon I, Grenier N, Hockings PD, Jensen JD, Joles JA, Kalra PA, Krämer BK, Mark PB, Mendichovszky IA, Nikolic O, Odudu A, Ong ACM, Ortiz A, Pruijm M, Remuzzi G, Rørvik J, de Seigneux S, Simms RJ, Slatinska J, Summers P, Taal MW, Thoeny HC, Vallée JP, Wolf M, Caroli A, Sourbron S. Magnetic resonance imaging biomarkers for chronic kidney disease: a position paper from the European Cooperation in Science and Technology Action PARENCHIMA. Nephrol Dial Transplant 2018; 33:ii4-ii14. [PMID: 30137584 PMCID: PMC6106645 DOI: 10.1093/ndt/gfy152] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Indexed: 12/13/2022] Open
Abstract
Functional renal magnetic resonance imaging (MRI) has seen a number of recent advances, and techniques are now available that can generate quantitative imaging biomarkers with the potential to improve the management of kidney disease. Such biomarkers are sensitive to changes in renal blood flow, tissue perfusion, oxygenation and microstructure (including inflammation and fibrosis), processes that are important in a range of renal diseases including chronic kidney disease. However, several challenges remain to move these techniques towards clinical adoption, from technical validation through biological and clinical validation, to demonstration of cost-effectiveness and regulatory qualification. To address these challenges, the European Cooperation in Science and Technology Action PARENCHIMA was initiated in early 2017. PARENCHIMA is a multidisciplinary pan-European network with an overarching aim of eliminating the main barriers to the broader evaluation, commercial exploitation and clinical use of renal MRI biomarkers. This position paper lays out PARENCHIMA's vision on key clinical questions that MRI must address to become more widely used in patients with kidney disease, first within research settings and ultimately in clinical practice. We then present a series of practical recommendations to accelerate the study and translation of these techniques.
Collapse
Affiliation(s)
- Nicholas M Selby
- Centre for Kidney Research and Innovation, University of Nottingham, UK
| | - Peter J Blankestijn
- Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Peter Boor
- Institute of Pathology and Department of Nephrology, RWTH University, Aachen, Germany
| | - Christian Combe
- Service de Néphrologie Transplantation Dialyse Aphérèse, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Eli Eikefjord
- Department of Health and Functioning, Western Norway University of Applied Sciences, Norway
| | | | - Xavier Golay
- Institute of Neurology, University College London, Queen Square, London, UK
| | - Isky Gordon
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Nicolas Grenier
- Service d'Imagerie Diagnostique et Interventionnelle de l'Adulte, Centre Hospitalier Universitaire de Bordeaux Place Amelie Raba-Leon, Bordeaux, France
| | | | - Jens D Jensen
- Departments of Renal and Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Jaap A Joles
- Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Philip A Kalra
- Department of Renal Medicine, Salford Royal Hospital and Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Bernhard K Krämer
- Vth Department of Medicine, University Medical Center Mannheim, Medical Faculty Mannheim of the University Heidelberg, Mannheim, Germany
| | - Patrick B Mark
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Iosif A Mendichovszky
- Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, UK
| | - Olivera Nikolic
- Faculty of Medicine,University of Novi Sad, Center of Radiology, Clinical Centre of Vojvodina, Serbia
| | - Aghogho Odudu
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Albert C M Ong
- Academic Nephrology Unit, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, UK
| | - Alberto Ortiz
- Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
| | - Menno Pruijm
- Service of Nephrology and Hypertension, Department of Medicine, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Giuseppe Remuzzi
- IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| | - Jarle Rørvik
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Sophie de Seigneux
- Service of Nephrology, Department of Medicine Specialties, University Hospital of Geneva, Geneva, Switzerland
| | - Roslyn J Simms
- Academic Nephrology Unit, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, UK
| | - Janka Slatinska
- Department of Nephrology, Transplant Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Paul Summers
- Department of Medical Imaging and Radiation Sciences, Radiology Division, European Institute of Oncology (IEO), Milan, Italy
- QMRI Tech iSrl, Piazza dei Martiri Pennesi 20, Pescara, Italy
| | - Maarten W Taal
