1
|
Carrasco RA, Breen KM. Allostasis in Neuroendocrine Systems Controlling Reproduction. Endocrinology 2023; 164:bqad125. [PMID: 37586095 PMCID: PMC10461221 DOI: 10.1210/endocr/bqad125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023]
Abstract
Allostasis provides a supporting role to the homeostatic control of biological variables in mammalian species. While the concept of homeostasis is related to the control of variables within a set point or range that are essential to life, allostasis refers to systems that facilitate adaptation to challenges that the organism faces and the new requirements for survival. Essential for such adaptation is the role played by the brain in eliciting neural and neuroendocrine responses. Reproductive function is fundamental for the survival of species but is costly in energetic terms and requires a synchrony with an ever-changing environment. Thus, in many species reproductive function is blocked or delayed over immediate challenges. This review will cover the physiological systems and neuroendocrine pathways that supply allostatic control over reproductive neuroendocrine systems. Light, hypoxia, temperature, nutrition, psychosocial, and immune mediators influence the neuroendocrine control of reproductive functions through pathways that are confluent at the paraventricular nucleus; however, understanding of the integrative responses to these stimuli has not been clarified. Likely, the ultimate consequence of these allostatic mechanisms is the modification of kisspeptin and gonadotropin-releasing hormone neuronal activity, thus compromising reproduction function in the short term, while preserving species survivability.
Collapse
Affiliation(s)
- Rodrigo A Carrasco
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Diego, La Jolla, CA 92093-0674, USA
| | - Kellie M Breen
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Diego, La Jolla, CA 92093-0674, USA
| |
Collapse
|
2
|
Hart DW, Bennett NC, Best C, van Jaarsveld B, Cheng H, Ivy CM, Kirby AM, Munro D, Sprenger RJ, Storey KB, Milsom WK, Pamenter ME. The relationship between hypoxia exposure and circulating cortisol levels in social and solitary African mole-rats: An initial report. Gen Comp Endocrinol 2023; 339:114294. [PMID: 37120097 DOI: 10.1016/j.ygcen.2023.114294] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 03/31/2023] [Accepted: 04/25/2023] [Indexed: 05/01/2023]
Abstract
Hypoxemia from exposure to intermittent and/or acute environmental hypoxia (lower oxygen concentration) is a severe stressor for many animal species. The response to hypoxia of the hypothalamic-pituitary-adrenal axis (HPA-axis), which culminates in the release of glucocorticoids, has been well-studied in hypoxia-intolerant surface-dwelling mammals. Several group-living (social) subterranean species, including most African mole-rats, are hypoxia-tolerant, likely due to regular exposure to intermittent hypoxia in their underground burrows. Conversely, solitary mole-rat species, lack many adaptive mechanisms, making them less hypoxia-tolerant than the social genera. To date, the release of glucocorticoids in response to hypoxia has not been measured in hypoxia-tolerant mammalian species. Consequently, this study exposed three social African mole-rat species and two solitary mole-rat species to normoxia, or acute hypoxia and then measured their respective plasma glucocorticoid (cortisol) concentrations. Social mole-rats had lower plasma cortisol concentrations under normoxia than the solitary genera. Furthermore, individuals of all three of the social mole-rat species exhibited significantly increased plasma cortisol concentrations after hypoxia, similar to those of hypoxia-intolerant surface-dwelling species. By contrast, individuals of the two solitary species had a reduced plasma cortisol response to acute hypoxia, possibly due to increased plasma cortisol under normoxia. If placed in perspective with other closely related surface-dwelling species, the regular exposure of the social African mole-rats to hypoxia may have reduced the basal levels of the components for the adaptive mechanisms associated with hypoxia exposure, including circulating cortisol levels. Similarly, the influence of body mass on plasma cortisol levels cannot be ignored. This study demonstrates that both hypoxia-tolerant rodents and hypoxia-intolerant terrestrial laboratory-bred rodents may possess similar HPA-axis responses from exposure to hypoxia. Further research is required to confirm the results from this pilot study and to further confirm how the cortisol concentrations may influence responses to hypoxia in African mole-rat.
