1
|
Wu PY, Hasanah U, Yang SH, Chen SY, Luo YH, Chen CC, Chen SC. Enhancing cisplatin efficacy in hepatocellular carcinoma with selenocystine: The suppression of DNA repair and inhibition of proliferation in hepatoma cells. Chem Biol Interact 2025; 405:111291. [PMID: 39461470 DOI: 10.1016/j.cbi.2024.111291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 10/29/2024]
Abstract
Cisplatin (cDDP) is a crucial chemotherapy drug for treating various cancers, including hepatocellular carcinoma (HCC). However, its effectiveness is often hindered by side effects and drug resistance. Selenocystine (SeC) demonstrates potential as an anticancer agent, particularly by inhibiting DNA repair mechanisms. This study explored the synergistic potential of SeC combined with cDDP for treating HCC. Our results show that SeC pretreatment followed by cDDP significantly suppresses HCC cell proliferation more effectively than either treatment alone, with minimal toxicity to normal liver cells. The combination induces significant DNA damage by inhibiting homologous recombination (HR) and non-homologous end joining (NHEJ) pathways. Xenograft experiments confirmed that the combined therapy strongly inhibits tumor growth. SeC boost the effectiveness of cDDP by amplifying DNA damage and inhibiting DNA repair, presenting a promising approach to enhancing liver cancer treatment.
Collapse
Affiliation(s)
- Pei-Yi Wu
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Ulfah Hasanah
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Sheng-Hua Yang
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Sin-Yi Chen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Yueh-Hsia Luo
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Chien-Chin Chen
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, 600, Taiwan; Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan; Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, 717, Taiwan; Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ssu-Ching Chen
- Department of Life Sciences, National Central University, Taoyuan, Taiwan.
| |
Collapse
|
2
|
Sharma S, Roy R, Vartak A, Sen E, Sk UH. Synthesis and characterization of a novel Naphthalimide-Selenium based Temozolomide drug conjugate in glioma cells. Bioorg Chem 2025; 154:107998. [PMID: 39615280 DOI: 10.1016/j.bioorg.2024.107998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/11/2024] [Accepted: 11/23/2024] [Indexed: 01/15/2025]
Abstract
Temozolomide (TMZ)2 is the frontline chemotherapeutic drug against glioblastoma. As chemoresistance is a severe limitation of TMZ therapy, we aimed to synthesize a novel drug to improve its efficacy. This was achieved by conjugating TMZ with Naphthalimide (known DNA intercalator) via selenourea linkage (redox regulator). The synthesized Naphthalimide-selenourea-TMZ (Naph-Se-TMZ)3 exhibited heightened cell death in TMZ-sensitive and TMZ-resistant glioma cells compared to an equivalent dose of TMZ. Diminished cell viability was concomitant with heightened reactive oxygen species (ROS)4 levels in Naph-Se-TMZ treated cells. Docking simulations and in vitro studies attributed the improved cytotoxicity of Naph-Se-TMZ to its ability to inhibit HDAC1. A ROS-dependent decrease in HDAC1 expression and total HDAC activity was observed in Naph-Se-TMZ treated cells. We report the heightened cytotoxicity of synthesized novel Naph-Se-TMZ over TMZ in TMZ-resistant and TMZ-sensitive glioma cells through its ability to serve as a ROS generator and HDAC inhibitor. Importantly, TCGA dataset analysis indicating the association of heightened HDAC1 expression with poor prognosis and elevated antioxidant enzyme levels in glioma patients points towards the likely involvement of HDAC1 in protecting glioma cells from oxidative stress-induced damage. Taken together, our findings underscore the potential of Naph-Se-TMZ as a more effective therapeutic alternative to TMZ for glioblastoma treatment.
Collapse
Affiliation(s)
- Shalini Sharma
- National Brain Research Centre, Manesar, Haryana 122 052, India
| | - Rubi Roy
- Department of Clinical and Translational Research, Chittaranjan National Cancer Institute, Kolkata 700 026, West Bengal, India
| | - Aastha Vartak
- National Brain Research Centre, Manesar, Haryana 122 052, India
| | - Ellora Sen
- National Brain Research Centre, Manesar, Haryana 122 052, India.
| | - Ugir Hossain Sk
- Department of Clinical and Translational Research, Chittaranjan National Cancer Institute, Kolkata 700 026, West Bengal, India.
| |
Collapse
|
3
|
Liang R, Cheng A, Lu S, Zhang X, Ren M, Lin J, Wu Y, Zhang W, Luan X. Seleno-amino Acid Metabolism Reshapes the Tumor Microenvironment: from Cytotoxicity to Immunotherapy. Int J Biol Sci 2024; 20:2779-2789. [PMID: 38725849 PMCID: PMC11077380 DOI: 10.7150/ijbs.95484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
Selenium (Se) is an essential trace element for biological processes. Seleno-amino acids (Se-AAs), known as the organic forms of Se, and their metabolic reprogramming have been increasingly recognized to regulate antioxidant defense, enzyme activity, and tumorigenesis. Therefore, there is emerging interest in exploring the potential application of Se-AAs in antitumor therapy. In addition to playing a vital role in inhibiting tumor growth, accumulating evidence has revealed that Se-AA metabolism could reshape the tumor microenvironment (TME) and enhance immunotherapy responses. This review presents a comprehensive overview of the current progress in multifunctional Se-AAs for antitumor treatment, with a particular emphasis on elucidating the crosstalk between Se-AA metabolism and various cell types in the TME, including tumor cells, T cells, macrophages, and natural killer cells. Furthermore, novel applications integrating Se-AAs are also discussed alongside prospects to provide new insights into this emerging field.
