1
|
Liu X, Liu N, Jing X, Khan H, Yang K, Zheng Y, Nie Y, Song H, Huang Y. Genomic and transcriptomic perspectives on the origin and evolution of NUMTs in Orthoptera. Mol Phylogenet Evol 2024; 201:108221. [PMID: 39454737 DOI: 10.1016/j.ympev.2024.108221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 10/08/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
Nuclear mitochondrial pseudogenes (NUMTs) result from the transfer of mitochondrial DNA (mtDNA) to the nuclear genome. NUMTs, as "frozen" snapshots of mitochondria, can provide insights into diversification patterns. In this study, we analyzed the origins and insertion frequency of NUMTs using genome assembly data from ten species in Orthoptera. We found divergences between NUMTs and contemporary mtDNA in Orthoptera ranging from 0 % to 23.78 %. The results showed that the number of NUMT insertions was significantly positively correlated with the content of transposable elements in the genome. We found that 39.09 %-68.65 % of the NUMTs flanking regions (2,000 bp) contained retrotransposons, and more NUMTs originated from mitochondrial rDNA regions. Based on the analysis of the mitochondrial transcriptome, we found a potential mechanism of NUMT integration: mitochondrial transcripts are reverse transcribed into double-stranded DNA and then integrated into the genome. The probability of this mechanism occurring accounts for 0.30 %-1.02 % of total mitochondrial nuclear transfer events. Finally, based on the phylogenetic tree constructed using NUMTs and contemporary mtDNA, we provide insights into ancient evolutionary events such as species-specific "autaponumts" and "synaponumts" shared among different species, as well as post-integration duplication events.
Collapse
Affiliation(s)
- Xuanzeng Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Nian Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xuan Jing
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Hashim Khan
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Kaiyan Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yanna Zheng
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yimeng Nie
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Hojun Song
- Department of Entomology, Texas A&M University, College Station, TX, USA.
| | - Yuan Huang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China.
| |
Collapse
|
2
|
Mitra B, Gayen A, Haque SM, Das A. Influence of climate on desert locust (Schistocerca gregaria Forskål, 1775) Plague and migration prediction in tropics. Sci Rep 2024; 14:24270. [PMID: 39414836 PMCID: PMC11484962 DOI: 10.1038/s41598-024-73250-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/16/2024] [Indexed: 10/18/2024] Open
Abstract
The outbreak of the desert locust Schistocerca gregaria Forskål, 1775, which originated from the Horn of Africa in 2019-2020 created an episodic plague under bio-geographical settings in the arid and semi-arid areas of South and Southwest Asia. In India, it happened after twenty-seven years due to the persistence of a few favourable conditions caused by its plague, resulting in hundreds of crores in crop damage. Keeping this in mind, the study aims to assess the suitability and likelihood of the desert locust epidemic occurring in India, utilizing two widely recognized statistical models: Weight-of-Evidence (WoE) and Frequency Ratio (FR). This work evaluated nine critical climatic factors for the study considering western and central parts of India. The 'Projected Locust Suitability' (PLS) was calculated by analyzing the correlation of the considered variables and the occurrence of locust swarms and bands. The significance (importance) of each variable on PLS was determined using Principal Component Analysis (PCA) and Random Forest (RF) algorithms. The PLS maps clearly show that 42.7-52.8% of the areas fall under high and very high locust suitability zones. The result suggests that the Ajmer-Gwalior-Allahabad tract is highly prone to future locust occurrences, while the Aligarh-Bareilly-Lakhimpur tract is moderately susceptible. The effectiveness of both modelled PLS maps was determined with the help of the ROC curve. The AUC results indicate that both the WoE (0.92) and the RF (0.90) models worked remarkably well in precisely predicting PLS. The RF-based IncNodePurity analysis indicates that low to moderate temperatures in the presence of cloud cover significantly impact locust occurrence and migration. The present findings are projected to direct the development of sustainable locust management strategies utilizing proper land use policies in the tropical climate.
Collapse
Affiliation(s)
- Biswarup Mitra
- Department of Zoology, Entomology Laboratory, University of Calcutta, 35, B. C. Road, Kolkata, 700019, India
| | - Amiya Gayen
- Department of Geography, University of Calcutta, 35, B. C. Road, Kolkata, 700019, India
- Department of Geography, Midnapore College (Autonomous), Midnapore, 721101, India
| | - Sk Mafizul Haque
- Department of Geography, University of Calcutta, 35, B. C. Road, Kolkata, 700019, India.
| | - Amlan Das
- Department of Zoology, Entomology Laboratory, University of Calcutta, 35, B. C. Road, Kolkata, 700019, India.
| |
Collapse
|
3
|
Kasalo N, Tvrtković N, Bogić D, Kokan B, Vuković M, Kučinić M, Skejo J. An Overview of Orthoptera Mass Occurrences in Croatia from 1900 to 2023. INSECTS 2024; 15:82. [PMID: 38392502 PMCID: PMC10888734 DOI: 10.3390/insects15020082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/22/2023] [Accepted: 01/15/2024] [Indexed: 02/24/2024]
Abstract
During the last century, well-known locust species, such as Calliptamus italicus and Dociostaurus maroccanus, have produced outbreaks of varying degrees in the Balkans. The literature data on outbreaks in the region are scarce, and Croatia is not an exception. This study summarized the data on 23 Orthoptera mass occurrences in Croatia from 1900 to 2023 from 28 localities, representing 12 species. This is a low level of outbreak activity compared with other locust and pest grasshopper species in other parts of the world. The species with the most reporting is C. italicus with altogether six mass occurrences, while second is Barbitistes ocskayi and Miramella irena with three records, and in the third, place D. maroccanus and Gryllotalpa sp., each with two mass occurrences having been reported. One of the most notable swarms is that of Anacridium aegyptium which occurred around Šibenik in 1998, and this paper provides the first account of it, 25 years after it took place. The most recent outbreaks took place in 2022, and the most notable one was that of D. maroccanus swarm in Štikovo. The 2022 and 2023 reports were brief and muted, despite the affected agriculturists claiming significant damages.
