1
|
Kabeiseman E, Paulsen RT, Burrell BD. Characterization of a Fatty Acid Amide Hydrolase (FAAH) in Hirudo Verbana. Neurochem Res 2024; 49:3015-3029. [PMID: 39093361 PMCID: PMC11450075 DOI: 10.1007/s11064-024-04216-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024]
Abstract
The endocannabinoid system plays a critical role in modulating both peripheral and central nervous system function. Despite being present throughout the animal kingdom, there has been relatively little investigation of the endocannabinoid system beyond traditional animal models. In this study, we report on the identification and characterization of a putative fatty acid amide hydrolase (FAAH) in the medicinal leech, Hirudo verbana. FAAH is the primary enzyme responsible for metabolizing the endocannabinoid signaling molecule arachidonoyl ethanolamide (anandamide or AEA) and therefore plays a critical role in regulating AEA levels in the nervous system. mRNA encoding Hirudo FAAH (HirFAAH) is expressed in the leech central nervous system (CNS) and sequence analysis suggests that this is an orthologue of FAAH-2 observed in vertebrates. Functionally, HirFAAH has serine hydrolase activity based on activity-based protein profiling (ABPP) studies using the fluorophosphonate probe TAMRA-FP. HirFAAH also hydrolyzes arachidonyl 7-amino, 4-methyl coumarin amide (AAMCA), a substrate specific to FAAH. Hydrolase activity during both the ABPP and AAMCA assays was eliminated by a mutation at a conserved catalytic serine. Activity was also blocked by the known FAAH inhibitor, URB597. Treatment of Hirudo ganglia with URB597 potentiated synapses made by the pressure-sensitive mechanosensory neuron (P cell), mimicking the effects of exogenously applied AEA. The Hirudo CNS has been a useful system in which to study properties of endocannabinoid modulation of nociception relevant to vertebrates. Therefore, this characterization of HirFAAH is an important contribution to comparative studies of the endocannabinoid system.
Collapse
Affiliation(s)
- Emily Kabeiseman
- Division of Basic Biomedical Sciences, Center for Brain and Behavior Research (CBBRe), Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
| | - Riley T Paulsen
- Division of Basic Biomedical Sciences, Center for Brain and Behavior Research (CBBRe), Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
| | - Brian D Burrell
- Division of Basic Biomedical Sciences, Center for Brain and Behavior Research (CBBRe), Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA.
| |
Collapse
|
2
|
Kabeiseman E, Paulsen RT, Burrell BD. Characterization of a Fatty Acid Amide Hydrolase (FAAH) in Hirudo verbana. RESEARCH SQUARE 2024:rs.3.rs-4271305. [PMID: 38699363 PMCID: PMC11065068 DOI: 10.21203/rs.3.rs-4271305/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
The endocannabinoid system plays a critical role in modulating both peripheral and central nervous system function. Despite being present throughout the animal kingdom, there has been relatively little investigation of the endocannabinoid system beyond the traditional animal model systems. In this study, we report on the identification and characterization of a fatty acid aminohydrolase (FAAH) in the medicinal leech, Hirudo verbana. FAAH is the primary enzyme responsible for metabolizing the endocannabinoid signaling molecule arachidonoyl ethanolamide (anandamide or AEA) and therefore plays a critical role in regulating AEA levels in the nervous system. This Hirudo FAAH (HirFAAH) is expressed in the leech central nervous system (CNS) and is an orthologue of FAAH-2 observed in vertebrates. Functionally, HirFAAH has serine hydrolase activity based on activity-based protein profiling (ABPP) studies using the fluorophosphonate probe TAMRA-FP. HirFAAH also hydrolyzes arachidonyl 7-amino, 4-methyl coumarin amide (AAMCA), a substrate specific to FAAH. Hydrolase activity during both the ABPP and AAMCA assays was eliminated by mutation at a conserved activity-binding site. Activity was also blocked by the known FAAH inhibitor, URB597. Treatment of Hirudo ganglia with URB597 potentiated synapses made by the pressure-sensitive mechanosensory neuron (P cell), mimicking the effects of exogenously applied AEA. The Hirudo CNS has been a useful system in which to study properties of endocannabinoid modulation of nociception relevant to vertebrates. Therefore, this characterization of HirFAAH is an important contribution to comparative studies of the endocannabinoid system.