Collapse
Affiliation(s)
- Rui Liang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Aoyu Cheng
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shengxin Lu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaokun Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Maomao Ren
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jiayi Lin
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ye Wu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Weidong Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100700, China
| | - Xin Luan
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
4
|
Meta-Analysis of RNA-Seq Datasets Identifies Novel Players in Glioblastoma. Cancers (Basel) 2022; 14:cancers14235788. [PMID: 36497269 PMCID: PMC9737249 DOI: 10.3390/cancers14235788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Glioblastoma is a devastating grade IV glioma with poor prognosis. Identification of predictive molecular biomarkers of disease progression would substantially contribute to better disease management. In the current study, we performed a meta-analysis of different RNA-seq datasets to identify differentially expressed protein-coding genes (PCGs) and long non-coding RNAs (lncRNAs). This meta-analysis aimed to improve power and reproducibility of the individual studies while identifying overlapping disease-relevant pathways. We supplemented the meta-analysis with small RNA-seq on glioblastoma tissue samples to provide an overall transcriptomic view of glioblastoma. Co-expression correlation of filtered differentially expressed PCGs and lncRNAs identified a functionally relevant sub-cluster containing DANCR and SNHG6, with two novel lncRNAs and two novel PCGs. Small RNA-seq of glioblastoma tissues identified five differentially expressed microRNAs of which three interacted with the functionally relevant sub-cluster. Pathway analysis of this sub-cluster identified several glioblastoma-linked pathways, which were also previously associated with the novel cell death pathway, ferroptosis. In conclusion, the current meta-analysis strengthens evidence of an overarching involvement of ferroptosis in glioblastoma pathogenesis and also suggests some candidates for further analyses.
Collapse
|
5
|
Lin H, Yin L, Chen B, Ji Y. Design of functionalized magnetic silica multi-core composite nanoparticles for synergistic magnetic hyperthermia/radiotherapy in cancer cells. Colloids Surf B Biointerfaces 2022; 219:112814. [PMID: 36067681 DOI: 10.1016/j.colsurfb.2022.112814] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 10/31/2022]
Abstract
Nanomaterials in particular the magnetic nanoparticles (MNPs) offer tremendous potential for cancer treatment due to their unique intrinsic properties. Combining materials with a variety of functional groups, and forming a multifunctional nanosystem to overcome the limitations of monotherapy for cancer treatment has always been a research focus with notable difficulties. Considering the many challenges faced by radiotherapy and hyperthermia, in this study, we designed a rational strategy for magnetic hyperthermia using Fe3O4@SiO2@Sec2@FA nanoparticles as a novel nano-radiosensitizer to simultaneously enhance the therapeutic effects of radiotherapy in the future. Fe3O4@SiO2 core-shell structured nanoparticles were synthesized with an appropriate silica layer thickness to maintain good saturation magnetization. The as-prepared Fe3O4@SiO2@Sec2@FA nanoparticles had the specific absorption rate (SAR)value of 57 W/g, which was below the clinically acceptable alternating magnetic field value of 4.9 × 109 Am-1s-1, indicating good heat generation efficiency (the temperature level ΔT=6-10 °C). Moreover, Folate-modified nanoparticles exhibited approximately 6-fold higher cellular internalization of Hela cells with no obvious cytotoxicity for the Hela and MDA-MB-231 cells, and lower cytotoxicity for the HUVECs in a concentration range of 0-150 µg/mL. In addition, these nanoparticles were modified on the silica surface by L-selenocystine, which could enhance the elimination of tumor cells by producing reactive oxygen species under X-rays, resulting in a novel radiosensitization effect. Therefore, the as-prepared Fe3O4@SiO2@Sec2@FA nanoparticles with good biocompatibility and active targeting would possess synergistic magnetic hyperthermia/radiotherapy effect.
Collapse
Affiliation(s)
- Hailei Lin
- Key Laboratory of Radiological Protection and Nuclear Emergency, China CDC, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China
| | - Liangliang Yin
- Key Laboratory of Radiological Protection and Nuclear Emergency, China CDC, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China
| | - Beidong Chen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yanqin Ji
- Key Laboratory of Radiological Protection and Nuclear Emergency, China CDC, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China.
| |
Collapse
|
6
|
Banerjee M, Chakravarty D, Kalwani P, Ballal A. Voyage of selenium from environment to life: Beneficial or toxic? J Biochem Mol Toxicol 2022; 36:e23195. [PMID: 35976011 DOI: 10.1002/jbt.23195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/22/2022] [Accepted: 07/21/2022] [Indexed: 11/08/2022]
Abstract
Selenium (Se), a naturally occurring metalloid, is an essential micronutrient for life as it is incorporated as selenocysteine in proteins. Although beneficial at low doses, Se is hazardous at high concentrations and poses a serious threat to various ecosystems. Due to this contrasting 'dual' nature, Se has garnered the attention of researchers wishing to unravel its puzzling properties. In this review, we describe the impact of selenium's journey from environment to diverse biological systems, with an emphasis on its chemical advantage. We describe the uneven distribution of Se and how this affects the bioavailability of this element, which, in turn, profoundly affects the habitat of a region. Once taken up, the subsequent incorporation of Se into proteins as selenocysteine and its antioxidant functions are detailed here. The causes of improved protein function due to the incorporation of redox-active Se atom (instead of S) are examined. Subsequently, the reasons for the deleterious effects of Se, which depend on its chemical form (organo-selenium or the inorganic forms) in different organisms are elaborated. Although Se is vital for the function of many antioxidant enzymes, how the pro-oxidant nature of Se can be potentially exploited in different therapies is highlighted. Furthermore, we succinctly explain how the presence of Se in biological systems offsets the toxic effects of heavy metal mercury. Finally, the different avenues of research that are fundamental to expand our understanding of selenium biology are suggested.
Collapse
Affiliation(s)
- Manisha Banerjee
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Dhiman Chakravarty
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Prakash Kalwani
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Anand Ballal
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
7
|
Ehudin MA, Golla U, Trivedi D, Potlakayala SD, Rudrabhatla SV, Desai D, Dovat S, Claxton D, Sharma A. Therapeutic Benefits of Selenium in Hematological Malignancies. Int J Mol Sci 2022; 23:ijms23147972. [PMID: 35887320 PMCID: PMC9323677 DOI: 10.3390/ijms23147972] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 12/14/2022] Open
Abstract
Supplementing chemotherapy and radiotherapy with selenium has been shown to have benefits against various cancers. This approach has also been shown to alleviate the side effects associated with standard cancer therapies and improve the quality of life in patients. In addition, selenium levels in patients have been correlated with various cancers and have served as a diagnostic marker to track the efficiency of treatments or to determine whether these selenium levels cause or are a result of the disease. This concise review presents a survey of the selenium-based literature, with a focus on hematological malignancies, to demonstrate the significant impact of selenium in different cancers. The anti-cancer mechanisms and signaling pathways regulated by selenium, which impart its efficacious properties, are discussed. An outlook into the relationship between selenium and cancer is highlighted to guide future cancer therapy development.