Collapse
Affiliation(s)
- Niko Kasalo
- Independent Researcher, Matice Hrvatske 11, BA-80101 Livno, Bosnia and Herzegovina
| | - Nikola Tvrtković
- Independent Researcher, Alagovićeva 21, HR-10000 Zagreb, Croatia
| | - Domagoj Bogić
- Division of Zoology, Evolution Lab, Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, HR-10000 Zagreb, Croatia
| | - Bože Kokan
- Natural History Museum Split, Kolombatovićevo Šetalište 2, HR-21000 Split, Croatia
| | - Marijana Vuković
- Croatian Natural History Museum, Demetrova 1, HR-10000 Zagreb, Croatia
| | - Mladen Kučinić
- Division of Zoology, Evolution Lab, Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, HR-10000 Zagreb, Croatia
| | - Josip Skejo
- Division of Zoology, Evolution Lab, Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, HR-10000 Zagreb, Croatia
| |
Collapse
|
4
|
Foquet B, Little DW, Medina-Durán JH, Song H. The time course of behavioural phase change in the Central American locust Schistocerca piceifrons. J Exp Biol 2022; 225:285904. [PMID: 36408689 PMCID: PMC9789408 DOI: 10.1242/jeb.244621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/12/2022] [Indexed: 11/22/2022]
Abstract
Locusts exhibit an extreme form of phenotypic plasticity and can exist as two alternative phenotypes, known as solitarious and gregarious phases. These phases, which can transform from one to another depending on local population density, show distinctly different behavioural characteristics. The proximate mechanisms of behavioural phase polyphenism have been well studied in the desert locust Schistocerca gregaria and the migratory locust Locusta migratoria, and what is known in these species is often treated as a general feature of locusts. However, this approach might be flawed, given that there are approximately 20 locust species that have independently evolved phase polyphenism. Using the Central American locust Schistocerca piceifrons as a study system, we characterised the time course of behavioural phase change using standard locust behavioural assays, using both a logistic regression-based model and analyses of separate behavioural variables. We found that for nymphs of S. piceifrons, solitarisation was a relatively fast, two-step process, but that gregarisation was a much slower process. Additionally, the density of the gregarisation treatment seemed to have no effect on the rate of phase change. These data are at odds with what we know about the time course of behavioural phase change in S. gregaria, suggesting that the mechanisms of locust phase polyphenism in these two species are different and may not be phylogenetically constrained. Our study represents the most in-depth study of behavioural gregarisation and solitarisation in locusts to date.
Collapse
Affiliation(s)
- Bert Foquet
- Department of Entomology, Texas A&M University, College Station, TX 77843-2475, USA,School of Biological Sciences, Illinois State University, Normal, IL 61790-4120, USA
| | - Drew W. Little
- Department of Entomology, Texas A&M University, College Station, TX 77843-2475, USA,Department of Biological Sciences, University of Wisconsin - Milwaukee, Milwaukee, WI 53211, USA
| | | | - Hojun Song
- Department of Entomology, Texas A&M University, College Station, TX 77843-2475, USA,Behavioral Plasticity Research Institute (BPRI; https://behavioralplasticity.org),Author for correspondence ()
| |
Collapse
|
5
|
Cullen DA, Sword GA, Rosenthal GG, Simpson SJ, Dekempeneer E, Hertog MLATM, Nicolaï BM, Caes R, Mannaerts L, Vanden Broeck J. Sexual repurposing of juvenile aposematism in locusts. Proc Natl Acad Sci U S A 2022; 119:e2200759119. [PMID: 35969777 PMCID: PMC9407653 DOI: 10.1073/pnas.2200759119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/09/2022] [Indexed: 11/18/2022] Open
Abstract
Adaptive plasticity requires an integrated suite of functional responses to environmental variation, which can include social communication across life stages. Desert locusts (Schistocerca gregaria) exhibit an extreme example of phenotypic plasticity called phase polyphenism, in which a suite of behavioral and morphological traits differ according to local population density. Male and female juveniles developing at low population densities exhibit green- or sand-colored background-matching camouflage, while at high densities they show contrasting yellow and black aposematic patterning that deters predators. The predominant background colors of these phenotypes (green/sand/yellow) all depend on expression of the carotenoid-binding "Yellow Protein" (YP). Gregarious (high-density) adults of both sexes are initially pinkish, before a YP-mediated yellowing reoccurs upon sexual maturation. Yellow color is especially prominent in gregarious males, but the reason for this difference has been unknown since phase polyphenism was first described in 1921. Here, we use RNA interference to show that gregarious male yellowing acts as an intrasexual warning signal, which forms a multimodal signal with the antiaphrodisiac pheromone phenylacetonitrile (PAN) to prevent mistaken sexual harassment from other males during scramble mating in a swarm. Socially mediated reexpression of YP thus adaptively repurposes a juvenile signal that deters predators into an adult signal that deters undesirable mates. These findings reveal a previously underappreciated sexual dimension to locust phase polyphenism, and promote locusts as a model for investigating the relative contributions of natural versus sexual selection in the evolution of phenotypic plasticity.