Collapse
|
3
|
Franzen AD, Paulsen RT, Kabeiseman EJ, Burrell BD. Heterosynaptic long-term potentiation of non-nociceptive synapses requires endocannabinoids, NMDARs, CamKII, and PKCζ. J Neurophysiol 2023; 129:807-818. [PMID: 36883763 PMCID: PMC10085563 DOI: 10.1152/jn.00494.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Noxious stimuli or injury can trigger long-lasting sensitization to non-nociceptive stimuli (referred to as allodynia in mammals). Long-term potentiation (LTP) of nociceptive synapses has been shown to contribute to nociceptive sensitization (hyperalgesia) and there is even evidence of heterosynaptic spread of LTP contributing to this type of sensitization. This study will focus on how activation of nociceptors elicits heterosynaptic LTP (hetLTP) in non-nociceptive synapses. Previous studies in the medicinal leech (Hirudo verbana) have demonstrated that high-frequency stimulation (HFS) of nociceptors produces both homosynaptic LTP as well as hetLTP in non-nociceptive afferent synapses. This hetLTP involves endocannabinoid-mediated disinhibition of non-nociceptive synapses at the presynaptic level, but it is not clear if there are additional processes contributing to this synaptic potentiation. In this study, we found evidence for the involvement of postsynaptic level change and observed that postsynaptic N-methyl-d-aspartate (NMDA) receptors (NMDARs) were required for this potentiation. Next, Hirudo orthologs for known LTP signaling proteins, CamKII and PKCζ, were identified based on sequences from humans, mice, and the marine mollusk Aplysia. In electrophysiological experiments, inhibitors of CamKII (AIP) and PKCζ (ZIP) were found to interfere with hetLTP. Interestingly, CamKII was found to be necessary for both induction and maintenance of hetLTP, whereas PKCζ was only necessary for maintenance. These findings show that activation of nociceptors can elicit a potentiation of non-nociceptive synapses through a process that involves both endocannabinoid-mediated disinhibition and NMDAR-initiated signaling pathways.NEW & NOTEWORTHY Pain-related sensitization involves increases in signaling by non-nociceptive sensory neurons. This can allow non-nociceptive afferents to have access to nociceptive circuitry. In this study, we examine a form of synaptic potentiation in which nociceptor activity elicits increases in non-nociceptive synapses. This process involves endocannabinoids, "gating" the activation of NMDA receptors, which in turn activate CamKII and PKCζ. This study provides an important link in how nociceptive stimuli can enhance non-nociceptive signaling related to pain.