Collapse
Affiliation(s)
- Melanie A. Ehudin
- Division of Hematology and Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.A.E.); (S.D.)
| | - Upendarrao Golla
- Division of Hematology and Oncology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (U.G.); (D.C.)
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.T.); (D.D.)
| | - Devnah Trivedi
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.T.); (D.D.)
| | - Shobha D. Potlakayala
- Department of Biological Sciences, School of Science Engineering and Technology, Penn State Harrisburg, Middletown, PA 17057, USA; (S.D.P.); (S.V.R.)
| | - Sairam V. Rudrabhatla
- Department of Biological Sciences, School of Science Engineering and Technology, Penn State Harrisburg, Middletown, PA 17057, USA; (S.D.P.); (S.V.R.)
| | - Dhimant Desai
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.T.); (D.D.)
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Sinisa Dovat
- Division of Hematology and Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.A.E.); (S.D.)
| | - David Claxton
- Division of Hematology and Oncology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (U.G.); (D.C.)
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.T.); (D.D.)
| | - Arati Sharma
- Division of Hematology and Oncology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (U.G.); (D.C.)
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.T.); (D.D.)
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Correspondence:
| |
Collapse
|
8
|
Wahyuni EA, Yii CY, Liang HL, Luo YH, Yang SH, Wu PY, Hsu WL, Nien CY, Chen SC. Selenocystine induces oxidative-mediated DNA damage via impairing homologous recombination repair of DNA double-strand breaks in human hepatoma cells. Chem Biol Interact 2022; 365:110046. [PMID: 35863474 DOI: 10.1016/j.cbi.2022.110046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/02/2022] [Accepted: 07/13/2022] [Indexed: 11/03/2022]
Abstract
Selenocystine (SeC) has been identified as a novel compound with broad-spectrum anticancer activity. However, the effects of SeC on modifying DNA repair mechanism were less addressed. In this study, we demonstrated that SeC selectively induced cytotoxicity and genotoxicity against HepG2 hepatoma cell line. Comet assay revealed SeC-induced DNA damage in HepG2 cells, particularly in the form of DNA double strand breaks (DSBs), corroborated by the increase expression of the DSB marker, gamma-H2AX. We further demonstrated that SeC suppressed DNA homologous recombination repair, exacerbating DNA damage accumulation. Such effects on DNA damage and cell viability inhibition were alleviated by antioxidants, glutathione and Trolox, suggesting the involvement of reactive oxygen species (ROS). High levels of intracellular and mitochondrial ROS were detected in SeC-treated HepG2. In addition, SeC impaired the expression of antioxidant enzymes (superoxidase mutases and catalase), prompting the imbalance between antioxidant protection and excessive ROS formation and eliciting DSBs and cellular death. Decreased procaspase-3, 7, and 9 and Bcl-2 proteins and an increased Bax/Bcl-2 ratio, were observed after SeC treatment, but could be reversed by Torlox, confirming the action of SeC on ROS-induced apoptosis. In vivo, the xenograft tumor model of HepG2 cells validated the inhibition of SeC on tumor growth, and the induction of DSBs and apoptosis. In summary, SeC has the capability to induce ROS-dependent DNA damage and impeded DBS repair in HepG2 cells. Thus, SeC holds great promise as a therapeutic or adjuvant agent targeting DNA repair for cancer treatment.
Collapse
Affiliation(s)
- Eva Ari Wahyuni
- Department of Life Sciences, National Central University, Taoyuan, Taiwan; Department of Natural Science Education, University of Trunojoyo Madura, East Java, Indonesia
| | - Chin-Yuan Yii
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Landseed International Hospital, Taoyuan, Taiwan
| | - Hsiao-Lan Liang
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Yueh-Hsia Luo
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Sheng-Hua Yang
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Pei-Yi Wu
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Wei-Lun Hsu
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Chung-Yi Nien
- Department of Life Sciences, National Central University, Taoyuan, Taiwan.
| | - Ssu-Ching Chen
- Department of Life Sciences, National Central University, Taoyuan, Taiwan.
| |
Collapse
|
9
|
Zhang Z, Huang Y, Wu P, Chen H, Deng Z, Deng G, Zheng Y, Li G, Yuan L, Li L. Association of LINC00673 rs11655237 polymorphism with pediatric glioma susceptibility in a Chinese population. Transl Pediatr 2021; 10:1890-1895. [PMID: 34430437 PMCID: PMC8349947 DOI: 10.21037/tp-21-291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/14/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Previous researches have suggested that LINC00673 rs11655237 C>T polymorphism might be correlated to cancer susceptibility. However, its correlation with pediatric glioma is unknown. Therefore, this study aimed to determine whether LINC00673 rs11655237 C>T polymorphism is correlated with pediatric glioma. METHODS In total, we included 399 subjects from South China. The Student's t-test was performed to evaluate age differences between glioma cases and controls. Differences in the categorical variables between the two groups were assessed using the χ2 test. A logistic regression was conducted to calculate the odds ratio (OR) and the 95% confidence interval (CI). RESULTS We conducted this case-control study to investigate the association between LINC00673 polymorphism and pediatric glioma susceptibility. Our results revealed that LINC00673 rs11655237 C>T polymorphism was not correlated to pediatric glioma susceptibility in a Chinese population (CC/CT compared with TT: adjusted OR =2.49, 95% CI: 0.87-7.15, P=0.091). Furthermore, a stratified analysis also indicated LINC00673 rs11655237 C>T polymorphism did not increase the risk of glioma in different subgroups. CONCLUSIONS Our study revealed that LINC00673 rs11655237 C>T polymorphism was not correlated to pediatric glioma susceptibility in a Chinese population. In the future, further exploration of this genetic factor in relation to glioma susceptibility will require a larger sample size to verify the current findings.