Collapse
Affiliation(s)
- Darron A Cullen
- Department of Biology, KU Leuven (University of Leuven), 3000 Leuven, Belgium
| | - Gregory A Sword
- Department of Entomology, Texas A&M University, College Station, TX 77843
| | - Gil G Rosenthal
- Department of Biology, Università degli Studi di Padova, 35131 Padova, Italy
| | - Stephen J Simpson
- Charles Perkins Centre, University of Sydney, Sydney, NSW, 2006, Australia
- School of Life Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Elfie Dekempeneer
- Department of Biosystems, KU Leuven (University of Leuven), 3001 Leuven, Belgium
| | | | - Bart M Nicolaï
- Department of Biosystems, KU Leuven (University of Leuven), 3001 Leuven, Belgium
| | - Robbe Caes
- Department of Biology, KU Leuven (University of Leuven), 3000 Leuven, Belgium
| | - Lisa Mannaerts
- Department of Biology, KU Leuven (University of Leuven), 3000 Leuven, Belgium
| | - Jozef Vanden Broeck
- Department of Biology, KU Leuven (University of Leuven), 3000 Leuven, Belgium
| |
Collapse
|
6
|
Youngblood JP, Cease AJ, Talal S, Copa F, Medina HE, Rojas JE, Trumper EV, Angilletta MJ, Harrison JF. Climate change expected to improve digestive rate and trigger range expansion in outbreaking locusts. ECOL MONOGR 2022. [DOI: 10.1002/ecm.1550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Arianne J. Cease
- School of Life Sciences Arizona State University Tempe AZ USA
- School of Sustainability Arizona State University Tempe AZ USA
| | - Stav Talal
- School of Life Sciences Arizona State University Tempe AZ USA
| | - Fernando Copa
- Universidad Autónoma Gabriel René Moreno Santa Cruz Bolivia
| | | | - Julio E. Rojas
- Departamento de Campañas Fitosanitarios Dirección de Protección Vegetal, SENAVE Paraguay
| | | | | | - Jon F. Harrison
- School of Life Sciences Arizona State University Tempe AZ USA
| |
Collapse
|
7
|
Simpson SJ. A journey towards an integrated understanding of behavioural phase change in locusts. JOURNAL OF INSECT PHYSIOLOGY 2022; 138:104370. [PMID: 35176318 DOI: 10.1016/j.jinsphys.2022.104370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Behavioural phase change initiates and functionally couples the suite of traits that comprise density-dependent polyphenism in locusts. Here I provide a semi-expurgated account of my 25-year research journey studying behavioural phase transition in the desert locust. The journey spans continents, involves a cast of extraordinary colleagues, and travels across levels of biological organisation from deep within the nervous system of individual locusts to mass migration and the evolution and population dynamics of swarming.
Collapse
Affiliation(s)
- Stephen J Simpson
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Australia
| |
Collapse
|
8
|
Martí E, Milani D, Bardella VB, Albuquerque L, Song H, Palacios-Gimenez OM, Cabral-de-Mello DC. Cytogenomic analysis unveils mixed molecular evolution and recurrent chromosomal rearrangements shaping the multigene families on Schistocerca grasshopper genomes. Evolution 2021; 75:2027-2041. [PMID: 34155627 DOI: 10.1111/evo.14287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/11/2021] [Accepted: 05/26/2021] [Indexed: 11/26/2022]
Abstract
Multigene families are essential components of eukaryotic genomes and play key roles either structurally and functionally. Their modes of evolution remain elusive even in the era of genomics, because multiple multigene family sequences coexist in genomes, particularly in large repetitive genomes. Here, we investigate how the multigene families 18S rDNA, U2 snDNA, and H3 histone evolved in 10 species of Schistocerca grasshoppers with very large and repeat-enriched genomes. Using sequenced genomes and fluorescence in situ hybridization mapping, we find substantial differences between species, including the number of chromosomal clusters, changes in sequence abundance and nucleotide composition, pseudogenization, and association with transposable elements (TEs). The intragenomic analysis of Schistocerca gregaria using long-read sequencing and genome assembly unveils conservation for H3 histone and recurrent pseudogenization for 18S rDNA and U2 snDNA, likely promoted by association with TEs and sequence truncation. Remarkably, TEs were frequently associated with truncated copies, were also among the most abundant in the genome, and revealed signatures of recent activity. Our findings suggest a combined effect of concerted and birth-and-death models driving the evolution of multigene families in Schistocerca over the last 8 million years, and the occurrence of intra- and interchromosomal rearrangements shaping their chromosomal distribution. Despite the conserved karyotype in Schistocerca, our analysis highlights the extensive reorganization of repetitive DNAs in Schistocerca, contributing to the advance of comparative genomics for this important grasshopper genus.