Collapse
Affiliation(s)
- Daniel W Hart
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa.
| | - Nigel C Bennett
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Carol Best
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Barry van Jaarsveld
- Department of Physical Geography, Utrecht University, Utrecht, The Netherlands
| | - Hang Cheng
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Catherine M Ivy
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Alexia M Kirby
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Daniel Munro
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Ryan J Sprenger
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Kenneth B Storey
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - William K Milsom
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Matthew E Pamenter
- Department of Biology, University of Ottawa, Ottawa, ON, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| |
Collapse
|
3
|
Burtscher J, Niedermeier M, Hüfner K, van den Burg E, Kopp M, Stoop R, Burtscher M, Gatterer H, Millet GP. The interplay of hypoxic and mental stress: Implications for anxiety and depressive disorders. Neurosci Biobehav Rev 2022; 138:104718. [PMID: 35661753 DOI: 10.1016/j.neubiorev.2022.104718] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/14/2022]
Abstract
Adequate oxygen supply is essential for the human brain to meet its high energy demands. Therefore, elaborate molecular and systemic mechanism are in place to enable adaptation to low oxygen availability. Anxiety and depressive disorders are characterized by alterations in brain oxygen metabolism and of its components, such as mitochondria or hypoxia inducible factor (HIF)-pathways. Conversely, sensitivity and tolerance to hypoxia may depend on parameters of mental stress and the severity of anxiety and depressive disorders. Here we discuss relevant mechanisms of adaptations to hypoxia, as well as their involvement in mental stress and the etiopathogenesis of anxiety and depressive disorders. We suggest that mechanisms of adaptations to hypoxia (including metabolic responses, inflammation, and the activation of chemosensitive brain regions) modulate and are modulated by stress-related pathways and associated psychiatric diseases. While severe chronic hypoxia or dysfunctional hypoxia adaptations can contribute to the pathogenesis of anxiety and depressive disorders, harnessing controlled responses to hypoxia to increase cellular and psychological resilience emerges as a novel treatment strategy for these diseases.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland; Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland.
| | - Martin Niedermeier
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Katharina Hüfner
- Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, University Clinic for Psychiatry II, Innsbruck Medical University, Innsbruck, Austria
| | - Erwin van den Burg
- Department of Psychiatry, Center of Psychiatric Neuroscience (CNP), University Hospital of Lausanne (CHUV), Prilly, Lausanne, Switzerland
| | - Martin Kopp
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Ron Stoop
- Department of Psychiatry, Center of Psychiatric Neuroscience (CNP), University Hospital of Lausanne (CHUV), Prilly, Lausanne, Switzerland
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Hannes Gatterer
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland; Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
4
|
Dolscheid-Pommerich RC, Stoffel-Wagner B, Fimmers R, Eichhorn L. Changes in hormones after apneic hypoxia/hypercapnia - an investigation in voluntary apnea divers. Respir Physiol Neurobiol 2022; 298:103845. [PMID: 35041989 DOI: 10.1016/j.resp.2022.103845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Prolonged apnea is characterized by hypoxia/hypercapnia. Hypoxia can be associated with hormonal dysfunction. We raised the question as to whether steroid hormonal and gonadotropin levels could be influenced by short-term hypoxia/hypercapnia in a model of dry apnea in trained apnea divers. METHODS Adrenal, sex steroid and pituitary hormones were measured in ten trained voluntary apnea divers before, immediately after, 0.5 h and 4 h after a maximal breath-hold. Apnea was carried out under dry conditions. RESULTS Corticosterone, progesterone, cortisol, 17-OH-progesterone, dehydroepiandrosterone and androstenedione showed a significant continuous increase with a maximum at 0.5 h after apnea, followed by a decrease back to or below baseline at 4 h after apnea. Testosterone, estradiol, cortisone and dihydrotestosterone showed a decrease 4 h after apnea. Dehydroepiandrosteronesulfate, luteinizing hormone (LH) and follicle stimulating hormone (FSH) showed no significant changes. CONCLUSION Even a single apnea resulted in two different patterns of hormone response to apnea, with increased adrenal and reduced sex steroid levels, while LH/FSH showed no clear kinetic reaction. Apnea divers might be a suitable clinical model for hypoxic disease.
