1
|
Zhu W, Yang W, Sun G, Huang J. RNA-binding protein quaking: a multifunctional regulator in tumour progression. Ann Med 2025; 57:2443046. [PMID: 39711373 DOI: 10.1080/07853890.2024.2443046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/03/2024] [Accepted: 11/22/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND Quaking (QKI) is a member of the signal transduction and activators of RNA (STAR) family, performing a crucial multifunctional regulatory role in alternative splicing, mRNA precursor processing, mRNA transport and localization, mRNA stabilization, and translation during tumour progression. Abnormal QKI expression or fusion mutations lead to aberrant RNA and protein expression, thereby promoting tumour progression. However, in many types of tumour, QKI played a role as tumour suppressor, the regulatory role of QKI in tumour progression remains ambiguous. OBJECTIVES This review aims to analyze the isoform and function of QKI, the impact of QKI-regulated gene expression or signalling pathway alterations on tumour progression, and its potential clinical applications as a predictive marker or target for tumour therapy. METHODS We reviewed recent studies and summarized the function of QKI alteration in tumour progression. RESULTS QKI mediate post-transcriptional gene regulation including alternative splicing, polyadenylation, mRNA stabilization, mRNA subcellular location, and noncoding RNA by binding to the QRE elements of targeted nucleotide. The dysregulation of QKI is intricately correlated to tumour proliferation, metastasis, angiogenesis, tumor stem cells, the tumour microenvironment, and treatment sensitivity, and represents as a potential biological predictor in tumour diagnosis and prognosis. CONCLUSIONS QKI play a critical role as tumour suppressor or an oncogene in tumour progression due to the different splicing sites and transcripts with various tumour subtype or tumor micorenvironment. Ongoing research about QKI's functions and mechanisms persist is required to conduct for better understanding the role of QKI in tumour regulation.
Collapse
Affiliation(s)
- Wangyu Zhu
- Cell and Molecular Biology Laboratory, Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang, China
- Lung Cancer Research Centre, Zhoushan Hospital of Wenzhou Medical, Zhoushan, Zhejiang, China
| | - Weiwei Yang
- Cell and Molecular Biology Laboratory, Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang, China
- Lung Cancer Research Centre, Zhoushan Hospital of Wenzhou Medical, Zhoushan, Zhejiang, China
| | - Guoping Sun
- Department of Breast Surgery, Second Affiliated Hospital and Cancer Institute (Provincial Key Laboratory of Tumor Microenvironment and Immunotherapy, Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education), Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Huang
- Department of Breast Surgery, Second Affiliated Hospital and Cancer Institute (Provincial Key Laboratory of Tumor Microenvironment and Immunotherapy, Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education), Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
2
|
Neumann DP, Phillips CA, Lumb R, Palethorpe HM, Ramani Y, Hollier BG, Selth LA, Bracken CP, Goodall GJ, Gregory PA. Quaking isoforms cooperate to promote the mesenchymal phenotype. Mol Biol Cell 2024; 35:ar17. [PMID: 38019605 PMCID: PMC10881146 DOI: 10.1091/mbc.e23-08-0316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/18/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023] Open
Abstract
The RNA-binding protein Quaking (QKI) has widespread effects on mRNA regulation including alternative splicing, stability, translation, and localization of target mRNAs. Recently, QKI was found to be induced during epithelial-mesenchymal transition (EMT), where it promotes a mesenchymal alternative splicing signature that contributes to the mesenchymal phenotype. QKI is itself alternatively spliced to produce three major isoforms, QKI-5, QKI-6, and QKI-7. While QKI-5 is primarily localized to the nucleus where it controls mesenchymal splicing during EMT, the functions of the two predominantly cytoplasmic isoforms, QKI-6 and QKI-7, in this context remain uncharacterized. Here we used CRISPR-mediated depletion of QKI in a human mammary epithelial cell model of EMT and studied the effects of expressing the QKI isoforms in isolation and in combination. QKI-5 was required to induce mesenchymal morphology, while combined expression of QKI-5 with either QKI-6 or QKI-7 further enhanced mesenchymal morphology and cell migration. In addition, we found that QKI-6 and QKI-7 can partially localize to the nucleus and contribute to alternative splicing of QKI target genes. These findings indicate that the QKI isoforms function in a dynamic and cooperative manner to promote the mesenchymal phenotype.
Collapse
Affiliation(s)
- Daniel P. Neumann
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia 5000, Australia
| | - Caroline A. Phillips
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia 5000, Australia
| | - Rachael Lumb
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia 5000, Australia
| | - Helen M. Palethorpe
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia 5000, Australia
| | - Yesha Ramani
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia 5000, Australia
| | - Brett G. Hollier
- Australian Prostate Cancer Research Centre - Queensland, Centre for Genomics and Personalised Health, Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Translational Research Institute, Brisbane, Queensland 4102, Australia
| | - Luke A. Selth
- Flinders Health and Medical Research Institute and Freemasons Centre for Male Health and Wellbeing, Flinders University, Bedford Park, South Australia 5042, Australia
- Faculty of Health and Medical Sciences, and
| | - Cameron P. Bracken
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia 5000, Australia
- Faculty of Health and Medical Sciences, and
- School of Biological Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Gregory J. Goodall
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia 5000, Australia
- Faculty of Health and Medical Sciences, and
- School of Biological Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Philip A. Gregory
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia 5000, Australia
- Faculty of Health and Medical Sciences, and
| |
Collapse
|
3
|
Achiro JM, Tao Y, Gao F, Lin CH, Watanabe M, Neumann S, Coppola G, Black DL, Martin KC. Aging differentially alters the transcriptome and landscape of chromatin accessibility in the male and female mouse hippocampus. Front Mol Neurosci 2024; 17:1334862. [PMID: 38318533 PMCID: PMC10839115 DOI: 10.3389/fnmol.2024.1334862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024] Open
Abstract
Aging-related memory impairment and pathological memory disorders such as Alzheimer's disease differ between males and females, and yet little is known about how aging-related changes in the transcriptome and chromatin environment differ between sexes in the hippocampus. To investigate this question, we compared the chromatin accessibility landscape and gene expression/alternative splicing pattern of young adult and aged mouse hippocampus in both males and females using ATAC-seq and RNA-seq. We detected significant aging-dependent changes in the expression of genes involved in immune response and synaptic function and aging-dependent changes in the alternative splicing of myelin sheath genes. We found significant sex-bias in the expression and alternative splicing of hundreds of genes, including aging-dependent female-biased expression of myelin sheath genes and aging-dependent male-biased expression of genes involved in synaptic function. Aging was associated with increased chromatin accessibility in both male and female hippocampus, especially in repetitive elements, and with an increase in LINE-1 transcription. We detected significant sex-bias in chromatin accessibility in both autosomes and the X chromosome, with male-biased accessibility enriched at promoters and CpG-rich regions. Sex differences in gene expression and chromatin accessibility were amplified with aging, findings that may shed light on sex differences in aging-related and pathological memory loss.