Collapse
Affiliation(s)
- Emiliano Martí
- Departamento de Biologia Geral e Aplicada, UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Rio Claro, 13506-900, Brazil
| | - Diogo Milani
- Departamento de Biologia Geral e Aplicada, UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Rio Claro, 13506-900, Brazil
| | - Vanessa B Bardella
- Departamento de Biologia Geral e Aplicada, UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Rio Claro, 13506-900, Brazil
| | - Lucas Albuquerque
- Departamento de Biologia Geral e Aplicada, UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Rio Claro, 13506-900, Brazil
| | - Hojun Song
- Department of Entomology, Texas A&M University, College Station, Texas, 77843
| | - Octavio M Palacios-Gimenez
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, SE-75236, Sweden.,Population Ecology Group, Institute of Ecology and Evolution, Friedrich Schiller University Jena, Jena, DE-07743, Germany
| | - Diogo C Cabral-de-Mello
- Departamento de Biologia Geral e Aplicada, UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Rio Claro, 13506-900, Brazil
| |
Collapse
|
9
|
Foquet B, Castellanos AA, Song H. Comparative analysis of phenotypic plasticity sheds light on the evolution and molecular underpinnings of locust phase polyphenism. Sci Rep 2021; 11:11925. [PMID: 34099755 PMCID: PMC8184943 DOI: 10.1038/s41598-021-91317-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/24/2021] [Indexed: 02/05/2023] Open
Abstract
Locusts exhibit one of nature's most spectacular examples of complex phenotypic plasticity, in which changes in density cause solitary and cryptic individuals to transform into gregarious and conspicuous locusts forming large migrating swarms. We investigated how these coordinated alternative phenotypes might have evolved by studying the Central American locust and three closely related non-swarming grasshoppers in a comparative framework. By experimentally isolating and crowding during nymphal development, we induced density-dependent phenotypic plasticity and quantified the resulting behavioural, morphological, and molecular reaction norms. All four species exhibited clear plasticity, but the individual reaction norms varied among species and showed different magnitudes. Transcriptomic responses were species-specific, but density-responsive genes were functionally similar across species. There were modules of co-expressed genes that were highly correlated with plastic reaction norms, revealing a potential molecular basis of density-dependent phenotypic plasticity. These findings collectively highlight the importance of studying multiple reaction norms from a comparative perspective.
Collapse
Affiliation(s)
- Bert Foquet
- Department of Entomology, Texas A&M University, College Station, TX, USA.
- School of Biological Sciences, Illinois State University, Campus Box 4120, Normal, IL, 61790, USA.
| | - Adrian A Castellanos
- Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, TX, USA
- Cary Institute of Ecosystem Studies, Millbrook, NY, USA
| | - Hojun Song
- Department of Entomology, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
10
|
Foquet B, Song H. The role of the neuropeptide [His 7]-corazonin on phase-related characteristics in the Central American locust. JOURNAL OF INSECT PHYSIOLOGY 2021; 131:104244. [PMID: 33891938 DOI: 10.1016/j.jinsphys.2021.104244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/11/2021] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
Density-dependent phase polyphenism in locusts is one of the most extreme forms of phenotypic plasticity. Locusts exist along the continuum between two density-dependent phenotypes that differ in nymphal coloration, behavior, morphology, physiology, and reproduction among others. Nymphs of the solitarious phase, found in low population densities, are usually green, relatively inactive, and avoid each other, while gregarious nymphs, found in high density, exhibit a very obvious yellow/orange background with black patterning, and are highly active and attracted to each other. The multifunctional neuropeptide [His7]-corazonin has been shown to strongly affect black coloration and several other phase-related characteristics in at least two locust species, even though no effect on phase-related behavioral traits has been found. In this study, we investigate the role of [His7]-corazonin in the Central American locust Schistocerca piceifrons (Walker), which evolved density-dependent phase polyphenism independently from the two previously studied locust species. After successfully knocking down the transcript encoding [His7]-corazonin (CRZ) using RNA interference, we show that such a knockdown influences both color and morphometrics in this species, but does not influence phase-related behavioral traits. Our results suggest that the role of [His7]-corazonin is conserved in different locust species. Finally, our study represents the first controlled study of behavioral solitarization in S. piceifrons.
Collapse
Affiliation(s)
- Bert Foquet
- Department of Entomology, Texas A&M University, College Station, TX, USA.
| | - Hojun Song
- Department of Entomology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
11
|
Dominy NJ, Fannin LD. The sluggard has no locusts: From persistent pest to irresistible icon. PEOPLE AND NATURE 2021. [DOI: 10.1002/pan3.10198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Nathaniel J. Dominy
- Department of Anthropology and Graduate Program in Ecology, Evolution, Environment and Society Dartmouth College Hanover NH USA
| | - Luke D. Fannin
- Department of Anthropology and Graduate Program in Ecology, Evolution, Environment and Society Dartmouth College Hanover NH USA
| |
Collapse
|
12
|
Palacios-Gimenez OM, Koelman J, Palmada-Flores M, Bradford TM, Jones KK, Cooper SJB, Kawakami T, Suh A. Comparative analysis of morabine grasshopper genomes reveals highly abundant transposable elements and rapidly proliferating satellite DNA repeats. BMC Biol 2020; 18:199. [PMID: 33349252 PMCID: PMC7754599 DOI: 10.1186/s12915-020-00925-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/10/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Repetitive DNA sequences, including transposable elements (TEs) and tandemly repeated satellite DNA (satDNAs), collectively called the "repeatome", are found in high proportion in organisms across the Tree of Life. Grasshoppers have large genomes, averaging 9 Gb, that contain a high proportion of repetitive DNA, which has hampered progress in assembling reference genomes. Here we combined linked-read genomics with transcriptomics to assemble, characterize, and compare the structure of repetitive DNA sequences in four chromosomal races of the morabine grasshopper Vandiemenella viatica species complex and determine their contribution to genome evolution. RESULTS We obtained linked-read genome assemblies of 2.73-3.27 Gb from estimated genome sizes of 4.26-5.07 Gb DNA per haploid genome of the four chromosomal races of V. viatica. These constitute the third largest insect genomes assembled so far. Combining complementary annotation tools and manual curation, we found a large diversity of TEs and satDNAs, constituting 66 to 75% per genome assembly. A comparison of sequence divergence within the TE classes revealed massive accumulation of recent TEs in all four races (314-463 Mb per assembly), indicating that their large genome sizes are likely due to similar rates of TE accumulation. Transcriptome sequencing showed more biased TE expression in reproductive tissues than somatic tissues, implying permissive transcription in gametogenesis. Out of 129 satDNA families, 102 satDNA families were shared among the four chromosomal races, which likely represent a diversity of satDNA families in the ancestor of the V. viatica chromosomal races. Notably, 50 of these shared satDNA families underwent differential proliferation since the recent diversification of the V. viatica species complex. CONCLUSION This in-depth annotation of the repeatome in morabine grasshoppers provided new insights into the genome evolution of Orthoptera. Our TEs analysis revealed a massive recent accumulation of TEs equivalent to the size of entire Drosophila genomes, which likely explains the large genome sizes in grasshoppers. Despite an overall high similarity of the TE and satDNA diversity between races, the patterns of TE expression and satDNA proliferation suggest rapid evolution of grasshopper genomes on recent timescales.