Collapse
Affiliation(s)
- R C Dolscheid-Pommerich
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany.
| | - B Stoffel-Wagner
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - R Fimmers
- Institute for Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Bonn, Germany
| | - L Eichhorn
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
5
|
Ibrahim MA, Mohammed SS, Tammam HG, Ibrahim Abdel-Karim R, Farag MM. Histopathological, histochemical and biochemical postmortem changes in induced fatal hypothermia in rats. Forensic Sci Res 2021; 7:211-227. [PMID: 35784407 PMCID: PMC9246044 DOI: 10.1080/20961790.2021.1886656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Reaching a postmortem diagnosis of hypothermia is challenging in forensic practice. Therefore, this study was conducted to detect the histopathological, histochemical and biochemical changes that occur in adult albino rats following exposure to induced fatal hypothermia. Twenty-four adult albino rats were divided into the negative control, moderate hypothermia, severe hypothermia and hypoxia groups. Rats in the control group were euthanized when those in the moderate hypothermic group died. Blood samples were collected via heart puncture, and the cerebrum, heart, suprarenal gland, kidney, liver and skeletal muscle were removed to investigate the biochemical, histochemical and histopathological changes. Postmortem assessment depicted significant changes in lipid peroxidation, represented by increased malondialdehyde levels in the studied organs of the rats in hypothermic and hypoxia groups. Histopathological examination of the rats’ organs revealed degeneration and necrosis in the hypothermia and hypoxia groups. Sections taken from the severe hypothermic rats revealed a loss of normal cardiac tissue architecture, necrotic changes in the pyramidal cells in the cerebral cortex, and massive necrosis, mainly in the tubules of the renal cortex and medulla. These findings suggest that histological changes might be used as biochemical markers for postmortem diagnosing of fatal hypothermia, particularly in severe hypothermic conditions.Key points Death by hypothermia is a serious public health problem worldwide. Confirming a diagnosis and determining the cause of death in cases of hypothermia are among the most difficult practices in forensic medicine. Death by hypothermia might be associated with structural abnormalities in various organs. Studies using different tissue staining techniques will enable an overall illustration of the role of histopathological changes in body organs as indicators of hypothermia.
Collapse
Affiliation(s)
- Mahrous Abdelbasset Ibrahim
- Forensic Medicine & Clinical Toxicology, College of Medicine, Jouf University, Sakakah, Saudi Arabia
- Forensic Medicine & Clinical Toxicology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Sally Salem Mohammed
- Histology and Cell Biology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Hany Goda Tammam
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Rehab Ibrahim Abdel-Karim
- Forensic Medicine & Clinical Toxicology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Medhat Mohammed Farag
- Medical biochemistry Department, College of Medicine, Shaqra University, Shaqraa, Saudi Arabia
- Medical Biochemistry & Molecular Biology Department, Faculty of Medicine, Benha University, Benha, Egypt
| |
Collapse
|
6
|
Dumontet T, Martinez A. Adrenal androgens, adrenarche, and zona reticularis: A human affair? Mol Cell Endocrinol 2021; 528:111239. [PMID: 33676986 DOI: 10.1016/j.mce.2021.111239] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/11/2021] [Accepted: 03/01/2021] [Indexed: 12/11/2022]
Abstract
In humans, reticularis cells of the adrenal cortex fuel the production of androgen steroids, constituting the driver of numerous morphological changes during childhood. These steps are considered a precocious stage of sexual maturation and are grouped under the term "adrenarche". This review describes the molecular and enzymatic characteristics of the zona reticularis, along with the possible signals and mechanisms that control its emergence and the associated clinical features. We investigate the differences between species and discuss new studies such as genetic lineage tracing and transcriptomic analysis, highlighting the rodent inner cortex's cellular and molecular heterogeneity. The recent development and characterization of mouse models deficient for Prkar1a presenting with adrenocortical reticularis-like features prompt us to review our vision of the mouse adrenal gland maturation. We expect these new insights will help increase our understanding of the adrenarche process and the pathologies associated with its deregulation.