Collapse
Affiliation(s)
- Jennifer M. Achiro
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Yang Tao
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Fuying Gao
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Chia-Ho Lin
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA, United States
| | - Marika Watanabe
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Sylvia Neumann
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Giovanni Coppola
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Douglas L. Black
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA, United States
| | - Kelsey C. Martin
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| |
Collapse
|
4
|
Neumann DP, Pillman KA, Dredge BK, Bert AG, Phillips CA, Lumb R, Ramani Y, Bracken CP, Hollier BG, Selth LA, Beilharz TH, Goodall GJ, Gregory PA. The landscape of alternative polyadenylation during EMT and its regulation by the RNA-binding protein Quaking. RNA Biol 2024; 21:1-11. [PMID: 38112323 PMCID: PMC10732628 DOI: 10.1080/15476286.2023.2294222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/11/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) plays important roles in tumour progression and is orchestrated by dynamic changes in gene expression. While it is well established that post-transcriptional regulation plays a significant role in EMT, the extent of alternative polyadenylation (APA) during EMT has not yet been explored. Using 3' end anchored RNA sequencing, we mapped the alternative polyadenylation (APA) landscape following Transforming Growth Factor (TGF)-β-mediated induction of EMT in human mammary epithelial cells and found APA generally causes 3'UTR lengthening during this cell state transition. Investigation of potential mediators of APA indicated the RNA-binding protein Quaking (QKI), a splicing factor induced during EMT, regulates a subset of events including the length of its own transcript. Analysis of QKI crosslinked immunoprecipitation (CLIP)-sequencing data identified the binding of QKI within 3' untranslated regions (UTRs) was enriched near cleavage and polyadenylation sites. Following QKI knockdown, APA of many transcripts is altered to produce predominantly shorter 3'UTRs associated with reduced gene expression. These findings reveal the changes in APA that occur during EMT and identify a potential role for QKI in this process.
Collapse
Affiliation(s)
- Daniel P. Neumann
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Katherine A. Pillman
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - B. Kate Dredge
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Andrew G. Bert
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Caroline A. Phillips
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Rachael Lumb
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Yesha Ramani
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Cameron P. Bracken
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Brett G. Hollier
- Australian Prostate Cancer Research Centre - Queensland, Centre for Genomics and Personalised Health, Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Luke A. Selth
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| | - Traude H. Beilharz
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Gregory J. Goodall
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Philip A. Gregory
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
5
|
Israel-Elgali I, Pan H, Oved K, Pillar N, Levy G, Barak B, Carneiro A, Gurwitz D, Shomron N. Impaired myelin ultrastructure is reversed by citalopram treatment in a mouse model for major depressive disorder. J Psychiatr Res 2023; 166:100-114. [PMID: 37757703 DOI: 10.1016/j.jpsychires.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/24/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
Major depressive disorder (MDD) is the most common and widespread mental disorder. Selective serotonin reuptake inhibitors (SSRIs) are the first-line treatment for MDD. The relation between the inhibition of serotonin reuptake in the central nervous system and remission from MDD remains controversial, as reuptake inhibition occurs rapidly, but remission from MDD takes weeks to months. Myelination-related deficits and white matter abnormalities were shown to be involved in psychiatric disorders such as MDD. This may explain the delay in remission following SSRI administration. The raphe nuclei (RN), located in the brain stem, consist of clusters of serotonergic (5-HT) neurons that project to almost all regions of the brain. Thus, the RN are an intriguing area for research of the potential effect of SSRI on myelination, and their involvement in MDD. MicroRNAs (miRNAs) regulate many biological features that might be altered by antidepressants. Two cohorts of chronic unpredictable stress (CUS) mouse model for depression underwent behavioral tests for evaluating stress, anxiety, and depression levels. Following application of the CUS protocol and treatment with the SSRI, citalopram, 48 mice of the second cohort were tested via magnetic resonance imaging and diffusion tensor imaging for differences in brain white matter tracts. RN and superior colliculus were excised from both cohorts and measured for changes in miRNAs, mRNA, and protein levels of candidate genes. Using MRI-DTI scans we found lower fractional anisotropy and axial diffusivity in brains of stressed mice. Moreover, both miR-30b-5p and miR-101a-3p were found to be downregulated in the RN following CUS, and upregulated following CUS and citalopram treatment. The direct binding of these miRNAs to Qki, and the subsequent effects on mRNA and protein levels of myelin basic protein (Mbp), indicated involvement of these miRNAs in myelination ultrastructure processes in the RN, in response to CUS followed by SSRI treatment. We suggest that SSRIs are implicated in repairing myelin deficits resulting from chronic stress that leads to depression.
Collapse
Affiliation(s)
- Ifat Israel-Elgali
- Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hope Pan
- Department of Pharmacology, Center for Molecular Neuroscience, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Keren Oved
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nir Pillar
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gilad Levy
- Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel
| | - Boaz Barak
- Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel; Faculty of Social Sciences, School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ana Carneiro
- Department of Pharmacology, Center for Molecular Neuroscience, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - David Gurwitz
- Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Noam Shomron
- Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Edmond J Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv, Israel; Tel Aviv University Innovation Laboratories (TILabs), Tel Aviv, Israel.
| |
Collapse
|
6
|
Chen S, Niu S, Wang W, Zhao X, Pan Y, Qiao L, Yang K, Liu J, Liu W. Overexpression of the QKI Gene Promotes Differentiation of Goat Myoblasts into Myotubes. Animals (Basel) 2023; 13:ani13040725. [PMID: 36830512 PMCID: PMC9952742 DOI: 10.3390/ani13040725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/01/2023] [Accepted: 02/12/2023] [Indexed: 02/22/2023] Open
Abstract
The QKI genes encode RNA-binding proteins regulating cell proliferation, differentiation, and apoptosis. The Goat QKI has six isoforms, but their roles in myogenesis are unclear. In this study, the six isoforms of the QKI gene were overexpressed in goat myoblast. Immunofluorescence, qPCR and Western blot were used to evaluate the effect of QKI on the differentiation of goat myoblast. An RNA-Seq was performed on the cells with the gain of the function from the major isoforms to screen differentially expressed genes (DEGs). The results show that six isoforms had different degrees of deletion in exons 6 and 7, and caused the appearance of different types of encoded amino acids. The expression levels of the QKI-1 and QKI-5 groups were upregulated in the biceps femoris and latissimus dorsi muscle tissues compared with those of the QKI-4, QKI-7, QKI-3 and QKI-6 groups. After 6 d of myoblast differentiation, QKI-5 and the myogenic differentiators MyoG, MyoD, and MyHC were upregulated. Compared to the negative control group, QKI promoted myotube differentiation and the myoblasts overexpressing QKI-5 formed large, abundant myotubes. In summary, we identified that the overexpression of the QKI gene promotes goat-myoblast differentiation and that QKI-5 is the major isoform, with a key role. The RNA-Seq screened 76 upregulated and 123 downregulated DEGs between the negative control and the QKI-5-overexpressing goat myoblasts after d 6 of differentiation. The GO and KEGG analyses associated the downregulated DEGs with muscle-related biological functions. Only the pathways related to muscle growth and development were enriched. This study provides a theoretical basis for further exploring the regulatory mechanism of QKI in skeletal-muscle development in goats.