Collapse
Affiliation(s)
- Octavio M Palacios-Gimenez
- Department of Ecology and Genetics - Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, SE-752 36, Uppsala, Sweden.
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre, Uppsala University, SE-752 36, Uppsala, Sweden.
| | - Julia Koelman
- Department of Ecology and Genetics - Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, SE-752 36, Uppsala, Sweden
| | - Marc Palmada-Flores
- Department of Ecology and Genetics - Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, SE-752 36, Uppsala, Sweden
| | - Tessa M Bradford
- Evolutionary Biology Unit, South Australian Museum, Adelaide, SA, 5000, Australia
- School of Biological Sciences and Australian Centre for Evolutionary Biology and Biodiversity, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Karl K Jones
- Evolutionary Biology Unit, South Australian Museum, Adelaide, SA, 5000, Australia
| | - Steven J B Cooper
- Evolutionary Biology Unit, South Australian Museum, Adelaide, SA, 5000, Australia
- School of Biological Sciences and Australian Centre for Evolutionary Biology and Biodiversity, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Takeshi Kawakami
- Department of Ecology and Genetics - Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, SE-752 36, Uppsala, Sweden.
- Embark Veterinary, Inc., Boston, MA, USA.
| | - Alexander Suh
- Department of Ecology and Genetics - Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, SE-752 36, Uppsala, Sweden.
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre, Uppsala University, SE-752 36, Uppsala, Sweden.
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TU, UK.
| |
Collapse
|
13
|
Despland E. Ontogenetic shift from aposematism and gregariousness to crypsis in a Romaleid grasshopper. PLoS One 2020; 15:e0237594. [PMID: 32817631 PMCID: PMC7444530 DOI: 10.1371/journal.pone.0237594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/29/2020] [Indexed: 11/19/2022] Open
Abstract
Traits of chemically-defended animals can change as an individual grows and matures, and both theoretical and empirical evidence favour a direction of change from crypsis to aposematism. This study examines the suite of traits involved in an unusual opposite shift from aposematism to crypsis in a neotropical toxic-plant-feeding Romaleid grasshopper, Chromacris psittacus (Gerstaecker, 1873). Field surveys, behavioural observations and a rearing experiment compare host plant choice, aggregation, locomotion and thermoregulation between life history stages. Results showed that both nymphs and adults fed exclusively on a narrow range of Solanaceae plants, suggesting that the shift in defensive syndrome is not due to a change in chemical defense. Instead, nymphal aposematism appears linked to aggregation in response to plant-based selection pressures. Slow nymphal development suggests a cost to feeding on toxic plant compounds, and grouping could mitigate this cost. Grouping also increases conspicuousness, and hence can favour warning colourating in chemically-defended insects. The role of diet breadth in aposematism is poorly understood, and these results suggest how constraints imposed by feeding on toxic plants can generate bottom-up selection pressures shaping the adaptive suites of traits of chemically-defended animals.
Collapse
Affiliation(s)
- Emma Despland
- Biology Department, Concordia University, Montreal, Quebec, Canada
| |
Collapse
|
14
|
Rodrigues YK, Beldade P. Thermal Plasticity in Insects’ Response to Climate Change and to Multifactorial Environments. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00271] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
15
|
Foquet B, Song H. There is no magic bullet: the importance of testing reference gene stability in RT-qPCR experiments across multiple closely related species. PeerJ 2020; 8:e9618. [PMID: 32832268 PMCID: PMC7409783 DOI: 10.7717/peerj.9618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/06/2020] [Indexed: 11/20/2022] Open
Abstract
Reverse Transcriptase quantitative Polymerase Chain Reaction (RT-qPCR) is the current gold standard tool for the study of gene expression. This technique is highly dependent on the validation of reference genes, which exhibit stable expression levels among experimental conditions. Often, reference genes are assumed to be stable a priori without a rigorous test of gene stability. However, such an oversight can easily lead to misinterpreting expression levels of target genes if the references genes are in fact not stable across experimental conditions. Even though most gene expression studies focus on just one species, comparative studies of gene expression among closely related species can be very informative from an evolutionary perspective. In our study, we have attempted to find stable reference genes for four closely related species of grasshoppers (Orthoptera: Acrididae) that together exhibit a spectrum of density-dependent phenotypic plasticity. Gene stability was assessed for eight reference genes in two tissues, two experimental conditions and all four species. We observed clear differences in the stability ranking of these reference genes, both between tissues and between species. Additionally, the choice of reference genes clearly influenced the results of a gene expression experiment. We offer suggestions for the use of reference genes in further studies using these four species, which should be taken as a cautionary tale for future studies involving RT-qPCR in a comparative framework.