Collapse
Affiliation(s)
- Typhanie Dumontet
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA; Training Program in Organogenesis, Center for Cell Plasticity and Organ Design, University of Michigan, Ann Arbor, MI, USA.
| | - Antoine Martinez
- Génétique, Reproduction et Développement (GReD), Centre National de La Recherche Scientifique CNRS, Institut National de La Santé & de La Recherche Médicale (INSERM), Université Clermont-Auvergne (UCA), France.
| |
Collapse
|
7
|
Johns EC, Denison FC, Reynolds RM. Sleep disordered breathing in pregnancy: A review of the pathophysiology of adverse pregnancy outcomes. Acta Physiol (Oxf) 2020; 229:e13458. [PMID: 32087033 DOI: 10.1111/apha.13458] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 12/11/2022]
Abstract
Sleep disordered breathing (SDB) is a common obesity-related co-morbidity with strong associations to cardiometabolic disease. The risk of SDB is increased during pregnancy, particularly among obese pregnant women. Accumulating evidence suggests that an association exists between maternal SDB and the development of adverse pregnancy outcomes, particularly gestational diabetes and hypertensive disorders of pregnancy. Intermittent hypoxia, a central characteristic of SDB, has been shown in animal and clinical studies to dysregulate several biological pathways. This includes the promotion of oxidative stress, increased inflammation, activation of the hypothalamic-pituitary-adrenal axis, increased sympathetic activity and impaired glucose and insulin metabolism. This review considers how, during pregnancy, these pathophysiological processes are plausible mechanisms through which SDB may contribute to an increased risk of adverse outcomes, for the mother and perhaps also the offspring. However, a lack of robust evidence specific to the pregnant population, including limited evaluation of the placental function in affected pregnancies, limits our ability to draw definite conclusions on mechanisms contributing to adverse pregnancy outcomes and, indeed, the strength of association between SDB and certain pregnancy complications.
Collapse
Affiliation(s)
- Emma C. Johns
- Tommy's Centre for Maternal and Fetal Health, MRC Centre for Reproductive Health University of Edinburgh, Queen's Medical Research Institute Edinburgh United Kingdom
| | - Fiona C. Denison
- Tommy's Centre for Maternal and Fetal Health, MRC Centre for Reproductive Health University of Edinburgh, Queen's Medical Research Institute Edinburgh United Kingdom
| | - Rebecca M. Reynolds
- Tommy's Centre for Maternal and Fetal Health, MRC Centre for Reproductive Health University of Edinburgh, Queen's Medical Research Institute Edinburgh United Kingdom
- BHF/University Centre for Cardiovascular Science University of Edinburgh, Queen's Medical Research Institute Edinburgh United Kingdom
| |
Collapse
|
8
|
Maruyama NO, Mitchell NC, Truong TT, Toney GM. Activation of the hypothalamic paraventricular nucleus by acute intermittent hypoxia: Implications for sympathetic long-term facilitation neuroplasticity. Exp Neurol 2018; 314:1-8. [PMID: 30605624 DOI: 10.1016/j.expneurol.2018.12.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 12/03/2018] [Accepted: 12/30/2018] [Indexed: 02/07/2023]
Abstract
Exposure to acute intermittent hypoxia (AIH) induces a progressive increase of sympathetic nerve activity (SNA) that reflects a form of neuroplasticity known as sympathetic long-term facilitation (sLTF). Our recent findings indicate that activity of neurons in the hypothalamic paraventricular nucleus (PVN) contributes to AIH-induced sLTF, but neither the intra-PVN distribution nor the neurochemical identity of AIH responsive neurons has been determined. Here, awake rats were exposed to 10 cycles of AIH and c-Fos immunohistochemistry was performed to identify transcriptionally