Collapse
Affiliation(s)
- Zhuorong Zhang
- Department of Comprehensive and Emergency Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yihuan Huang
- Department of Comprehensive and Emergency Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ping Wu
- Department of Comprehensive and Emergency Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Honghao Chen
- Department of Comprehensive and Emergency Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Zhijian Deng
- Department of Comprehensive and Emergency Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Gaoyan Deng
- Department of Comprehensive and Emergency Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yongqin Zheng
- Department of Comprehensive and Emergency Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Guoyuan Li
- Department of Comprehensive and Emergency Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Li Yuan
- Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Le Li
- Department of Thoracic Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
10
|
Sun Y, Wang Z, Zhang P, Wang J, Chen Y, Yin C, Wang W, Fan C, Sun D. Mesoporous silica integrated with Fe 3O 4 and palmitoyl ascorbate as a new nano-Fenton reactor for amplified tumor oxidation therapy. Biomater Sci 2021; 8:7154-7165. [PMID: 33155581 DOI: 10.1039/d0bm01738h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Co-delivery of H2O2-generating agent and catalyst via a nano-Fenton reactor to the tumor acidic microenvironment for amplified tumor oxidation therapy has been widely studied. However, high side effects and low efficiency remain the limitations of the design and development of this process. Herein, a new nano-Fenton reactor in which mesoporous silica is integrated with Fe3O4 and palmitoyl ascorbate (Fe3O4@SiO2-PA) was designed, with the product exhibiting good dispersion, stability, uniformity and consistent spectral characteristics. The results show that Fe3O4@mSiO2-PA successfully enters cancer cells, significantly inhibits HeLa cells and 3D tumor spheroid growth in vitro via the induction of apoptosis. Meanwhile, Fe3O4@mSiO2-PA administration in vivo markedly suppresses HeLa tumor xenografts growth via the induction of apoptosis, followed by caspase-3 activation and cytochrome C release. Further investigation revealed that Fe3O4@mSiO2-PA causes enhanced production of reactive oxygen species (ROS), which subsequently triggers DNA damage and causes dysfunction of the MAPK and PI3K/AKT pathways. Importantly, Fe3O4@mSiO2-PA shows few side effects and good biocompatibility in vivo. Taken together, these results suggest that Fe3O4@mSiO2-PA inhibits HeLa cell growth in vitro and in vivo by triggering enhanced oxidative damage and regulating multiple signal pathways. Our findings validate the rational design that mesoporous silica integrated with Fe3O4 and palmitoyl ascorbate can act as a new nano-Fenton reactor for amplified tumor oxidation therapy.
Collapse
Affiliation(s)
- Yu Sun
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Wei Y, Zhang D, Liu J, Ou M, Liang P, Zuo Y, Zhou C. Effects of sevoflurane anesthesia and abdominal surgery on the systemic metabolome: a prospective observational study. BMC Anesthesiol 2021; 21:80. [PMID: 33731015 PMCID: PMC7968205 DOI: 10.1186/s12871-021-01301-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/08/2021] [Indexed: 02/08/2023] Open
Abstract
Background Metabolic status can be impacted by general anesthesia and surgery. However, the exact effects of general anesthesia and surgery on systemic metabolome remain unclear, which might contribute to postoperative outcomes. Methods Five hundred patients who underwent abdominal surgery were included. General anesthesia was mainly maintained with sevoflurane. The end-tidal sevoflurane concentration (ETsevo) was adjusted to maintain BIS (Bispectral index) value between 40 and 60. The mean ETsevo from 20 min after endotracheal intubation to 2 h after the beginning of surgery was calculated for each patient. The patients were further divided into low ETsevo group (mean − SD) and high ETsevo group (mean + SD) to investigate the possible metabolic changes relevant to the amount of sevoflurane exposure. Results The mean ETsevo of the 500 patients was 1.60% ± 0.34%. Patients with low ETsevo (n = 55) and high ETsevo (n = 59) were selected for metabolomic analysis (1.06% ± 0.13% vs. 2.17% ± 0.16%, P < 0.001). Sevoflurane and abdominal surgery disturbed the tricarboxylic acid cycle as identified by increased citrate and cis-aconitate levels and impacted glycometabolism as identified by increased sucrose and D-glucose levels in these 114 patients. Glutamate metabolism was also impacted by sevoflurane and abdominal surgery in all the patients. In the patients with high ETsevo, levels of L-glutamine, pyroglutamic acid, sphinganine and L-selenocysteine after sevoflurane anesthesia and abdominal surgery were significantly higher than those of the patients with low ETsevo, suggesting that these metabolic changes might be relevant to the amount of sevoflurane exposure. Conclusions Sevoflurane anesthesia and abdominal surgery can impact principal metabolic pathways in clinical patients including tricarboxylic acid cycle, glycometabolism and glutamate metabolism. This study may provide a resource data for future studies about metabolism relevant to general anaesthesia and surgeries. Trial registration www.chictr.org.cn. identifier: ChiCTR1800014327. Supplementary Information The online version contains supplementary material available at 10.1186/s12871-021-01301-0.