Collapse
Affiliation(s)
- Bert Foquet
- Department of Entomology, Texas A&M University, College Station, TX, United States of America
| | - Hojun Song
- Department of Entomology, Texas A&M University, College Station, TX, United States of America
| |
Collapse
|
16
|
Tung A, Levin M. Extra-genomic instructive influences in morphogenesis: A review of external signals that regulate growth and form. Dev Biol 2020; 461:1-12. [PMID: 31981561 DOI: 10.1016/j.ydbio.2020.01.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 12/18/2022]
Abstract
Embryonic development and regeneration accomplish a remarkable feat: individual cells work together to create or repair complex anatomical structures. What is the source of the instructive signals that specify these invariant and robust organ-level outcomes? The most frequently studied source of morphogenetic control is the host genome and its transcriptional circuits. However, it is now apparent that significant information affecting patterning also arrives from outside of the body. Both biotic and physical factors, including temperature and various molecular signals emanating from pathogens, commensals, and conspecific organisms, affect developmental outcomes. Here, we review examples in which anatomical patterning decisions are strongly impacted by lateral signals that originate from outside of the zygotic genome. The endogenous pathways targeted by these influences often show transgenerational effects, enabling them to shape the evolution of anatomies even faster than traditional Baldwin-type assimilation. We also discuss recent advances in the biophysics of morphogenetic controls and speculate on additional sources of important patterning information which could be exploited to better understand the evolution of bodies and to design novel approaches for regenerative medicine.
Collapse
Affiliation(s)
- Angela Tung
- Department of Biology and Allen Discovery Center at Tufts University, Medford, MA, USA
| | - Michael Levin
- Department of Biology and Allen Discovery Center at Tufts University, Medford, MA, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
| |
Collapse
|
17
|
Palacios-Gimenez OM, Milani D, Song H, Marti DA, López-León MD, Ruiz-Ruano FJ, Camacho JPM, Cabral-de-Mello DC. Eight Million Years of Satellite DNA Evolution in Grasshoppers of the Genus Schistocerca Illuminate the Ins and Outs of the Library Hypothesis. Genome Biol Evol 2020; 12:88-102. [PMID: 32211863 PMCID: PMC7093836 DOI: 10.1093/gbe/evaa018] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2020] [Indexed: 12/21/2022] Open
Abstract
Satellite DNA (satDNA) is an abundant class of tandemly repeated noncoding sequences, showing high rate of change in sequence, abundance, and physical location. However, the mechanisms promoting these changes are still controversial. The library model was put forward to explain the conservation of some satDNAs for long periods, predicting that related species share a common collection of satDNAs, which mostly experience quantitative changes. Here, we tested the library model by analyzing three satDNAs in ten species of Schistocerca grasshoppers. This group represents a valuable material because it diversified during the last 7.9 Myr across the American continent from the African desert locust (Schistocerca gregaria), and this thus illuminates the direction of evolutionary changes. By combining bioinformatic and cytogenetic, we tested whether these three satDNA families found in S. gregaria are also present in nine American species, and whether differential gains and/or losses have occurred in the lineages. We found that the three satDNAs are present in all species but display remarkable interspecies differences in their abundance and sequences while being highly consistent with genus phylogeny. The number of chromosomal loci where satDNA is present was also consistent with phylogeny for two satDNA families but not for the other. Our results suggest eminently chance events for satDNA evolution. Several evolutionary trends clearly imply either massive amplifications or contractions, thus closely fitting the library model prediction that changes are mostly quantitative. Finally, we found that satDNA amplifications or contractions may influence the evolution of monomer consensus sequences and by chance playing a major role in driftlike dynamics.
Collapse
Affiliation(s)
- Octavio M Palacios-Gimenez
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Sweden
- Department of Organismal Biology, Systematic Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Diogo Milani
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências/IB, UNESP - Univ Estadual Paulista, Rio Claro, São Paulo, Brazil
| | - Hojun Song
- Department of Entomology, Texas A&M University
| | - Dardo A Marti
- Laboratorio de Genética Evolutiva, IBS, Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones, CONICET, Posadas, Argentina
| | - Maria D López-León
- Departamento de Genética, Facultad de Ciencias, UGR - Univ de Granada, Spain
| | - Francisco J Ruiz-Ruano
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Sweden
- Department of Organismal Biology, Systematic Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | | | - Diogo C Cabral-de-Mello
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências/IB, UNESP - Univ Estadual Paulista, Rio Claro, São Paulo, Brazil
| |
Collapse
|
18
|
Mun S, Noh MY, Kramer KJ, Muthukrishnan S, Arakane Y. Gene functions in adult cuticle pigmentation of the yellow mealworm, Tenebrio molitor. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 117:103291. [PMID: 31812474 DOI: 10.1016/j.ibmb.2019.103291] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
In many arthropod species including insects, the cuticle tanning pathway for both pigmentation and sclerotization begins with tyrosine and is responsible for production of both melanin- and quinoid-type pigments, some of which are major pigments for body coloration. In this study we identified and cloned cDNAs of the yellow mealworm, Tenebrio molitor, encoding seven key enzymes involved in this pathway including tyrosine hydroxylase (TmTH), DOPA decarboxylase (TmDDC), laccase 2 (TmLac2), Yellow-y (TmY-y), arylalkylamine N-acetyltransferase (TmAANAT1), aspartate 1-decarboxylase (TmADC) and N-β-alanyldopamine synthase (Tmebony). Expression profiles of these genes during development were analyzed by real-time PCR, revealing development-specific patterns of expression. Loss of function mediated by RNAi of either 1) TmTH or TmLac2, 2) TmDDC or TmY-y, and 3) TmAANAT1, TmADC or Tmebony resulted in pale/white, light yellow/brown and dark/black adult body coloration, respectively. In addition, there are three distinct layer/regional pigmentation differences in rigid types of adult cuticle, a brownish outer exocuticle (EX), a dark pigmented middle mesocuticle (ME) and a transparent inner endocuticle (EN). Decreases in pigmentation of the EX and/or ME layers were observed after RNAi of TmDDC or TmY-y. In TmADC- or Tmebony-deficient adults, a darker pigmented EX layer was observed. In TmAANAT1-deficient adults, trabeculae formed between the dorsal and ventral elytral cuticles as well as the transparent EN layer became highly pigmented. These results demonstrate that knocking down the level of gene expression of specific enzymes of this tyrosine metabolic pathway leads to abnormal pigmentation in individual layers and substructure of the rigid adult exoskeleton of T. molitor.