activated neurons in rostral, middle and caudal planes of the PVN. Effects of graded intensities of AIH were investigated in separate groups of rats (n = 6/group) in which inspired oxygen (O2) was reduced every 6 min from 21% to nadirs of 10%, 8% or 6%. All intensities of AIH failed to increase c-Fos counts in the caudally located lateral parvocellular region of the PVN. c-Fos counts increased in the dorsal parvocellular and central magnocellular regions, but significance was achieved only with AIH to 6% O2 (P < 0.002). By contrast, graded intensities of AIH induced graded c-Fos activation in the stress-related medial parvocellular (MP) region. Focusing on AIH exposure to 8% O2, experiments next investigated the stress-regulatory neuropeptide content of AIH-activated MP neurons. Tissue sections immunostained for corticotropin-releasing hormone (CRH) or arginine vasopressin (AVP) revealed a significantly greater number of neurons stained for CRH than AVP (P < 0.0001), though AIH induced expression of c-Fos in a similar fraction (~14%) of each neurochemical class. Amongst AIH-activated MP neurons, ~30% stained for CRH while only ~2% stained for AVP. Most AIH-activated CRH neurons (~82%) were distributed in the rostral one-half of the PVN. Results indicate that AIH recruits CRH, but not AVP, neurons in rostral to middle levels of the MP region of PVN, and raise the possibility that these CRH neurons may be a substrate for AIH-induced sLTF neuroplasticity.
Collapse
Affiliation(s)
- Nadia Oliveira Maruyama
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Nathan C Mitchell
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Tamara T Truong
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Glenn M Toney
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
9
|
Abu Eid S, Hackl MT, Kaplanian M, Winter MP, Kaltenecker D, Moriggl R, Luger A, Scherer T, Fürnsinn C. Life Under Hypoxia Lowers Blood Glucose Independently of Effects on Appetite and Body Weight in Mice. Front Endocrinol (Lausanne) 2018; 9:490. [PMID: 30210452 PMCID: PMC6121030 DOI: 10.3389/fendo.2018.00490] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 08/06/2018] [Indexed: 11/13/2022] Open
Abstract
Blood glucose and the prevalence of diabetes are lower in mountain than lowland dwellers, which could among other factors be due to reduced oxygen availability. To investigate metabolic adaptations to life under hypoxia, male mice on high fat diet (HFD) were continuously maintained at 10% O2. At variance to preceding studies, the protocol was designed to dissect direct metabolic effects from such mediated indirectly via hypoxia-induced reductions in appetite and weight gain. This was achieved by two separate control groups on normal air, one with free access to HFD, and one fed restrictedly in order to obtain a weight curve matching that of hypoxia-exposed mice. Comparable body weight in restrictedly fed and hypoxic mice was achieved by similar reductions in calorie intake (-22%) and was associated with parallel effects on body composition as well as on circulating insulin, leptin, FGF-21, and adiponectin. Whereas the effects of hypoxia on the above parameters could thus be attributed entirely to blunted weight gain, hypoxia improved glucose homeostasis in part independently of body weight (fasted blood glucose, mmol/l: freely fed control, 10.2 ± 0.7; weight-matched control, 8.0 ± 0.3; hypoxia, 6.8 ± 0.2; p < 0.007 each; AUC in the glucose tolerance test, mol/l*min: freely fed control, 2.54 ± 0.15; weight-matched control, 1.86 ± 0.08; hypoxia, 1.67 ± 0.05; p < 0.05 each). Although counterintuitive to lowering of glycemia, insulin sensitivity appeared to be impaired in animals adapted to hypoxia: In the insulin tolerance test, hypoxia-treated mice started off with lower glycaemia than their weight-matched