Collapse
Affiliation(s)
- Yiyong Wei
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, 37# Guoxue Xiang, Chengdu, 610041, Sichuan, China.,Department of Anesthesiology, West China Hospital of Sichuan University, 37# Guoxue Xiang, Chengdu, 610041, Sichuan, China
| | - Donghang Zhang
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, 37# Guoxue Xiang, Chengdu, 610041, Sichuan, China.,Department of Anesthesiology, West China Hospital of Sichuan University, 37# Guoxue Xiang, Chengdu, 610041, Sichuan, China
| | - Jin Liu
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, 37# Guoxue Xiang, Chengdu, 610041, Sichuan, China. .,Department of Anesthesiology, West China Hospital of Sichuan University, 37# Guoxue Xiang, Chengdu, 610041, Sichuan, China.
| | - Mengchan Ou
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, 37# Guoxue Xiang, Chengdu, 610041, Sichuan, China.,Department of Anesthesiology, West China Hospital of Sichuan University, 37# Guoxue Xiang, Chengdu, 610041, Sichuan, China
| | - Peng Liang
- Department of Anesthesiology, West China Hospital of Sichuan University, 37# Guoxue Xiang, Chengdu, 610041, Sichuan, China
| | - Yunxia Zuo
- Department of Anesthesiology, West China Hospital of Sichuan University, 37# Guoxue Xiang, Chengdu, 610041, Sichuan, China.
| | - Cheng Zhou
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, 37# Guoxue Xiang, Chengdu, 610041, Sichuan, China
| |
Collapse
|
12
|
Wandt VK, Winkelbeiner N, Bornhorst J, Witt B, Raschke S, Simon L, Ebert F, Kipp AP, Schwerdtle T. A matter of concern - Trace element dyshomeostasis and genomic stability in neurons. Redox Biol 2021; 41:101877. [PMID: 33607499 PMCID: PMC7902532 DOI: 10.1016/j.redox.2021.101877] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/18/2020] [Accepted: 01/20/2021] [Indexed: 02/09/2023] Open
Abstract
Neurons are post-mitotic cells in the brain and their integrity is of central importance to avoid neurodegeneration. Yet, the inability of self-replenishment of post-mitotic cells results in the need to withstand challenges from numerous stressors during life. Neurons are exposed to oxidative stress due to high oxygen consumption during metabolic activity in the brain. Accordingly, DNA damage can occur and accumulate, resulting in genome instability. In this context, imbalances in brain trace element homeostasis are a matter of concern, especially regarding iron, copper, manganese, zinc, and selenium. Although trace elements are essential for brain physiology, excess and deficient conditions are considered to impair neuronal maintenance. Besides increasing oxidative stress, DNA damage response and repair of oxidative DNA damage are affected by trace elements. Hence, a balanced trace element homeostasis is of particular importance to safeguard neuronal genome integrity and prevent neuronal loss. This review summarises the current state of knowledge on the impact of deficient, as well as excessive iron, copper, manganese, zinc, and selenium levels on neuronal genome stability. Post-mitotic neurons show an increased vulnerability to oxidative stress. Trace element dyshomeostasis impairs neuronal genome maintenance, affecting DNA damage response as well as DNA repair. The review summarises the effects of excessive and deficient trace element levels neuronal genome stability maintenance.
Collapse
Affiliation(s)
- Viktoria K Wandt
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany.
| | - Nicola Winkelbeiner
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany.
| | - Julia Bornhorst
- TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany; Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstr. 20, 42119, Wuppertal, Germany.
| | - Barbara Witt
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
| | - Stefanie Raschke
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
| | - Luise Simon
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany.
| | - Franziska Ebert
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany.
| | - Anna P Kipp
- TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany; Department of Molecular Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Dornburger Str. 24, 07743, Jena, Germany.
| | - Tanja Schwerdtle
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany; German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| |
Collapse
|
13
|
Radomska D, Czarnomysy R, Radomski D, Bielawski K. Selenium Compounds as Novel Potential Anticancer Agents. Int J Mol Sci 2021; 22:ijms22031009. [PMID: 33498364 PMCID: PMC7864035 DOI: 10.3390/ijms22031009] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/14/2021] [Accepted: 01/17/2021] [Indexed: 12/21/2022] Open
Abstract
The high number of new cancer incidences and the associated mortality continue to be alarming, leading to the search for new therapies that would be more effective and less burdensome for patients. As there is evidence that Se compounds can have chemopreventive activity, studies have begun to establish whether these compounds can also affect already existing cancers. This review aims to discuss the different classes of Se-containing compounds, both organic and inorganic, natural and synthetic, and the mechanisms and molecular targets of their anticancer activity. The chemical classes discussed in this paper include inorganic (selenite, selenate) and organic compounds, such as diselenides, selenides, selenoesters, methylseleninic acid, 1,2-benzisoselenazole-3[2H]-one and selenophene-based derivatives, as well as selenoamino acids and Selol.
Collapse
|
14
|
Poluboyarinov PA, Elistratov DG, Moiseeva IJ. Antitumor Activity of Selenium and Search Parameters for Its New Potentially Active Derivatives. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020060254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Makrecka-Kuka M, Dimitrijevs P, Domracheva I, Jaudzems K, Dambrova M, Arsenyan P. Fused isoselenazolium salts suppress breast cancer cell growth by dramatic increase in pyruvate-dependent mitochondrial ROS production. Sci Rep 2020; 10:21595. [PMID: 33299068 PMCID: PMC7725824 DOI: 10.1038/s41598-020-78620-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022] Open
Abstract
The development of targeted drugs for the treatment of cancer remains an unmet medical need. This study was designed to investigate the mechanism underlying breast cancer cell growth suppression caused by fused isoselenazolium salts. The ability to suppress the proliferation of malignant and normal cells in vitro as well as the effect on NAD homeostasis (NAD+, NADH, and NMN levels), NAMPT inhibition and mitochondrial functionality were studied. The interactions of positively charged isoselenazolium salts with the negatively charged mitochondrial membrane model were assessed. Depending on the molecular structure, fused isoselenazolium salts display nanomolar to high micromolar cytotoxicities against MCF-7 and 4T1 breast tumor cell lines. The studied compounds altered NMN, NAD+, and NADH levels and the NAD+/NADH ratio. Mitochondrial functionality experiments showed that fused isoselenazolium salts inhibit pyruvate-dependent respiration but do not directly affect complex I of the electron transfer system. Moreover, the tested compounds induce an immediate dramatic increase in the production of reactive oxygen species. In addition, the isoselenazolothiazolium derivative selectively binds to cardiolipin in a liposomal model. Isoselenazolium salts may be a promising platform for the development of potent drug candidates for anticancer therapy that impact mitochondrial pyruvate-dependent metabolism in breast cancer cells.