Collapse
Affiliation(s)
- Avery D Franzen
- Division of Basic Biomedical Sciences, Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota, United States
| | - Riley T Paulsen
- Division of Basic Biomedical Sciences, Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota, United States
| | - Emily J Kabeiseman
- Division of Basic Biomedical Sciences, Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota, United States
| | - Brian D Burrell
- Division of Basic Biomedical Sciences, Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota, United States
| |
Collapse
|
4
|
Mack D, Yevugah A, Renner K, Burrell BD. Serotonin mediates stress-like effects on responses to non-nociceptive stimuli in Hirudo. J Exp Biol 2022; 225:275639. [PMID: 35510636 PMCID: PMC9234501 DOI: 10.1242/jeb.243404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 04/29/2022] [Indexed: 11/28/2022]
Abstract
Noxious stimuli can elicit stress in animals that produce a variety of adaptations including changes in responses to nociceptive and non-nociceptive sensory input. One example is stress-induced analgesia that may be mediated, in part, by the endocannabinoid system. However, endocannabinoids can also have pro-nociceptive effects. In this study, the effects of electroshock, one experimental approach for producing acute stress, were examined on responses to non-nociceptive mechanical stimuli and nociceptive thermal stimuli in the medicinal leech (Hirudo verbana). The electroshock stimuli did not alter the leeches’ responses to nociceptive stimuli, but did cause sensitization to non-nociceptive stimuli, characterized by a reduction in response threshold. These experiments were repeated with drugs that either blocked synthesis of the endocannabinoid transmitter 2-arachidonoylglycerol (2-AG) or transient receptor potential vanilloid (TRPV) channel, which is known to act as an endocannabinoid receptor. Surprisingly, neither treatment had any effect on responses following electroshock. However, the electroshock stimuli reliably increased serotonin (5-hydroxytryptamine or 5HT) levels in the H. verbana CNS. Injection of 5HT mimicked the effects of the electroshocks, sensitizing responses to non-nociceptive stimuli and having no effect on responses to nociceptive stimuli. Injections of the 5HT receptor antagonist methysergide reduced the sensitization effect to non-nociceptive stimuli after electroshock treatment. These results indicate that electroshocks enhance response to non-nociceptive stimuli but do not alter responses to nociceptive stimuli. Furthermore, while 5HT appears to play a critical role in this shock-induced sensitizing effect, the endocannabinoid system seems to have no effect. Summary: The role of serotonin and endocannabinoids in mediating the effects of potentially stress-inducing stimuli on Hirudo verbana’s response to nociceptive and non-nociceptive input.
Collapse
Affiliation(s)
- Danielle Mack
- Division of Basic Biomedical Sciences, University of South Dakota, USA.,Center for Brain and Behavior Research, University of South Dakota, USA
| | | | - Kenneth Renner
- Department of Biology, University of South Dakota, USA.,Center for Brain and Behavior Research, University of South Dakota, USA
| | - Brian D Burrell
- Division of Basic Biomedical Sciences, University of South Dakota, USA.,Center for Brain and Behavior Research, University of South Dakota, USA
| |
Collapse
|
5
|
Paulsen RT, Burrell BD. Activity-Dependent Modulation of Tonic GABA Currents by Endocannabinoids in Hirudo verbana. Front Synaptic Neurosci 2022; 14:760330. [PMID: 35368247 PMCID: PMC8964407 DOI: 10.3389/fnsyn.2022.760330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 02/21/2022] [Indexed: 01/21/2023] Open
Abstract
Endocannabinoids are lipid neuromodulators that are synthesized on demand and primarily signal in a retrograde manner to elicit depression of excitatory and inhibitory synapses. Despite the considerable interest in their potential analgesic effects, there is evidence that endocannabinoids can have both pro-nociceptive and anti-nociceptive effects. The mechanisms contributing to the opposing effects of endocannabinoids in nociception need to be better understood before cannabinoid-based therapies can be effectively utilized to treat pain. Using the medicinal leech, Hirudo verbana, this work investigates whether endocannabinoids modulate tonic inhibition onto non-nociceptive afferents. In voltage clamp recordings, we analyzed changes in the tonic inhibition in pressure-sensitive (P) cells following pre-treatment with endocannabinoids, 2-arachidonoylglycerol (2-AG) or anandamide (AEA). We also tested whether high frequency stimulation (HFS) of nociceptive (N) cells could also modulate tonic inhibition. Both endocannabinoid application and N cell HFS depressed tonic inhibition in the P cell. Depression of tonic inhibition by N cell HFS was blocked by SB 366791 (a TRPV1 inhibitor). SB 366791 also prevented 2-AG-and AEA-induced depression of tonic inhibition. HFS-induced depression was not blocked by tetrahydrolipstatin (THL), which prevents 2-AG synthesis, nor AM 251 (a CB1 receptor inverse agonist). These results illustrate a novel activity-dependent modulation of tonic GABA currents that is mediated by endocannabinoid signaling and is likely to play an important role in sensitization of non-nociceptive afferent pathways.