Collapse
Affiliation(s)
- Seulgi Mun
- Department of Applied Biology, Chonnam National University, Gwangju, 500-757, South Korea
| | - Mi Young Noh
- Department of Forestry, Chonnam National University, Gwangju, 500-757, South Korea.
| | - Karl J Kramer
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Chalmers Hall, Manhattan, KS, 66506, USA
| | - Subbaratnam Muthukrishnan
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Chalmers Hall, Manhattan, KS, 66506, USA
| | - Yasuyuki Arakane
- Department of Applied Biology, Chonnam National University, Gwangju, 500-757, South Korea.
| |
Collapse
|
19
|
Kilpatrick SK, Foquet B, Castellanos AA, Gotham S, Little DW, Song H. Revealing hidden density-dependent phenotypic plasticity in sedentary grasshoppers in the genus Schistocerca Stål (Orthoptera: Acrididae: Cyrtacanthacridinae). JOURNAL OF INSECT PHYSIOLOGY 2019; 118:103937. [PMID: 31476314 DOI: 10.1016/j.jinsphys.2019.103937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
Comparative quantification of reaction norms across closely related species in a clade is rare, but such a study can reveal valuable insights into understanding how reaction norms evolve along phylogeny. The grasshopper genus Schistocerca Stål (Orthoptera: Acrididae: Cyrtacanthacridinae) is an ideal group to study the evolution of density-dependent phenotypic plasticity because it includes both swarming locusts and non-swarming sedentary grasshoppers, which show varying degrees of plastic reaction norms in many traits. The swarming locusts exhibit locust phase polyphenism in which cryptically colored and solitary individuals can transform into conspicuously colored and highly gregarious individuals in response to increases in population density. The sedentary grasshoppers do not swarm in nature, and thus it has been assumed that they have little or no expression of plastic reaction norms in many traits, except for color, which has been shown to be a phylogenetically conserved trait. In this study, we have quantified density-dependent reaction norms in behavior, color, body size, and morphometric ratio in the nymphs of four sedentary species within Schistocerca by conducting explicit rearing experiments to induce potential phenotypic changes in response to isolation and crowding. In contrast to our previous assumption, we find that all four species show a certain level of density-dependent plastic reaction norms, which implies that these sedentary species have hidden reaction norms that can only be induced experimentally, some components of which must be phylogenetically conserved. Furthermore, we demonstrate that rearing density differentially affects the expression of reaction norms in different species, suggesting that different reaction norms must have followed independent evolutionary trajectories.
Collapse
Affiliation(s)
- Shelby K Kilpatrick
- Department of Entomology, Texas A&M University, College Station, TX, USA; Department of Entomology, Pennsylvania State University, University Park, PA, USA
| | - Bert Foquet
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Adrian A Castellanos
- Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, TX, USA
| | - Steven Gotham
- Department of Biology, University of Central Florida, Orlando, FL, USA
| | - Drew W Little
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Hojun Song
- Department of Entomology, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
20
|
Abstract
The Drosophila melanogaster foraging (for) gene is a well-established example of a gene with major effects on behavior and natural variation. This gene is best known for underlying the behavioral strategies of rover and sitter foraging larvae, having been mapped and named for this phenotype. Nevertheless, in the last three decades an extensive array of studies describing for's role as a modifier of behavior in a wide range of phenotypes, in both Drosophila and other organisms, has emerged. Furthermore, recent work reveals new insights into the genetic and molecular underpinnings of how for affects these phenotypes. In this article, we discuss the history of the for gene and its role in natural variation in behavior, plasticity, and behavioral pleiotropy, with special attention to recent findings on the molecular structure and transcriptional regulation of this gene.
Collapse
Affiliation(s)
- Ina Anreiter
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada;
| | - Marla B Sokolowski
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada;
| |
Collapse
|
21
|
Lafuente E, Beldade P. Genomics of Developmental Plasticity in Animals. Front Genet 2019; 10:720. [PMID: 31481970 PMCID: PMC6709652 DOI: 10.3389/fgene.2019.00720] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 07/09/2019] [Indexed: 12/17/2022] Open
Abstract
Developmental plasticity refers to the property by which the same genotype produces distinct phenotypes depending on the environmental conditions under which development takes place. By allowing organisms to produce phenotypes adjusted to the conditions that adults will experience, developmental plasticity can provide the means to cope with environmental heterogeneity. Developmental plasticity can be adaptive and its evolution can be shaped by natural selection. It has also been suggested that developmental plasticity can facilitate adaptation and promote diversification. Here, we summarize current knowledge on the evolution of plasticity and on the impact of plasticity on adaptive evolution, and we identify recent advances and important open questions about the genomics of developmental plasticity in animals. We give special attention to studies using transcriptomics to identify genes whose expression changes across developmental environments and studies using genetic mapping to identify loci that contribute to variation in plasticity and can fuel its evolution.