Collapse
|
7
|
Emerging Roles of RNA-Binding Proteins in Neurodevelopment. J Dev Biol 2022; 10:jdb10020023. [PMID: 35735914 PMCID: PMC9224834 DOI: 10.3390/jdb10020023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 02/06/2023] Open
Abstract
Diverse cell types in the central nervous system (CNS) are generated by a relatively small pool of neural stem cells during early development. Spatial and temporal regulation of stem cell behavior relies on precise coordination of gene expression. Well-studied mechanisms include hormone signaling, transcription factor activity, and chromatin remodeling processes. Much less is known about downstream RNA-dependent mechanisms including posttranscriptional regulation, nuclear export, alternative splicing, and transcript stability. These important functions are carried out by RNA-binding proteins (RBPs). Recent work has begun to explore how RBPs contribute to stem cell function and homeostasis, including their role in metabolism, transport, epigenetic regulation, and turnover of target transcripts. Additional layers of complexity are provided by the different target recognition mechanisms of each RBP as well as the posttranslational modifications of the RBPs themselves that alter function. Altogether, these functions allow RBPs to influence various aspects of RNA metabolism to regulate numerous cellular processes. Here we compile advances in RNA biology that have added to our still limited understanding of the role of RBPs in neurodevelopment.
Collapse
|
8
|
PRMT7 ablation stimulates anti-tumor immunity and sensitizes melanoma to immune checkpoint blockade. Cell Rep 2022; 38:110582. [PMID: 35354055 PMCID: PMC9838175 DOI: 10.1016/j.celrep.2022.110582] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 01/08/2022] [Accepted: 03/07/2022] [Indexed: 01/17/2023] Open
Abstract
Despite the success of immune checkpoint inhibitor (ICI) therapy for cancer, resistance and relapse are frequent. Combination therapies are expected to enhance response rates and overcome this resistance. Herein, we report that combining PRMT7 inhibition with ICI therapy induces a strong anti-tumor T cell immunity and restrains tumor growth in vivo by increasing immune cell infiltration. PRMT7-deficient B16.F10 melanoma exhibits increased expression of genes in the interferon pathway, antigen presentation, and chemokine signaling. PRMT7 deficiency or inhibition with SGC3027 in B16.F10 melanoma results in reduced DNMT expression, loss of DNA methylation in the regulatory regions of endogenous retroviral elements (ERVs) causing their increased expression. PRMT7-deficient cells increase RIG-I and MDA5 expression with a reduction in the H4R3me2s repressive histone mark at their gene promoters. Our findings identify PRMT7 as a regulatory checkpoint for RIG-I, MDA5, and their ERV-double-stranded RNA (dsRNA) ligands, facilitating immune escape and anti-tumor T cell immunity to restrain tumor growth.
Collapse
|
9
|
Vellosillo L, Pascual-Guerra J, Muñoz MP, Rodríguez-Navarro JA, González-Nieto D, Barrio LC, Lobo MDVT, Paíno CL. Oligodendroglia Generated From Adult Rat Adipose Tissue by Direct Cell Conversion. Front Cell Dev Biol 2022; 10:741499. [PMID: 35223826 PMCID: PMC8873586 DOI: 10.3389/fcell.2022.741499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/19/2022] [Indexed: 11/28/2022] Open
Abstract
Obtaining oligodendroglial cells from dispensable tissues would be of great interest for autologous or immunocompatible cell replacement therapy in demyelinating diseases, as well as for studying myelin-related pathologies or testing therapeutic approaches in culture. We evaluated the feasibility of generating oligodendrocyte precursor cells (OPCs) from adult rat adipose tissue by expressing genes encoding transcription factors involved in oligodendroglial development. Adipose-derived mesenchymal cells were lentivirally transduced with tetracycline-inducible Sox10, Olig2, Zfp536, and/or Nkx6.1 transgenes. Immunostaining with the OPC-specific O4 monoclonal antibody was used to mark oligodendroglial induction. O4- and myelin-associated glycoprotein (MAG)-positive cells emerged after 3 weeks when using the Sox10 + Olig2 + Zfp536 combination, followed in the ensuing weeks by GFAP-, O1 antigen-, p75NTR (low-affinity NGF receptor)-, and myelin proteins-positive cells. The O4+ cell population progressively expanded, eventually constituting more than 70% of cells in culture by 5 months. Sox10 transgene expression was essential for generating O4+ cells but was insufficient for inducing a full oligodendroglial phenotype. Converted cells required continuous transgene expression to maintain their glial phenotype. Some vestigial characteristics of mesenchymal cells were maintained after conversion. Growth factor withdrawal and triiodothyronine (T3) supplementation generated mature oligodendroglial phenotypes, while FBS supplementation produced GFAP+- and p75NTR+-rich cultures. Converted cells also showed functional characteristics of neural-derived OPCs, such as the expression of AMPA, NMDA, kainate, and dopaminergic receptors, as well as similar metabolic responses to differentiation-inducing drugs. When co-cultured with rat dorsal root ganglion neurons, the converted cells differentiated and ensheathed multiple axons. We propose that functional oligodendroglia can be efficiently generated from adult rat mesenchymal cells by direct phenotypic conversion.