Collapse
|
6
|
Jorgensen MM, Burrell BD. Approaches to studying injury-induced sensitization and the potential role of an endocannabinoid transmitter. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:313-323. [PMID: 35050393 PMCID: PMC8940709 DOI: 10.1007/s00359-021-01540-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 10/19/2022]
Abstract
Endocannabinoids are traditionally thought to have an analgesic effect. However, it has been shown that while endocannabinoids can depress nociceptive signaling, they can also enhance non-nociceptive signaling. Therefore, endocannabinoids have the potential to contribute to non-nociceptive sensitization after an injury. Using Hirudo verbana (the medicinal leech), a model of injury-induced sensitization was developed in which a reproducible piercing injury was delivered to the posterior sucker of Hirudo. Injury-induced changes in the non-nociceptive threshold of Hirudo were determined through testing with Von Frey filaments and changes in the response to nociceptive stimuli were tested by measuring the latency to withdraw to a nociceptive thermal stimulus (Hargreaves apparatus). To test the potential role of endocannabinoids in mediating injury-induced sensitization, animals were injected with tetrahydrolipstatin (THL), which inhibits synthesis of the endocannabinoid transmitter 2-arachidonoylglycerol (2-AG). Following injury, a significant decrease in the non-nociceptive response threshold (consistent with non-nociceptive sensitization) and a significant decrease in the response latency to nociceptive stimulation (consistent with nociceptive sensitization) were observed. In animals injected with THL, a decrease in non-nociceptive sensitization in injured animals was observed, but no effect on nociceptive sensitization was observed.
Collapse
|
7
|
Kabeiseman E, Paulsen R, Burrell BD. Characterization of a monoacylglycerol lipase in the medicinal leech, Hirudo verbana. Comp Biochem Physiol B Biochem Mol Biol 2020; 243-244:110433. [PMID: 32205202 PMCID: PMC7245046 DOI: 10.1016/j.cbpb.2020.110433] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 02/05/2020] [Accepted: 03/16/2020] [Indexed: 12/18/2022]
Abstract
Endocannabinoids are a class of lipid neuromodulators found throughout the animal kingdom. Among the endocannabinoids, 2-arachydonoyl glycerol (2-AG) is the most prevalent endocannabinoid and monoacylglycerol lipase (MAGL) is a serine hydrolase primarily responsible for metabolizing 2-AG in mammals. In the medicinal leech, Hirudo verbana, 2-AG has been found to be an important and multi-functional modulator of synaptic transmission and behavior. However, very little is known about the molecular components of its synthesis and degradation. In this study we have identified cDNA in Hirudo that encodes a putative MAGL (HirMAGL). The encoded protein exhibits considerable sequence and structural conservation with mammalian forms of MAGL, especially in the catalytic triad that mediates 2-AG metabolism. Additionally, HirMAGL transcripts are detected in the Hirudo central nervous system. When expressed in HEK 293 cells HirMAGL segregates to the plasma membrane as expected. It also exhibits serine hydrolase activity that is blocked when a critical active site residue is mutated. HirMAGL also demonstrates the capacity to metabolize 2-AG and this capacity is also prevented when the active site is mutated. Finally, HirMAGL activity is inhibited by JZL184 and MJN110, specific inhibitors of mammalian MAGL. To our knowledge these findings represent the first characterization of an invertebrate form of MAGL and show that HirMAGL exhibits many of the same properties as mammalian MAGL's that are responsible for 2-AG metabolism.