Collapse
Affiliation(s)
| | - Pavels Dimitrijevs
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, 1006, Latvia.,Riga Stradins University, Dzirciema 16, Riga, 1007, Latvia
| | - Ilona Domracheva
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, 1006, Latvia
| | - Kristaps Jaudzems
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, 1006, Latvia
| | - Maija Dambrova
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, 1006, Latvia.,Riga Stradins University, Dzirciema 16, Riga, 1007, Latvia
| | - Pavel Arsenyan
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, 1006, Latvia.
| |
Collapse
|
16
|
Branco V, Pimentel J, Brito MA, Carvalho C. Thioredoxin, Glutathione and Related Molecules in Tumors of the Nervous System. Curr Med Chem 2020; 27:1878-1900. [PMID: 30706774 DOI: 10.2174/0929867326666190201113004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 09/14/2018] [Accepted: 11/28/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Central Nervous System (CNS) tumors have a poor survival prognosis due to their invasive and heterogeneous nature, in addition to the resistance to multiple treatments. OBJECTIVE In this paper, the main aspects of brain tumor biology and pathogenesis are reviewed both for primary tumors of the brain, (i.e., gliomas) and for metastasis from other malignant tumors, namely lung cancer, breast cancer and malignant melanoma which account for a high percentage of overall malignant brain tumors. We review the role of antioxidant systems, namely the thioredoxin and glutathione systems, in the genesis and/or progression of brain tumors. METHODS Although overexpression of Thioredoxin Reductase (TrxR) and Thioredoxin (Trx) is often linked to increased malignancy rate of brain tumors, and higher expression of Glutathione (GSH) and Glutathione S-Transferases (GST) are associated to resistance to therapy, several knowledge gaps still exist regarding for example, the role of Peroxiredoxins (Prx), and Glutaredoxins (Grx). CONCLUSION Due to their central role in redox homeostasis and ROS scavenging, redox systems are potential targets for new antitumorals and examples of innovative therapeutics aiming at improving success rates in brain tumor treatment are discussed.
Collapse
Affiliation(s)
- Vasco Branco
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - José Pimentel
- Laboratory of Neuropathology, Department of Neurology, Hospital de Santa Maria (CHLN), Av. Prof. Egas Moniz, 1649-036 Lisboa, Portugal.,Faculty of Medicine, Lisbon University, Av. Prof. Egas Moniz, 1649-036 Lisboa, Portugal
| | - Maria Alexandra Brito
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Cristina Carvalho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
17
|
Emerging Antineoplastic Plant-Based Gold Nanoparticle Synthesis: A Mechanistic Exploration of their Anticancer Activity Toward Cervical Cancer Cells. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01742-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
18
|
Sun JY, Hou YJ, Fu XY, Fu XT, Ma JK, Yang MF, Sun BL, Fan CD, Oh J. Selenium-Containing Protein From Selenium-Enriched Spirulina platensis Attenuates Cisplatin-Induced Apoptosis in MC3T3-E1 Mouse Preosteoblast by Inhibiting Mitochondrial Dysfunction and ROS-Mediated Oxidative Damage. Front Physiol 2019; 9:1907. [PMID: 30687122 PMCID: PMC6333850 DOI: 10.3389/fphys.2018.01907] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 12/18/2018] [Indexed: 01/10/2023] Open
Abstract
Accumulated evidences have verified that cancer chemotherapy may increase the risk of osteoporosis and severely affected the life quality. Osteoclasts hyperactivation was commonly accepted as the major pathogenesis of osteoporosis. However, the role of osteoblasts dysfunction in osteoporosis was little investigated. Our previous study has confirmed that selenium-containing protein from selenium-enriched Spirulina platensis (Se-SP) exhibited enhanced hepatoprotective potential through inhibiting oxidative damage. Herein, the protective effect of Se-SP against cisplatin-induced osteoblasts dysfunction in MC3T3-E1 mouse preosteoblast was investigated, and the underlying mechanism was evaluated. The results indicated that cisplatin dramatically decreased cell viability of preosteoblast by triggering mitochondria-mediated apoptosis pathway. Cisplatin treatment also caused mitochondrial dysfunction and reactive oxide species (ROS)-mediated oxidative damage. However, Se-SP pre-treatment effectively prevented MC3T3-E1 cells from cisplatin-induced mitochondrial dysfunction by balancing Bcl-2 family expression and regulating the opening of mitochondrial permeability transition pore (MPTP), attenuated cisplatin-induced oxidative damage through inhibiting the overproduction of ROS and superoxide anion, and eventually reversed cisplating-induced early and late apoptosis by inhibiting PARP cleavage and caspases activation. Our findings validated that Se-SP as a promising Se species could be a highly effective way in the chemoprevention and chemotherapy of oxidative damage-mediated bone diseases.
Collapse
Affiliation(s)
- Jing-yi Sun
- Department of Orthopedic Surgery, Wonju Severance Christian Hospital, Wonju College of Medicine, Yonsei University, Wonju, South Korea
| | - Ya-jun Hou
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taishan, China
| | - Xiao-yan Fu
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taishan, China
| | - Xiao-ting Fu
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taishan, China
| | - Jin-kui Ma
- Faculty of Bioresource Sciences, Akita Prefectural University, Akita, Japan
| | - Ming-feng Yang
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taishan, China
| | - Bao-liang Sun
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taishan, China
| | - Cun-dong Fan
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taishan, China
| | - Jinrok Oh
- Department of Orthopedic Surgery, Wonju Severance Christian Hospital, Wonju College of Medicine, Yonsei University, Wonju, South Korea
| |
Collapse
|
19
|
Zhang Y, Tu L, Zhou X, Li B. Curcumin-Mediated Induction of Apoptosis in Human Glioma CHME Cells. Med Sci Monit Basic Res 2018; 24:216-224. [PMID: 30531680 PMCID: PMC6301257 DOI: 10.12659/msmbr.912313] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background Curcumin has clear anti-tumor activity in various carcinomas. It regulates various signaling pathways like Wnt/β-catenin and JAK2/STAT3, which play vital roles in cell proliferation of several carcinomas, but to the best of our knowledge, there are currently no published reports on human glioma CHME cells. Therefore, the aim of this study was to explore the effect of curcumin on human glioma CHME cells. Material/Methods The CHME cell line was purchased from American Type Culture Collection (ATCC). The expressions of caspases 3, caspases 9, PARP, BAX, and BCL2 were detected by Western blot. Annexin V FITC, mitochondrial membrane potential, and reactive oxygen species were detected by flow cytometry. DAPI staining was detected by fluorescence microscopy. Cell viability was assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay. Results We found that curcumin has cytotoxic activity in human glioma CHME cells, as shown by DAPI staining, annexin V/PI, and nuclear morphology. We found that cell growth decreased with increased concentration of curcumin, as well as sowing effects on expression of caspase-3, caspase-9, and cleavage of PARP, which suggests apoptotic cascade activity. The increase in reactive oxygen species and loss of mitochondrial membrane potential (Δψmt) in concentration-dependent manners suggests biochemical induction of apoptosis in CHME cells. Conclusions Curcumin has effective anticancer activity in human glioma CHME cells by inducing the apoptotic pathway.