Collapse
Affiliation(s)
- Lara Vellosillo
- Servicio de Neurobiología-Investigación, IRYCIS, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Center for Biomedical Technology (CTB), Universidad Politécnica, Madrid, Spain
| | - Jorge Pascual-Guerra
- Servicio de Neurobiología-Investigación, IRYCIS, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Maria Paz Muñoz
- Servicio de Neurobiología-Investigación, IRYCIS, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - José Antonio Rodríguez-Navarro
- Servicio de Neurobiología-Investigación, IRYCIS, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Departamento de Biología Celular, Universidad Complutense, Madrid, Spain
| | | | - Luis Carlos Barrio
- Unidad de Neurología Experimental, IRYCIS, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Maria del Val Toledo Lobo
- Departamento de Biomedicina y Biotecnología, IRYCIS, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Carlos Luis Paíno
- Servicio de Neurobiología-Investigación, IRYCIS, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Center for Biomedical Technology (CTB), Universidad Politécnica, Madrid, Spain
- *Correspondence: Carlos Luis Paíno,
| |
Collapse
|
10
|
Neumann DP, Goodall GJ, Gregory PA. The Quaking RNA-binding proteins as regulators of cell differentiation. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1724. [PMID: 35298877 PMCID: PMC9786888 DOI: 10.1002/wrna.1724] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 12/30/2022]
Abstract
The RNA-binding protein Quaking (QKI) has emerged as a potent regulator of cellular differentiation in developmental and pathological processes. The QKI gene is itself alternatively spliced to produce three major isoforms, QKI-5, QKI-6, and QKI-7, that possess very distinct functions. Here, we highlight roles of the different QKI isoforms in neuronal, vascular, muscle, and monocyte cell differentiation, and during epithelial-mesenchymal transition in cancer progression. QKI isoforms control cell differentiation through regulating alternative splicing, mRNA stability and translation, with activities in gene transcription now also becoming evident. These diverse functions of the QKI isoforms contribute to their broad influences on RNA metabolism and cellular differentiation. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Processing > Splicing Regulation/Alternative Splicing RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Daniel P. Neumann
- Centre for Cancer BiologyUniversity of South Australia and SA PathologyAdelaideSouth Australia
| | - Gregory J. Goodall
- Centre for Cancer BiologyUniversity of South Australia and SA PathologyAdelaideSouth Australia,Faculty of Health and Medical SciencesThe University of AdelaideAdelaideSouth Australia
| | - Philip A. Gregory
- Centre for Cancer BiologyUniversity of South Australia and SA PathologyAdelaideSouth Australia,Faculty of Health and Medical SciencesThe University of AdelaideAdelaideSouth Australia
| |
Collapse
|
11
|
Bettencourt C, Miki Y, Piras IS, de Silva R, Foti SC, Talboom JS, Revesz T, Lashley T, Balazs R, Viré E, Warner TT, Huentelman MJ, Holton JL. MOBP and HIP1 in multiple system atrophy: New α-synuclein partners in glial cytoplasmic inclusions implicated in the disease pathogenesis. Neuropathol Appl Neurobiol 2021; 47:640-652. [PMID: 33368549 PMCID: PMC8219819 DOI: 10.1111/nan.12688] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/16/2020] [Accepted: 12/14/2020] [Indexed: 01/02/2023]
Abstract
AIMS Multiple system atrophy (MSA) is a fatal neurodegenerative disease. Similar to Parkinson's disease (PD), MSA is an α-synucleinopathy, and its pathological hallmark consists of glial cytoplasmic inclusions (GCIs) containing α-synuclein (SNCA) in oligodendrocytes. We previously identified consistent changes in myelin-associated oligodendrocyte basic protein (MOBP) and huntingtin interacting protein 1 (HIP1) DNA methylation status in MSA. We hypothesized that if differential DNA methylation at these loci is mechanistically relevant for MSA, it should have downstream consequences on gene regulation. METHODS We investigated the relationship between MOBP and HIP1 DNA methylation and mRNA levels in cerebellar white matter from MSA and healthy controls. Additionally, we analysed protein expression using western blotting, immunohistochemistry and proximity ligation assays. RESULTS We found decreased MOBP mRNA levels significantly correlated with increased DNA methylation in MSA. For HIP1, we found a distinct relationship between DNA methylation and gene expression levels in MSA compared to healthy controls, suggesting this locus may be subjected to epigenetic remodelling in MSA. Although soluble protein levels for MOBP and HIP1 in cerebellar white matter were not significantly different between MSA cases and controls, we found striking differences between MSA and other neurodegenerative diseases, including PD and Huntington's disease. We also found that MOBP and HIP1 are mislocalized into the GCIs in MSA, where they appear to interact with SNCA. CONCLUSIONS This study supports a role for DNA methylation in downregulation of MOBP mRNA in MSA. Most importantly, the identification of MOBP and HIP1 as new constituents of GCIs emphasizes the relevance of these two loci to the pathogenesis of MSA.
Collapse
Affiliation(s)
- Conceição Bettencourt
- Queen Square Brain Bank for Neurological DisordersUCL Queen Square Institute of NeurologyLondonUK
- Department of Clinical and Movement NeurosciencesUCL Queen Square Institute of NeurologyLondonUK
| | - Yasuo Miki
- Queen Square Brain Bank for Neurological DisordersUCL Queen Square Institute of NeurologyLondonUK
- Department of NeuropathologyInstitute of Brain ScienceHirosaki University Graduate School of MedicineHirosakiJapan
| | - Ignazio S. Piras
- Neurogenomics DivisionTranslational Genomics Research InstitutePhoenixAZUSA
| | - Rohan de Silva
- Department of Clinical and Movement NeurosciencesUCL Queen Square Institute of NeurologyLondonUK
- Reta Lila Weston InstituteUCL Queen Square Institute of NeurologyLondonUK
| | - Sandrine C. Foti
- Queen Square Brain Bank for Neurological DisordersUCL Queen Square Institute of NeurologyLondonUK
- Department of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
| | - Joshua S. Talboom
- Neurogenomics DivisionTranslational Genomics Research InstitutePhoenixAZUSA
| | - Tamas Revesz
- Queen Square Brain Bank for Neurological DisordersUCL Queen Square Institute of NeurologyLondonUK
- Reta Lila Weston InstituteUCL Queen Square Institute of NeurologyLondonUK
- Department of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
| | - Tammaryn Lashley
- Queen Square Brain Bank for Neurological DisordersUCL Queen Square Institute of NeurologyLondonUK
- Department of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
| | - Robert Balazs
- Queen Square Brain Bank for Neurological DisordersUCL Queen Square Institute of NeurologyLondonUK
- Department of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK
| | | | - Thomas T. Warner
- Queen Square Brain Bank for Neurological DisordersUCL Queen Square Institute of NeurologyLondonUK
- Department of Clinical and Movement NeurosciencesUCL Queen Square Institute of NeurologyLondonUK
- Reta Lila Weston InstituteUCL Queen Square Institute of NeurologyLondonUK
| | - Matt J. Huentelman
- Neurogenomics DivisionTranslational Genomics Research InstitutePhoenixAZUSA
| | - Janice L. Holton
- Queen Square Brain Bank for Neurological DisordersUCL Queen Square Institute of NeurologyLondonUK
- Department of Clinical and Movement NeurosciencesUCL Queen Square Institute of NeurologyLondonUK
| |
Collapse
|
12
|
Simankova A, Bizen N, Saitoh S, Shibata S, Ohno N, Abe M, Sakimura K, Takebayashi H. Ddx20, DEAD box helicase 20, is essential for the differentiation of oligodendrocyte and maintenance of myelin gene expression. Glia 2021; 69:2559-2574. [PMID: 34231259 DOI: 10.1002/glia.24058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/17/2022]
Abstract
Oligodendrocytes form myelin sheaths that surround axons, contributing to saltatory conduction and proper central nervous system (CNS) function. Oligodendrocyte progenitor cells (OPCs) are generated during the embryonic stage and differentiate into myelinating oligodendrocytes postnatally. Ddx20 is a multifunctional, DEAD-box helicase involved in multiple cellular processes, including transcription, splicing, microRNA biogenesis, and translation. Although defects in each of these processes result in abnormal oligodendrocyte differentiation and myelination, the involvement of Ddx20 in oligodendrocyte terminal differentiation remains unknown. To address this question, we used Mbp-Cre mice to generate Ddx20 conditional knockout (cKO) mice to allow for the deletion of Ddx20 from mature oligodendrocytes. Mbp-Cre;Ddx20 cKO mice demonstrated small body sizes, behavioral abnormalities, muscle weakness, and short lifespans, with mortality by the age of 2 months old. Histological analyses demonstrated significant reductions in the number of mature oligodendrocytes and drastic reductions in the expression levels of myelin-associated mRNAs, such as Mbp and Plp at postnatal day 42. The number of OPCs did not change. A thin myelin layer was observed for large-diameter axons in Ddx20 cKO mice, based on electron microscopic analysis. A bromodeoxyuridine (BrdU) labeling experiment demonstrated that terminal differentiation was perturbed from ages 2 weeks to 7 weeks in the CNS of Mbp-Cre;Ddx20 cKO mice. The activation of mitogen-activated protein (MAP) kinase, which promotes myelination, was downregulated in the Ddx20 cKO mice based on immunohistochemical detection. These results indicate that Ddx20 is an essential factor for terminal differentiation of oligodendrocytes and maintenance of myelin gene expression.