- Centre for Kidney Research and Innovation, University of Nottingham, UK
| | - Harriet C Thoeny
- University of Bern, Inselspital, Bern, Switzerland
- HFR Fribourg, Hôpital Cantonal, Fribourg, Switzerland
| | - Jean-Paul Vallée
- Radiology Department, Geneva University Hospital and University of Geneva, Geneva, Switzerland
| | - Marcos Wolf
- Center for Medical Physics and Biomedical Engineering, MR-Centre of Excellence, Medical University of Vienna, Vienna, Austria
| | - Anna Caroli
- IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| | - Steven Sourbron
- Leeds Imaging Biomarkers Group, Department of Biomedical Imaging Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
22
|
Zhou JY, Wang YC, Zeng CH, Ju SH. Renal Functional MRI and Its Application. J Magn Reson Imaging 2018; 48:863-881. [PMID: 30102436 DOI: 10.1002/jmri.26180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/10/2018] [Indexed: 12/11/2022] Open
Abstract
Renal function varies according to the nature and stage of diseases. Renal functional magnetic resonance imaging (fMRI), a technique considered superior to the most common method used to estimate the glomerular filtration rate, allows for noninvasive, accurate measurements of renal structures and functions in both animals and humans. It has become increasingly prevalent in research and clinical applications. In recent years, renal fMRI has developed rapidly with progress in MRI hardware and emerging postprocessing algorithms. Function-related imaging markers can be acquired via renal fMRI, encompassing water molecular diffusion, perfusion, and oxygenation. This review focuses on the progression and challenges of the main renal fMRI methods, including dynamic contrast-enhanced MRI, blood oxygen level-dependent MRI, diffusion-weighted imaging, diffusion tensor imaging, arterial spin labeling, fat fraction imaging, and their recent clinical applications. LEVEL OF EVIDENCE 5 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;48:863-881.
Collapse
Affiliation(s)
- Jia-Ying Zhou
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Yuan-Cheng Wang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Chu-Hui Zeng
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Sheng-Hong Ju
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| |
Collapse
|
23
|
Ichii O, Horino T. MicroRNAs associated with the development of kidney diseases in humans and animals. J Toxicol Pathol 2018; 31:23-34. [PMID: 29479137 PMCID: PMC5820100 DOI: 10.1293/tox.2017-0051] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 09/10/2017] [Indexed: 12/20/2022] Open
Abstract
Mature microRNAs (miRNAs) are single-stranded RNAs with approximately 18-25 bases, and their sequences are highly conserved among animals. miRNAs act as posttranscriptional regulators by binding mRNAs, and their main function involves the degradation of their target mRNAs. Recent studies revealed altered expression of miRNAs in the kidneys during the progression of acute kidney injury (AKI) and chronic kidney disease (CKD) in humans and experimental rodent models by using high-throughput screening techniques including microarray and small RNA sequencing. Particularly, miR-21 seems to be strongly associated with renal pathogenesis both in the glomerulus and tubulointerstitium. Furthermore, abundant evidence has been gathered showing the involvement of miRNAs in renal fibrosis. Because of the complex morphofunctional organization of the mammalian kidneys, it is crucial both to determine the exact localization of the kidney cells that express the miRNAs, which has been addressed mainly using in situ hybridization methods, and to identify precisely which mRNAs are bound and degraded by these miRNAs, which has been studied mostly through in vitro analysis. To discover novel biomarker candidates, miRNA levels in urine supernatant, sediment, and exosomal fraction were comprehensively investigated in different types of kidney disease, including drug-induced AKI, ischemia-induced AKI, diabetic nephropathy, lupus nephritis, and IgA nephropathy. Recent studies also demonstrated the therapeutic effect of miRNA and/or anti-miRNA administrations. The intent of this review is to illustrate the state-of-the-art research in the field of miRNAs associated with renal pathogenesis, especially focusing on AKI and CKD in humans and animal models.
Collapse
Affiliation(s)
- Osamu Ichii
- Laboratory of Anatomy, Department of Basic Veterinary
Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18-Nishi 9, Kita-ku,
Sapporo, Hokkaido 060-0818, Japan
| | - Taro Horino
- Laboratory of Anatomy, Department of Basic Veterinary
Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18-Nishi 9, Kita-ku,
Sapporo, Hokkaido 060-0818, Japan
| |
Collapse
|