Collapse
Affiliation(s)
- Yunqiang Zhang
- Department of Neurosurgery, Chenzhou No. 1 People's Hospital, Chenzhou, Hunan, China (mainland)
| | - Lijun Tu
- Electrocardiographic Room, Chenzhou No. 1 People's Hospital, Chenzhou, Hunan, China (mainland)
| | - Xiuhong Zhou
- Department of Pathophysiology, University of South China, Hengyang, Hunan, China (mainland)
| | - Bin Li
- Department of Neurosurgery, Chenzhou No. 1 People's Hospital, Chenzhou, Hunan, China (mainland)
| |
Collapse
|
20
|
Wang S, Al-Soodani AT, Thomas GC, Buck-Koehntop BA, Woycechowsky KJ. A Protein-Capsid-Based System for Cell Delivery of Selenocysteine. Bioconjug Chem 2018; 29:2332-2342. [DOI: 10.1021/acs.bioconjchem.8b00302] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Shuxin Wang
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Aneesa T. Al-Soodani
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Geoffrey C. Thomas
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Bethany A. Buck-Koehntop
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Kenneth J. Woycechowsky
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
21
|
Wang W, Meng FB, Wang ZX, Li X, Zhou DS. Selenocysteine inhibits human osteosarcoma cells growth through triggering mitochondrial dysfunction and ROS-mediated p53 phosphorylation. Cell Biol Int 2018; 42:580-588. [PMID: 29323455 DOI: 10.1002/cbin.10934] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 01/06/2018] [Indexed: 02/06/2023]
Abstract
Osteosarcoma represents the most common primary malignant bone tumor in children and adolescents, which shows severe resistance toward standard chemotherapy because of high invasive capacity and growing incidence. Selenocysteine (SeC) is a naturally available Se-containing amino acid that displays splendid anticancer activities against several human tumors. However, little information about SeC-induced growth inhibition against human osteosarcoma is available. Herein, the anticancer efficiency and underlying mechanism of SeC against human osteosarcoma were evaluated in vitro and in vivo. The results revealed that SeC significantly inhibited MG-63 human osteosarcoma cells growth in vitro through induction of S-phase arrest and apoptosis, as reflected by the decrease of cyclin A and CDK-2, PARP cleavage, and caspases activation. SeC treatment also resulted in mitochondrial dysfunction through affecting Bcl-2 family expression. Moreover, SeC triggered p53 phosphorylation by inducing reactive oxygen species (ROS) overproduction. ROS inhibition effectively blocked SeC-induced cytotoxicity and p53 phosphorylation. Importantly, MG-63 human osteosarcoma xenograft growth in nude mice was significantly suppressed in vivo through triggering apoptosis and p53 phosphorylation. These results indicated that SeC had the potential to inhibit human osteosarcoma cells growth in vitro and in vivo through triggering mitochondrial dysfunction and ROS-mediated p53 phosphorylation, which validated the potential application of Se-containing compounds in treatment of human osteosarcoma.
Collapse
Affiliation(s)
- Wei Wang
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong University, Jingwu Road 324, Jinan, 250021, Shandong, China.,Department of Orthopedics, Linyi People's Hospital Affiliated to Shandong University, Linyi, 276003, Shandong, China
| | - Fan-Bin Meng
- Department of Orthopedics, Linyi People's Hospital Affiliated to Shandong University, Linyi, 276003, Shandong, China
| | - Zhen-Xing Wang
- Department of Orthopedics, Linyi People's Hospital Affiliated to Shandong University, Linyi, 276003, Shandong, China
| | - Xiao Li
- Department of Orthopedics, Linyi People's Hospital Affiliated to Shandong University, Linyi, 276003, Shandong, China
| | - Dong-Sheng Zhou
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong University, Jingwu Road 324, Jinan, 250021, Shandong, China
| |
Collapse
|
22
|
β-Sitosterol targets Trx/Trx1 reductase to induce apoptosis in A549 cells via ROS mediated mitochondrial dysregulation and p53 activation. Sci Rep 2018; 8:2071. [PMID: 29391428 PMCID: PMC5794769 DOI: 10.1038/s41598-018-20311-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/16/2018] [Indexed: 12/20/2022] Open
Abstract
β-Sitosterol (BS), a major bioactive constituent present in plants and vegetables has shown potent anticancer effect against many human cancer cells, but the underlying mechanism remain elusive on NSCLC cancers. We found that BS significantly inhibited the growth of A549 cells without harming normal human lung and PBMC cells. Further, BS treatment triggered apoptosis via ROS mediated mitochondrial dysregulation as evidenced by caspase-3 & 9 activation, Annexin-V/PI positive cells, PARP inactivation, loss of MMP, Bcl-2-Bax ratio alteration and cytochrome c release. Moreover, generation of ROS species and subsequent DNA stand break were found upon BS treatment which was reversed by addition of ROS scavenger (NAC). Indeed BS treatment increased p53 expression and its phosphorylation at Ser15, while silencing the p53 expression by pifithrin-α, BS induced apoptosis was reduced in A549 cells. Furthermore, BS induced apoptosis was also observed in NCI-H460 cells (p53 wild) but not in the NCI-H23 cells (p53 mutant). Down-regulation of Trx/Trx1 reductase contributed to the BS induced ROS accumulation and mitochondrial mediated apoptotic cell death in A549 and NCI-H460 cells. Taken together, our findings provide evidence for the novel anti-cancer mechanism of BS which could be developed as a promising chemotherapeutic drug against NSCLC cancers.