Collapse
Affiliation(s)
- Anna Simankova
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Norihisa Bizen
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Sei Saitoh
- Section of Electron Microscopy, Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Biomedical Molecular Sciences (Anatomy II), Fujita Health University School of Medicine, Toyoake, Japan
| | - Shinsuke Shibata
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan.,Division of Ultrastructural Research, National Institute for Physiological Sciences, Okazaki, Japan
| | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.,Center for Coordination of Research Facilities, Niigata University, Niigata, Japan
| |
Collapse
|
13
|
Ietswaart R, Gyori BM, Bachman JA, Sorger PK, Churchman LS. GeneWalk identifies relevant gene functions for a biological context using network representation learning. Genome Biol 2021; 22:55. [PMID: 33526072 PMCID: PMC7852222 DOI: 10.1186/s13059-021-02264-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022] Open
Abstract
A bottleneck in high-throughput functional genomics experiments is identifying the most important genes and their relevant functions from a list of gene hits. Gene Ontology (GO) enrichment methods provide insight at the gene set level. Here, we introduce GeneWalk ( github.com/churchmanlab/genewalk ) that identifies individual genes and their relevant functions critical for the experimental setting under examination. After the automatic assembly of an experiment-specific gene regulatory network, GeneWalk uses representation learning to quantify the similarity between vector representations of each gene and its GO annotations, yielding annotation significance scores that reflect the experimental context. By performing gene- and condition-specific functional analysis, GeneWalk converts a list of genes into data-driven hypotheses.
Collapse
Affiliation(s)
- Robert Ietswaart
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Benjamin M Gyori
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - John A Bachman
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - L Stirling Churchman
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
14
|
QUAKING Regulates Microexon Alternative Splicing of the Rho GTPase Pathway and Controls Microglia Homeostasis. Cell Rep 2020; 33:108560. [DOI: 10.1016/j.celrep.2020.108560] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/27/2020] [Accepted: 12/04/2020] [Indexed: 12/30/2022] Open
|
15
|
Yang C, Eleftheriadou M, Kelaini S, Morrison T, González MV, Caines R, Edwards N, Yacoub A, Edgar K, Moez A, Ivetic A, Zampetaki A, Zeng L, Wilkinson FL, Lois N, Stitt AW, Grieve DJ, Margariti A. Targeting QKI-7 in vivo restores endothelial cell function in diabetes. Nat Commun 2020; 11:3812. [PMID: 32732889 PMCID: PMC7393072 DOI: 10.1038/s41467-020-17468-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 07/02/2020] [Indexed: 11/24/2022] Open
Abstract
Vascular endothelial cell (EC) dysfunction plays a key role in diabetic complications. This study discovers significant upregulation of Quaking-7 (QKI-7) in iPS cell-derived ECs when exposed to hyperglycemia, and in human iPS-ECs from diabetic patients. QKI-7 is also highly expressed in human coronary arterial ECs from diabetic donors, and on blood vessels from diabetic critical limb ischemia patients undergoing a lower-limb amputation. QKI-7 expression is tightly controlled by RNA splicing factors CUG-BP and hnRNPM through direct binding. QKI-7 upregulation is correlated with disrupted cell barrier, compromised angiogenesis and enhanced monocyte adhesion. RNA immunoprecipitation (RIP) and mRNA-decay assays reveal that QKI-7 binds and promotes mRNA degradation of downstream targets CD144, Neuroligin 1 (NLGN1), and TNF-α-stimulated gene/protein 6 (TSG-6). When hindlimb ischemia is induced in diabetic mice and QKI-7 is knocked-down in vivo in ECs, reperfusion and blood flow recovery are markedly promoted. Manipulation of QKI-7 represents a promising strategy for the treatment of diabetic vascular complications.
Collapse
Affiliation(s)
- Chunbo Yang
- The Wellcome-Wolfson Institute of Experimental Medicine, Belfast, BT9 7BL, UK
| | | | - Sophia Kelaini
- The Wellcome-Wolfson Institute of Experimental Medicine, Belfast, BT9 7BL, UK
| | - Thomas Morrison
- The Wellcome-Wolfson Institute of Experimental Medicine, Belfast, BT9 7BL, UK
| | - Marta Vilà González
- The Wellcome-Wolfson Institute of Experimental Medicine, Belfast, BT9 7BL, UK
| | - Rachel Caines
- The Wellcome-Wolfson Institute of Experimental Medicine, Belfast, BT9 7BL, UK
| | - Nicola Edwards
- Centre for Bioscience in the Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, M15GD, UK
| | - Andrew Yacoub
- The Wellcome-Wolfson Institute of Experimental Medicine, Belfast, BT9 7BL, UK
| | - Kevin Edgar
- The Wellcome-Wolfson Institute of Experimental Medicine, Belfast, BT9 7BL, UK
| | - Arya Moez
- The Wellcome-Wolfson Institute of Experimental Medicine, Belfast, BT9 7BL, UK
| | - Aleksandar Ivetic
- School of Cardiovascular Medicine and Sciences, BHF Centre of Research Excellence, King's College London, The James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Anna Zampetaki
- School of Cardiovascular Medicine and Sciences, BHF Centre of Research Excellence, King's College London, The James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Lingfang Zeng
- School of Cardiovascular Medicine and Sciences, BHF Centre of Research Excellence, King's College London, The James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Fiona L Wilkinson
- Centre for Bioscience in the Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, M15GD, UK
| | - Noemi Lois
- The Wellcome-Wolfson Institute of Experimental Medicine, Belfast, BT9 7BL, UK
| | - Alan W Stitt
- The Wellcome-Wolfson Institute of Experimental Medicine, Belfast, BT9 7BL, UK
| | - David J Grieve
- The Wellcome-Wolfson Institute of Experimental Medicine, Belfast, BT9 7BL, UK
| | - Andriana Margariti
- The Wellcome-Wolfson Institute of Experimental Medicine, Belfast, BT9 7BL, UK.