controls (initial blood glucose, mmol/l: freely fed control, 11.5 ± 0.7; weight-matched control, 9.4 ± 0.3; hypoxia, 8.1 ± 0.2; p < 0.02 each), but showed a weaker response to insulin (final blood glucose, mmol/l: freely fed control, 7.0 ± 0.3; weight-matched control, 4.5 ± 0.2; hypoxia, 5.5 ± 0.3; p < 0.01 each). Furthermore, hypoxia weight-independently reduced hepatic steatosis as normalized to total body fat, suggesting a shift in the relative distribution of triglycerides from liver to fat (mg/g liver triglycerides per g total fat mass: freely fed control, 10.3 ± 0.6; weight-matched control, 5.6 ± 0.3; hypoxia, 4.0 ± 0.2; p < 0.0004 each). The results show that exposure of HFD-fed mice to continuous hypoxia leads to a unique metabolic phenotype characterized by improved glucose homeostasis along with evidence for impaired rather than enhanced insulin sensitivity.
Collapse
Affiliation(s)
- Sameer Abu Eid
- Division of Endocrinology & Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Martina T. Hackl
- Division of Endocrinology & Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Mairam Kaplanian
- Division of Endocrinology & Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Max-Paul Winter
- Division of Cardiology, Department of Medicine II, Medical University of Vienna, Vienna, Austria
| | - Doris Kaltenecker
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
| | - Richard Moriggl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
- Medical University of Vienna, Vienna, Austria
| | - Anton Luger
- Division of Endocrinology & Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Thomas Scherer
- Division of Endocrinology & Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Clemens Fürnsinn
- Division of Endocrinology & Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Moya EA, Arias P, Iturriaga R. Nitration of MnSOD in the Carotid Body and Adrenal Gland Induced by Chronic Intermittent Hypoxia. J Histochem Cytochem 2018; 66:753-765. [PMID: 29775122 DOI: 10.1369/0022155418776229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chronic intermittent hypoxia (CIH), main feature of obstructive sleep apnea, produces nitro-oxidative stress, which contributes to potentiate carotid body (CB) chemosensory discharges and sympathetic-adrenal-axis activity, leading to hypertension. The MnSOD enzymatic activity, a key enzyme on oxidative stress control, is reduced by superoxide-induced nitration. However, the effects of CIH-induced nitration on MnSOD enzymatic activity in the CB and adrenal gland are not known. We studied the effects of CIH on MnSOD protein and immunoreactive (MnSOD-ir) levels in the CB, adrenal gland and superior cervical ganglion (SCG), and on 3-nitrotyrosine (3-NT-ir), CuZnSOD (CuZnSOD-ir), MnSOD nitration, and its enzymatic activity in the CB and adrenal gland from male Sprague-Dawley rats exposed to CIH for 7 days. CIH increased 3-NT-ir in CB and adrenal gland, whereas MnSOD-ir increased in the CB and in adrenal cortex, but not in the whole adrenal medulla or SCG. CIH nitrated MnSOD in the CB and adrenal medulla, but its activity decreased in the adrenal gland. CuZnSOD-ir remained unchanged in both tissues. All changes observed were prevented by ascorbic acid treatment. Present results show that CIH for 7 days produced MnSOD nitration, but failed to reduce its activity in the CB, because of the increased protein level.
Collapse
Affiliation(s)
- Esteban A Moya
- Division of Physiology, Department of Medicine, University of California San Diego, La Jolla, California.,Laboratorio de Neurobiología, Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paulina Arias
- Laboratorio de Neurobiología, Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Iturriaga
- Laboratorio de Neurobiología, Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|