Collapse
Affiliation(s)
| | - Patrícia Beldade
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- CNRS-UMR5174, Université Paul Sabatier, Toulouse, France
- Centre for Ecology, Evolution, and Environmental Changes, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
22
|
Milani D, Bardella VB, Ferretti ABSM, Palacios-Gimenez OM, Melo ADS, Moura RC, Loreto V, Song H, Cabral-de-Mello DC. Satellite DNAs Unveil Clues about the Ancestry and Composition of B Chromosomes in Three Grasshopper Species. Genes (Basel) 2018; 9:genes9110523. [PMID: 30373193 PMCID: PMC6265867 DOI: 10.3390/genes9110523] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/12/2018] [Accepted: 10/21/2018] [Indexed: 11/16/2022] Open
Abstract
Supernumerary (B) chromosomes are dispensable genomic elements occurring frequently among grasshoppers. Most B chromosomes are enriched with repetitive DNAs, including satellite DNAs (satDNAs) that could be implicated in their evolution. Although studied in some species, the specific ancestry of B chromosomes is difficult to ascertain and it was determined in only a few examples. Here we used bioinformatics and cytogenetics to characterize the composition and putative ancestry of B chromosomes in three grasshopper species, Rhammatocerus brasiliensis, Schistocerca rubiginosa, and Xyleus discoideus angulatus. Using the RepeatExplorer pipeline we searched for the most abundant satDNAs in Illumina sequenced reads, and then we generated probes used in fluorescent in situ hybridization (FISH) to determine chromosomal position. We used this information to infer ancestry and the events that likely occurred at the origin of B chromosomes. We found twelve, nine, and eighteen satDNA families in the genomes of R. brasiliensis, S. rubiginosa, and X. d. angulatus, respectively. Some satDNAs revealed clustered organization on A and B chromosomes varying in number of sites and position along chromosomes. We did not find specific satDNA occurring in the B chromosome. The satDNAs shared among A and B chromosomes support the idea of putative intraspecific ancestry from small autosomes in the three species, i.e., pair S11 in R. brasiliensis, pair S9 in S. rubiginosa, and pair S10 in X. d. angulatus. The possibility of involvement of other chromosomal pairs in B chromosome origin is also hypothesized. Finally, we discussed particular aspects in composition, origin, and evolution of the B chromosome for each species.
Collapse
Affiliation(s)
- Diogo Milani
- Instituto de Biociências/IB, Departamento de Biologia, UNESP-Universidade Estadual Paulista, Rio Claro, São Paulo 01049-010, Brazil.
| | - Vanessa B Bardella
- Instituto de Biociências/IB, Departamento de Biologia, UNESP-Universidade Estadual Paulista, Rio Claro, São Paulo 01049-010, Brazil.
| | - Ana B S M Ferretti
- Instituto de Biociências/IB, Departamento de Biologia, UNESP-Universidade Estadual Paulista, Rio Claro, São Paulo 01049-010, Brazil.
| | - Octavio M Palacios-Gimenez
- Instituto de Biociências/IB, Departamento de Biologia, UNESP-Universidade Estadual Paulista, Rio Claro, São Paulo 01049-010, Brazil.
- Department of Evolutionary Biology, Evolutionary Biology Center, Uppsala University, 75236 Uppsala, Sweden.
| | - Adriana de S Melo
- Instituto de Ciências Biológicas, Laboratório de Biodiversidade e Genética de Insetos, UPE-Universidade de Pernambuco, Recife 50100-130, Pernambuco, Brazil.
| | - Rita C Moura
- Instituto de Ciências Biológicas, Laboratório de Biodiversidade e Genética de Insetos, UPE-Universidade de Pernambuco, Recife 50100-130, Pernambuco, Brazil.
| | - Vilma Loreto
- Centro de Biociências/CB, Departamento de Genética, UFPE-Universidade Federal de Pernambuco, Recife 50670-901, Pernambuco, Brazil.
| | - Hojun Song
- Department of Entomology, Texas A&M University, 2475 TAMU, College Station, TX 77843-2475, USA.
| | - Diogo C Cabral-de-Mello
- Instituto de Biociências/IB, Departamento de Biologia, UNESP-Universidade Estadual Paulista, Rio Claro, São Paulo 01049-010, Brazil.
| |
Collapse
|
23
|
Lo N, Simpson SJ, Sword GA. Epigenetics and developmental plasticity in orthopteroid insects. CURRENT OPINION IN INSECT SCIENCE 2018; 25:25-34. [PMID: 29602359 DOI: 10.1016/j.cois.2017.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/26/2017] [Accepted: 11/06/2017] [Indexed: 06/08/2023]
Abstract
Developmental plasticity is a key driver of the extraordinary ecological success of insects. Epigenetic mechanisms provide an important link between the external stimuli that initiate polyphenisms, and the stable changes in gene expression that govern alternative insect morphs. We review the epigenetics of orthopteroid insects, focussing on recent research on locusts and termites, two groups which display high levels of phenotypic plasticity, and for which genome sequences have become available in recent years. We examine research on the potential role of DNA methylation, histone modifications, and non-coding RNAs in the regulation of gene expression in these insects. DNA methylation patterns in orthopteroids share a number of characteristics with those of hymenopteran insects, although methylation levels are much higher, and extend to introns and repeat elements. Future examinations of epigenetic mechanisms in these insects will benefit from comparison of tissues from aged-matched individuals from alternative morphs, and adequate biological replication.
Collapse
Affiliation(s)
- Nathan Lo
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Stephen J Simpson
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia; Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Gregory A Sword
- Department of Entomology, Interdisciplinary Faculty of Ecology and Evolutionary Biology, Texas A&M University, TAMU 2475, College Station, TX 77843, USA
| |
Collapse
|