Collapse
Affiliation(s)
- Emily Kabeiseman
- Division of Basic Biomedical Sciences, Center for Brain and Behavior Research (CBBRe), Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, United States
| | - Riley Paulsen
- Division of Basic Biomedical Sciences, Center for Brain and Behavior Research (CBBRe), Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, United States; USD Neuroscience, Nanotechnology, and Networks Program (USD-N3), Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069,United States
| | - Brian D Burrell
- Division of Basic Biomedical Sciences, Center for Brain and Behavior Research (CBBRe), Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, United States; USD Neuroscience, Nanotechnology, and Networks Program (USD-N3), Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069,United States.
| |
Collapse
|
8
|
Paulsen RT, Burrell BD. Comparative studies of endocannabinoid modulation of pain. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190279. [PMID: 31544609 PMCID: PMC6790382 DOI: 10.1098/rstb.2019.0279] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2019] [Indexed: 01/21/2023] Open
Abstract
Cannabinoid-based therapies have long been used to treat pain, but there remain questions about their actual mechanisms and efficacy. From an evolutionary perspective, the cannabinoid system would appear to be highly conserved given that the most prevalent endogenous cannabinoid (endocannabinoid) transmitters, 2-arachidonyl glycerol and anandamide, have been found throughout the animal kingdom, at least in the species that have been analysed to date. This review will first examine recent findings regarding the potential conservation across invertebrates and chordates of the enzymes responsible for endocannabinoid synthesis and degradation and the receptors that these transmitters act on. Next, comparisons of how endocannabinoids modulate nociception will be examined for commonalities between vertebrates and invertebrates, with a focus on the medicinal leech Hirudo verbana. Evidence is presented that there are distinct, evolutionarily conserved anti-nociceptive and pro-nociceptive effects. The combined studies across various animal phyla demonstrate the utility of using comparative approaches to understand conserved mechanisms for modulating nociception. This article is part of the Theo Murphy meeting issue 'Evolution of mechanisms and behaviour important for pain'.
Collapse
Affiliation(s)
| | - Brian D. Burrell
- Division of Basic Biomedical Sciences, Neuroscience, Nanotechnology, and Networks Program, Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| |
Collapse
|
9
|
Banister SD, Krishna Kumar K, Kumar V, Kobilka BK, Malhotra SV. Selective modulation of the cannabinoid type 1 (CB 1) receptor as an emerging platform for the treatment of neuropathic pain. MEDCHEMCOMM 2019; 10:647-659. [PMID: 31191856 PMCID: PMC6533890 DOI: 10.1039/c8md00595h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/12/2019] [Indexed: 12/27/2022]
Abstract
Neuropathic pain is caused by a lesion or dysfunction in the nervous system, and it may arise from illness, be drug-induced or caused by toxin exposure. Since the discovery of two G-protein-coupled cannabinoid receptors (CB1 and CB2) nearly three decades ago, there has been a rapid expansion in our understanding of cannabinoid pharmacology. This is currently one of the most active fields of neuropharmacology, and interest has emerged in developing cannabinoids and other small molecule modulators of CB1 and CB2 as therapeutics for neuropathic pain. This short review article provides an overview of the chemotypes currently under investigation for the development of novel neuropathic pain treatments targeting CB1 receptors.
Collapse
Affiliation(s)
- Samuel D Banister
- Department of Radiation Oncology , Stanford University School of Medicine , Stanford , CA 94305 , USA .
| | - Kaavya Krishna Kumar
- Department of Molecular and Cellular Physiology , Stanford University School of Medicine , Stanford , CA 94305 , USA
| | - Vineet Kumar
- Department of Radiation Oncology , Stanford University School of Medicine , Stanford , CA 94305 , USA .