| |
Collapse
|
16
|
Piras IS, Bleul C, Schrauwen I, Talboom J, Llaci L, De Both MD, Naymik MA, Halliday G, Bettencourt C, Holton JL, Serrano GE, Sue LI, Beach TG, Stefanova N, Huentelman MJ. Transcriptional profiling of multiple system atrophy cerebellar tissue highlights differences between the parkinsonian and cerebellar sub-types of the disease. Acta Neuropathol Commun 2020; 8:76. [PMID: 32493431 PMCID: PMC7268362 DOI: 10.1186/s40478-020-00950-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/19/2020] [Indexed: 01/04/2023] Open
Abstract
Multiple system atrophy (MSA) is a rare adult-onset neurodegenerative disease of unknown cause, with no effective therapeutic options, and no cure. Limited work to date has attempted to characterize the transcriptional changes associated with the disease, which presents as either predominating parkinsonian (MSA-P) or cerebellar (MSC-C) symptoms. We report here the results of RNA expression profiling of cerebellar white matter (CWM) tissue from two independent cohorts of MSA patients (n = 66) and healthy controls (HC; n = 66). RNA samples from bulk brain tissue and from oligodendrocytes obtained by laser capture microdissection (LCM) were sequenced. Differentially expressed genes (DEGs) were obtained and were examined before and after stratifying by MSA clinical sub-type.We detected the highest number of DEGs in the MSA-C group (n = 747) while only one gene was noted in MSA-P, highlighting the larger dysregulation of the transcriptome in the MSA-C CWM. Results from both bulk tissue and LCM analysis showed a downregulation of oligodendrocyte genes and an enrichment for myelination processes with a key role noted for the QKI gene. Additionally, we observed a significant upregulation of neuron-specific gene expression in MSA-C and enrichment for synaptic processes. A third cluster of genes was associated with the upregulation of astrocyte and endothelial genes, two cell types with a key role in inflammation processes. Finally, network analysis in MSA-C showed enrichment for β-amyloid related functional classes, including the known Alzheimer's disease (AD) genes, APP and PSEN1.This is the largest RNA profiling study ever conducted on post-mortem brain tissue from MSA patients. We were able to define specific gene expression signatures for MSA-C highlighting the different stages of the complex neurodegenerative cascade of the disease that included alterations in several cell-specific transcriptional programs. Finally, several results suggest a common transcriptional dysregulation between MSA and AD-related genes despite the clinical and neuropathological distinctions between the two diseases.
Collapse
Affiliation(s)
- Ignazio S Piras
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Christiane Bleul
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Isabelle Schrauwen
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, USA
- Present Address: Department of Neurology, Center for Statistical Genetics, Gertrude H. Sergievsky Center, Columbia University Medical Center, 630 W 168th St, New York, NY, 10032, USA
| | - Joshua Talboom
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Lorida Llaci
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, USA
- Present address: Division of Biology and Biomedical Sciences, Molecular Genetics and Genomics Program, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Matthew D De Both
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Marcus A Naymik
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Glenda Halliday
- The University of Sydney Brain and Mind Centre and Faculty of Medicine and Health, School of Medical Science, and Neuroscience Research Australia, Sydney, Australia
| | - Conceicao Bettencourt
- Queen Square Brain Bank for Neurological Disorders and Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Janice L Holton
- Queen Square Brain Bank for Neurological Disorders and Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Geidy E Serrano
- Civin Laboratory of Neuropathology at Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | - Lucia I Sue
- Civin Laboratory of Neuropathology at Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | - Thomas G Beach
- Civin Laboratory of Neuropathology at Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | - Nadia Stefanova
- Department of Neurology, Division of Neurobiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Matthew J Huentelman
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, AZ, USA.
| |
Collapse
|
17
|
Gouvêa-Junqueira D, Falvella ACB, Antunes ASLM, Seabra G, Brandão-Teles C, Martins-de-Souza D, Crunfli F. Novel Treatment Strategies Targeting Myelin and Oligodendrocyte Dysfunction in Schizophrenia. Front Psychiatry 2020; 11:379. [PMID: 32425837 PMCID: PMC7203658 DOI: 10.3389/fpsyt.2020.00379] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
Oligodendrocytes are the glial cells responsible for the formation of the myelin sheath around axons. During neurodevelopment, oligodendrocytes undergo maturation and differentiation, and later remyelination in adulthood. Abnormalities in these processes have been associated with behavioral and cognitive dysfunctions and the development of various mental illnesses like schizophrenia. Several studies have implicated oligodendrocyte dysfunction and myelin abnormalities in the disorder, together with altered expression of myelin-related genes such as Olig2, CNP, and NRG1. However, the molecular mechanisms subjacent of these alterations remain elusive. Schizophrenia is a severe, chronic psychiatric disorder affecting more than 23 million individuals worldwide and its symptoms usually appear at the beginning of adulthood. Currently, the major therapeutic strategy for schizophrenia relies on the use of antipsychotics. Despite their widespread use, the effects of antipsychotics on glial cells, especially oligodendrocytes, remain unclear. Thus, in this review we highlight the current knowledge regarding oligodendrocyte dysfunction in schizophrenia, compiling data from (epi)genetic studies and up-to-date models to investigate the role of oligodendrocytes in the disorder. In addition, we examined potential targets currently investigated for the improvement of schizophrenia symptoms. Research in this area has been investigating potential beneficial compounds, including the D-amino acids D-aspartate and D-serine, that act as NMDA receptor agonists, modulating the glutamatergic signaling; the antioxidant N-acetylcysteine, a precursor in the synthesis of glutathione, protecting against the redox imbalance; as well as lithium, an inhibitor of glycogen synthase kinase 3β (GSK3β) signaling, contributing to oligodendrocyte survival and functioning. In conclusion, there is strong evidence linking oligodendrocyte dysfunction to the development of schizophrenia. Hence, a better understanding of oligodendrocyte differentiation, as well as the effects of antipsychotic medication in these cells, could have potential implications for understanding the development of schizophrenia and finding new targets for drug development.
Collapse
Affiliation(s)
- Danielle Gouvêa-Junqueira
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Ana Caroline Brambilla Falvella
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - André Saraiva Leão Marcelo Antunes
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Gabriela Seabra
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Caroline Brandão-Teles
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria, Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
- D′Or Institute for Research and Education (IDOR), São Paulo, Brazil
| | - Fernanda Crunfli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| |
Collapse
|
18
|
de Bruin RG, Vogel G, Prins J, Duijs JMJG, Bijkerk R, van der Zande HJP, van Gils JM, de Boer HC, Rabelink TJ, van Zonneveld AJ, van der Veer EP, Richard S. Targeting the RNA-Binding Protein QKI in Myeloid Cells Ameliorates Macrophage-Induced Renal Interstitial Fibrosis. EPIGENOMES 2020; 4:epigenomes4010002. [PMID: 34968236 PMCID: PMC8594696 DOI: 10.3390/epigenomes4010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/05/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023] Open
Abstract
In the pathophysiologic setting of acute and chronic kidney injury, the excessive activation and recruitment of blood-borne monocytes prompts their differentiation into inflammatory macrophages, a process that leads to progressive glomerulosclerosis and interstitial fibrosis. Importantly, this differentiation of monocytes into macrophages requires the meticulous coordination of gene expression at both the transcriptional and post-transcriptional level. The transcriptomes of these cells are ultimately determined by RNA-binding proteins such as QUAKING (QKI), that define their pre-mRNA splicing and mRNA transcript patterns. Using two mouse models, namely (1) quaking viable mice (qkv) and (2) the conditional deletion in the myeloid cell lineage using the lysozyme 2-Cre (QKIFL/FL;LysM-Cre mice), we demonstrate that the abrogation of QKI expression in the myeloid cell lineage reduces macrophage infiltration following kidney injury induced by unilateral urethral obstruction (UUO). The qkv and QKIFL/FL;LysM-Cre mice both showed significant diminished interstitial collagen deposition and fibrosis in the UUO-damaged kidney, as compared to wild-type littermates. We show that macrophages isolated from QKIFL/FL;LysM-Cre mice are associated with defects in pre-mRNA splicing. Our findings demonstrate that reduced expression of the alternative splice regulator QKI in the cells of myeloid lineage attenuates renal interstitial fibrosis, suggesting that inhibition of this splice regulator may be of therapeutic value for certain kidney diseases.