Collapse
|
23
|
Wang XJ, Wang MH, Fu XT, Hou YJ, Chen W, Tian DC, Bai SY, Fu XY. Selenocysteine antagonizes oxygen glucose deprivation-induced damage to hippocampal neurons. Neural Regen Res 2018; 13:1433-1439. [PMID: 30106056 PMCID: PMC6108205 DOI: 10.4103/1673-5374.235300] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Designing and/or searching for novel antioxidants against oxygen glucose deprivation (OGD)-induced oxidative damage represents an effective strategy for the treatment of human ischemic stroke. Selenium is an essential trace element, which is beneficial in the chemoprevention and chemotherapy of cerebral ischemic stroke. The underlying mechanisms for its therapeutic effects, however, are not well documented. Selenocysteine (SeC) is a selenium-containing amino acid with neuroprotective potential. Studies have shown that SeC can reduce irradiation-induced DNA apoptosis by reducing DNA damage. In this study, the in vitro protective potential and mechanism of action of SeC against OGD-induced apoptosis and neurotoxicity were evaluated in HT22 mouse hippocampal neurons. We cultured HT22 cells in a glucose-free medium containing 2 mM Na2S4O2, which formed an OGD environment, for 90 minutes. Findings from MTT, flow cytometry and TUNEL staining showed obvious cytotoxicity and apoptosis in HT22 cells in the OGD condition. The activation of Caspase-7 and Caspase-9 further revealed that OGD-induced apoptosis of HT22 cells was mainly achieved by triggering a mitochondrial-mediated pathway. Moreover, the OGD condition also induced serious DNA damage through the accumulation of reactive oxygen species and superoxide anions. However, SeC pre-treatment for 6 hours effectively inhibited OGD-induced cytotoxicity and apoptosis in HT22 cells by inhibiting reactive oxygen species-mediated oxidative damage. Our findings provide evidence that SeC has the potential to suppress OGD-induced oxidative damage and apoptosis in hippocampal neurons.
Collapse
Affiliation(s)
- Xian-Jun Wang
- Department of Neurology, People's Hospital of Linyi, Linyi, Shandong Province, China
| | - Mei-Hong Wang
- Department of Neurology, People's Hospital of Yishui, Linyi, Shandong Province, China
| | - Xiao-Ting Fu
- School of Basic Medicine, Taishan Medical University, Taian, Shandong Province, China
| | - Ya-Jun Hou
- School of Basic Medicine, Taishan Medical University, Taian, Shandong Province, China
| | - Wang Chen
- Department of Neurology, People's Hospital of Linyi, Linyi, Shandong Province, China
| | - Da-Chen Tian
- Department of Neurology, People's Hospital of Linyi, Linyi, Shandong Province, China
| | - Su-Yun Bai
- School of Basic Medicine, Taishan Medical University, Taian, Shandong Province, China
| | - Xiao-Yan Fu
- School of Basic Medicine, Taishan Medical University, Taian, Shandong Province, China
| |
Collapse
|
24
|
Fan CD, Sun JY, Fu XT, Hou YJ, Li Y, Yang MF, Fu XY, Sun BL. Astaxanthin Attenuates Homocysteine-Induced Cardiotoxicity in Vitro and in Vivo by Inhibiting Mitochondrial Dysfunction and Oxidative Damage. Front Physiol 2017; 8:1041. [PMID: 29311972 PMCID: PMC5733103 DOI: 10.3389/fphys.2017.01041] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/29/2017] [Indexed: 12/13/2022] Open
Abstract
Homocysteine (Hcy) as an independent risk factor contributes to the occurrence and development of human cardiovascular diseases (CVD). Induction of oxidative stress and apoptosis was commonly accepted as the major mechanism in Hcy-induced cardiotoxicity. Astaxanthin (ATX) as one of the most powerful antioxidants exhibits novel cardioprotective potential against Hcy-induced endothelial dysfunction. However, the protective effect and mechanism of ATX against Hcy-induced cardiotoxicity in cardiomyocytes have not been elucidated yet. Herein, H9c2 rat cardiomyocytes and Hcy-injured animal model were employed in the present study. The MTT, flow cytometry analysis (FCM), TUNEL-DAPI and western blotting results all demonstrated that ATX significantly alleviated Hcy-induced cytotoxicity in H9c2 cells through inhibition of mitochondria-mediated apoptosis. The JC-1 and Mito-tracker staining both revealed that ATX pre-treatment blocked Hcy-induced mitochondrial dysfunction by regulating Bcl-2 family expression. Moreover, DCFH-DA and Mito-SOX staining showed that ATX effectively attenuated Hcy-induced oxidative damage via scavenging intracellular reactive oxygen species (ROS). Importantly, the ELISA and immunohistochemical results indicated that Hcy-induced cardiotoxicity in vivo was also significantly inhibited by ATX through inhibition of oxidative damage and apoptosis, and improvement of the angiogenesis. Taken together, our results demonstrated that ATX suppressed Hcy-induced cardiotoxicity in vitro and in vivo by inhibiting mitochondrial dysfunction and oxidative damage. Our findings validated the strategy of using ATX may be a highly efficient way to combat Hcy-mediated human CVD.
Collapse
Affiliation(s)
- Cun-Dong Fan
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, China
| | - Jing-Yi Sun
- Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Xiao-Ting Fu
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, China
| | - Ya-Jun Hou
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, China
| | - Yuan Li
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, China
| | - Ming-Feng Yang
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, China
| | - Xiao-Yan Fu
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, China
| | - Bao-Liang Sun
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, China.,Department of Neurology, Affiliated Hospital of Taishan Medical University, Taian, China
| |
Collapse
|