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology , Stanford University School of Medicine , Stanford , CA 94305 , USA
| | - Sanjay V Malhotra
- Department of Radiation Oncology , Stanford University School of Medicine , Stanford , CA 94305 , USA .
| |
Collapse
|
10
|
Northcutt AJ, Fischer EK, Puhl JG, Mesce KA, Schulz DJ. An annotated CNS transcriptome of the medicinal leech, Hirudo verbana: De novo sequencing to characterize genes associated with nervous system activity. PLoS One 2018; 13:e0201206. [PMID: 30028871 PMCID: PMC6054404 DOI: 10.1371/journal.pone.0201206] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/10/2018] [Indexed: 11/19/2022] Open
Abstract
The medicinal leech is one of the most venerated model systems for the study of fundamental nervous system principles, ranging from single-cell excitability to complex sensorimotor integration. Yet, molecular analyses have yet to be extensively applied to complement the rich history of electrophysiological study that this animal has received. Here, we generated the first de novo transcriptome assembly from the entire central nervous system of Hirudo verbana, with the goal of providing a molecular resource, as well as to lay the foundation for a comprehensive discovery of genes fundamentally important for neural function. Our assembly generated 107,704 contigs from over 900 million raw reads. Of these 107,704 contigs, 39,047 (36%) were annotated using NCBI's validated RefSeq sequence database. From this annotated central nervous system transcriptome, we began the process of curating genes related to nervous system function by identifying and characterizing 126 unique ion channel, receptor, transporter, and enzyme contigs. Additionally, we generated sequence counts to estimate the relative abundance of each identified ion channel and receptor contig in the transcriptome through Kallisto mapping. This transcriptome will serve as a valuable community resource for studies investigating the molecular underpinnings of neural function in leech and provide a reference for comparative analyses.
Collapse
Affiliation(s)
- Adam J. Northcutt
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri, United States of America
| | - Eva K. Fischer
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Joshua G. Puhl
- Department of Entomology and Graduate Program in Neuroscience, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Karen A. Mesce
- Department of Entomology and Graduate Program in Neuroscience, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - David J. Schulz
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri, United States of America
| |
Collapse
|
11
|
Del-Bel E, De-Miguel FF. Extrasynaptic Neurotransmission Mediated by Exocytosis and Diffusive Release of Transmitter Substances. Front Synaptic Neurosci 2018; 10:13. [PMID: 29937726 PMCID: PMC6003215 DOI: 10.3389/fnsyn.2018.00013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/11/2018] [Indexed: 11/24/2022] Open
Abstract
This review article deals with the mechanisms of extrasynaptic release of transmitter substances, namely the release from the soma, axon and dendrites in the absence of postsynaptic counterparts. Extrasynaptic release occurs by exocytosis or diffusion. Spillover from the synaptic cleft also contributes to extrasynaptic neurotransmission. Here, we first describe two well-known examples of exocytosis from the neuronal soma, which may release copious amounts of transmitter for up to hundreds of seconds after electrical stimulation. The mechanisms for somatic exocytosis of the low molecular weight transmitter serotonin, and the peptides oxytocin and vasopressin have been studied in detail. Serotonin release from leech neurons and oxytocin and vasopressin from rodent neurons have a common multi-step mechanism, which is completely different from that for exocytosis from presynaptic endings. Most transmitters and peptides released extrasynaptically seem to follow this same mechanism. Extrasynaptic exocytosis may occur onto glial cells, which act as intermediaries for long-term and long-distance transmission. The second part of this review article focuses on the release upon synthesis of the representative diffusible molecules nitric oxide (NO) and endocannabinoids. Diffusible molecules are synthesized “on demand” from postsynaptic terminals in response to electrical activity and intracellular calcium elevations. Their effects include the retrograde modulation of presynaptic electrical activity and transmitter release. Extrasynaptic neurotransmission is well exemplified in the retina. Light-evoked extrasynaptic communication sets the gain for visual responses and integrates the activity of neurons, glia and blood vessels. Understanding how extrasynaptic communication changes the function of hard-wired circuits has become fundamental to understand the function of the nervous system.
Collapse
Affiliation(s)
- Elaine Del-Bel
- Department of Morphology Physiology and Basic Pathology, Dental School of Ribeirão Preto, USP-Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo (USP), São Paulo, Brazil
| | - Francisco F De-Miguel
- Instituto de Fisiología Celular-Neurociencias, Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|