Collapse
Affiliation(s)
- Ruben G. de Bruin
- Einthoven Laboratory for Experimental Vascular Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Albinusdreef 2, C7-36, PO Box 9600, 2300RC Leiden, The Netherlands; (R.G.d.B.); (J.P.); (J.M.J.G.D.); (R.B.); (H.J.P.v.d.Z.); (J.M.v.G.); (H.C.d.B.); (T.J.R.); (A.J.v.Z.)
- Segal Cancer Center, Lady Davis Institute for Medical Research and Gerald Bronfman Department of Oncology and Departments of Biochemistry, Human Genetics and Medicine, McGill University, Montréal, QC H3T 1E2, Canada;
| | - Gillian Vogel
- Segal Cancer Center, Lady Davis Institute for Medical Research and Gerald Bronfman Department of Oncology and Departments of Biochemistry, Human Genetics and Medicine, McGill University, Montréal, QC H3T 1E2, Canada;
| | - Jurrien Prins
- Einthoven Laboratory for Experimental Vascular Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Albinusdreef 2, C7-36, PO Box 9600, 2300RC Leiden, The Netherlands; (R.G.d.B.); (J.P.); (J.M.J.G.D.); (R.B.); (H.J.P.v.d.Z.); (J.M.v.G.); (H.C.d.B.); (T.J.R.); (A.J.v.Z.)
| | - Jacques M. J. G. Duijs
- Einthoven Laboratory for Experimental Vascular Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Albinusdreef 2, C7-36, PO Box 9600, 2300RC Leiden, The Netherlands; (R.G.d.B.); (J.P.); (J.M.J.G.D.); (R.B.); (H.J.P.v.d.Z.); (J.M.v.G.); (H.C.d.B.); (T.J.R.); (A.J.v.Z.)
| | - Roel Bijkerk
- Einthoven Laboratory for Experimental Vascular Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Albinusdreef 2, C7-36, PO Box 9600, 2300RC Leiden, The Netherlands; (R.G.d.B.); (J.P.); (J.M.J.G.D.); (R.B.); (H.J.P.v.d.Z.); (J.M.v.G.); (H.C.d.B.); (T.J.R.); (A.J.v.Z.)
| | - Hendrik J. P. van der Zande
- Einthoven Laboratory for Experimental Vascular Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Albinusdreef 2, C7-36, PO Box 9600, 2300RC Leiden, The Netherlands; (R.G.d.B.); (J.P.); (J.M.J.G.D.); (R.B.); (H.J.P.v.d.Z.); (J.M.v.G.); (H.C.d.B.); (T.J.R.); (A.J.v.Z.)
| | - Janine M. van Gils
- Einthoven Laboratory for Experimental Vascular Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Albinusdreef 2, C7-36, PO Box 9600, 2300RC Leiden, The Netherlands; (R.G.d.B.); (J.P.); (J.M.J.G.D.); (R.B.); (H.J.P.v.d.Z.); (J.M.v.G.); (H.C.d.B.); (T.J.R.); (A.J.v.Z.)
| | - Hetty C. de Boer
- Einthoven Laboratory for Experimental Vascular Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Albinusdreef 2, C7-36, PO Box 9600, 2300RC Leiden, The Netherlands; (R.G.d.B.); (J.P.); (J.M.J.G.D.); (R.B.); (H.J.P.v.d.Z.); (J.M.v.G.); (H.C.d.B.); (T.J.R.); (A.J.v.Z.)
| | - Ton J. Rabelink
- Einthoven Laboratory for Experimental Vascular Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Albinusdreef 2, C7-36, PO Box 9600, 2300RC Leiden, The Netherlands; (R.G.d.B.); (J.P.); (J.M.J.G.D.); (R.B.); (H.J.P.v.d.Z.); (J.M.v.G.); (H.C.d.B.); (T.J.R.); (A.J.v.Z.)
| | - Anton Jan van Zonneveld
- Einthoven Laboratory for Experimental Vascular Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Albinusdreef 2, C7-36, PO Box 9600, 2300RC Leiden, The Netherlands; (R.G.d.B.); (J.P.); (J.M.J.G.D.); (R.B.); (H.J.P.v.d.Z.); (J.M.v.G.); (H.C.d.B.); (T.J.R.); (A.J.v.Z.)
| | - Eric P. van der Veer
- Einthoven Laboratory for Experimental Vascular Medicine, Division of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Albinusdreef 2, C7-36, PO Box 9600, 2300RC Leiden, The Netherlands; (R.G.d.B.); (J.P.); (J.M.J.G.D.); (R.B.); (H.J.P.v.d.Z.); (J.M.v.G.); (H.C.d.B.); (T.J.R.); (A.J.v.Z.)
- Correspondence: (E.P.v.d.V.); (S.R.)
| | - Stéphane Richard
- Segal Cancer Center, Lady Davis Institute for Medical Research and Gerald Bronfman Department of Oncology and Departments of Biochemistry, Human Genetics and Medicine, McGill University, Montréal, QC H3T 1E2, Canada;
- Correspondence: (E.P.v.d.V.); (S.R.)
| |
Collapse
|
19
|
Shi F, Deng Z, Zhou Z, Jiang C, Zhao R, Sun F, Cui D, Bei X, Yang B, Sun Q, Wang X, Wu Q, Xia S, Han B. QKI-6 inhibits bladder cancer malignant behaviours through down-regulating E2F3 and NF-κB signalling. J Cell Mol Med 2019; 23:6578-6594. [PMID: 31449345 PMCID: PMC6787450 DOI: 10.1111/jcmm.14481] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/13/2019] [Accepted: 05/15/2019] [Indexed: 02/06/2023] Open
Abstract
Quaking homolog (QKI) is a member of the RNA-binding signal transduction and activator of proteins family. Previous studies showed that QKI possesses the tumour suppressor activity in human cancers by interacting with the 3'-untraslated region (3'-UTR) of various gene transcripts via the STAR domain. This study first assessed the association of QKI-6 expression with clinicopathological and survival data from bladder cancer patients and then investigated the underlying molecular mechanisms. Bladder cancer tissues (n = 223) were subjected to immunohistochemistry, and tumour cell lines and nude mice were used for different in vitro and in vivo assays following QKI-6 overexpression or knockdown. QKI-6 down-regulation was associated with advanced tumour TNM stages and poor patient overall survival. QKI-6 overexpression inhibited bladder cancer cell growth and invasion capacity, but induced tumour cell apoptosis and cell cycle arrest. Furthermore, ectopic expression of QKI-6 reduced tumour xenograft growth and expression of proliferation markers, Ki67 and PCNA. However, knockdown of QKI-6 expression had opposite effects in vitro and in vivo. QKI-6 inhibited expression of E2 transcription factor 3 (E2F3) by directly binding to the E2F3 3'-UTR, whereas E2F3 induced QKI-6 transcription by binding to the QKI-6 promoter in negative feedback mechanism. QKI-6 expression also suppressed activity and expression of nuclear factor-κB (NF-κB) signalling proteins in vitro, implying a novel multilevel regulatory network downstream of QKI-6. In conclusion, QKI-6 down-regulation contributes to bladder cancer development and progression.
Collapse
Affiliation(s)
- Fei Shi
- Department of Urology, School of MedicineShanghai General Hospital, Shanghai Jiao Tong UniversityShanghaiChina
| | - Zheng Deng
- Department of Urology, School of MedicineShanghai General Hospital, Shanghai Jiao Tong UniversityShanghaiChina
| | - Zheng Zhou
- Department of UrologyShanghai General Hospital Affiliated to Nanjing Medical UniversityShanghaiChina
| | - Chen‐Yi Jiang
- Department of Urology, School of MedicineShanghai General Hospital, Shanghai Jiao Tong UniversityShanghaiChina
| | - Rui‐Zhe Zhao
- Department of Urology, School of MedicineShanghai General Hospital, Shanghai Jiao Tong UniversityShanghaiChina
| | - Feng Sun
- Department of Urology, School of MedicineShanghai General Hospital, Shanghai Jiao Tong UniversityShanghaiChina
- Institute of UrologyShanghai Jiao Tong UniversityShanghaiChina
| | - Di Cui
- Department of Urology, School of MedicineShanghai General Hospital, Shanghai Jiao Tong UniversityShanghaiChina
- Institute of UrologyShanghai Jiao Tong UniversityShanghaiChina
| | - Xiao‐Yu Bei
- Department of Urology, School of MedicineShanghai General Hospital, Shanghai Jiao Tong UniversityShanghaiChina
- Institute of UrologyShanghai Jiao Tong UniversityShanghaiChina
| | - Bo‐Yu Yang
- Department of Urology, School of MedicineShanghai General Hospital, Shanghai Jiao Tong UniversityShanghaiChina
| | - Qian Sun
- Department of UrologyShanghai General Hospital Affiliated to Nanjing Medical UniversityShanghaiChina
| | - Xing‐Jie Wang
- Department of Urology, School of MedicineShanghai General Hospital, Shanghai Jiao Tong UniversityShanghaiChina
- Institute of UrologyShanghai Jiao Tong UniversityShanghaiChina
| | - Qi Wu
- Department of UrologyShanghai General Hospital Affiliated to Nanjing Medical UniversityShanghaiChina
| | - Shu‐Jie Xia
- Department of Urology, School of MedicineShanghai General Hospital, Shanghai Jiao Tong UniversityShanghaiChina
- Institute of UrologyShanghai Jiao Tong UniversityShanghaiChina
| | - Bang‐Min Han
- Department of Urology, School of MedicineShanghai General Hospital, Shanghai Jiao Tong UniversityShanghaiChina
- Institute of UrologyShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
20
|
Calabretta S, Vogel G, Yu Z, Choquet K, Darbelli L, Nicholson TB, Kleinman CL, Richard S. Loss of PRMT5 Promotes PDGFRα Degradation during Oligodendrocyte Differentiation and Myelination. Dev Cell 2018; 46:426-440.e5. [DOI: 10.1016/j.devcel.2018.06.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 04/20/2018] [Accepted: 06/27/2018] [Indexed: 12/26/2022]
|
21
|
Pillman KA, Phillips CA, Roslan S, Toubia J, Dredge BK, Bert AG, Lumb R, Neumann DP, Li X, Conn SJ, Liu D, Bracken CP, Lawrence DM, Stylianou N, Schreiber AW, Tilley WD, Hollier BG, Khew-Goodall Y, Selth LA, Goodall GJ, Gregory PA. miR-200/375 control epithelial plasticity-associated alternative splicing by repressing the RNA-binding protein Quaking. EMBO J 2018; 37:embj.201899016. [PMID: 29871889 PMCID: PMC6028027 DOI: 10.15252/embj.201899016] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/22/2018] [Accepted: 03/24/2018] [Indexed: 12/25/2022] Open
Abstract
Members of the miR‐200 family are critical gatekeepers of the epithelial state, restraining expression of pro‐mesenchymal genes that drive epithelial–mesenchymal transition (EMT) and contribute to metastatic cancer progression. Here, we show that miR‐200c and another epithelial‐enriched miRNA, miR‐375, exert widespread control of alternative splicing in cancer cells by suppressing the RNA‐binding protein Quaking (QKI). During EMT, QKI‐5 directly binds to and regulates hundreds of alternative splicing targets and exerts pleiotropic effects, such as increasing cell migration and invasion and restraining tumour growth, without appreciably affecting mRNA levels. QKI‐5 is both necessary and sufficient to direct EMT‐associated alternative splicing changes, and this splicing signature is broadly conserved across many epithelial‐derived cancer types. Importantly, several actin cytoskeleton‐associated genes are directly targeted by both QKI and miR‐200c, revealing coordinated control of alternative splicing and mRNA abundance during EMT. These findings demonstrate the existence of a miR‐200/miR‐375/QKI axis that impacts cancer‐associated epithelial cell plasticity through widespread control of alternative splicing.
Collapse
Affiliation(s)
- Katherine A Pillman
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Caroline A Phillips
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Suraya Roslan
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - John Toubia
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - B Kate Dredge
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Andrew G Bert
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Rachael Lumb
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Daniel P Neumann
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Xiaochun Li
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Simon J Conn
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia.,Flinders Centre for Innovation in Cancer, College of Medicine & Public Health, Flinders University, Adelaide, SA, Australia
| | - Dawei Liu
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Cameron P Bracken
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia.,Discipline of Medicine, The University of Adelaide, Adelaide, SA, Australia
| | - David M Lawrence
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Nataly Stylianou
- Institute of Health and Biomedical Innovation, Australian Prostate Cancer Research Centre - Queensland, Princess Alexandra Hospital, Queensland University of Technology, Brisbane, Qld, Australia
| | - Andreas W Schreiber
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,Freemasons Foundation Centre for Men's Health, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Brett G Hollier
- Institute of Health and Biomedical Innovation, Australian Prostate Cancer Research Centre - Queensland, Princess Alexandra Hospital, Queensland University of Technology, Brisbane, Qld, Australia
| | - Yeesim Khew-Goodall
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia.,Discipline of Medicine, The University of Adelaide, Adelaide, SA, Australia.,School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, SA, Australia
| | - Luke A Selth
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,Freemasons Foundation Centre for Men's Health, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Gregory J Goodall
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia .,Discipline of Medicine, The University of Adelaide, Adelaide, SA, Australia.,School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, SA, Australia
| | - Philip A Gregory
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia .,Discipline of Medicine, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|