1
|
Cao H, Mao J, Tratnyek PG, Xu W. Role of Nitrogenous Functional Group Identity in Accelerating 1,2,3-Trichloropropane Degradation by Pyrogenic Carbonaceous Matter (PCM) and Sulfide Using PCM-like Polymers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10752-10763. [PMID: 38848107 PMCID: PMC11191598 DOI: 10.1021/acs.est.3c11010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/19/2024]
Abstract
Groundwater contamination by 1,2,3-trichloropropane (TCP) poses a unique challenge due to its human toxicity and recalcitrance to degradation. Previous work suggests that nitrogenous functional groups of pyrogenic carbonaceous matter (PCM), such as biochar, are important in accelerating contaminant dechlorination by sulfide. However, the reaction mechanism is unclear due, in part, to PCM's structural complexity. Herein, PCM-like polymers (PLPs) with controlled placement of nitrogenous functional groups [i.e., quaternary ammonium (QA), pyridine, and pyridinium cations (py+)] were employed as model systems to investigate PCM-enhanced TCP degradation by sulfide. Our results suggest that both PLP-QA and PLP-py+ were highly effective in facilitating TCP dechlorination by sulfide with half-lives of 16.91 ± 1.17 and 0.98 ± 0.15 days, respectively, and the reactivity increased with surface nitrogenous group density. A two-step process was proposed for TCP dechlorination, which is initiated by reductive ß-elimination, followed by nucleophilic substitution by surface-bound sulfur nucleophiles. The TCP degradation kinetics were not significantly affected by cocontaminants (i.e., 1,1,1-trichloroethane or trichloroethylene), but were slowed by natural organic matter. Our results show that PLPs containing certain nitrogen functional groups can facilitate the rapid and complete degradation of TCP by sulfide, suggesting that similarly functionalized PCM might form the basis for a novel process for the remediation of TCP-contaminated groundwater.
Collapse
Affiliation(s)
- Han Cao
- Department
of Civil and Environmental Engineering, Villanova University, Villanova, Pennsylvania 19085, United States
| | - Jingdong Mao
- Department
of Chemistry and Biochemistry, Old Dominion
University, Norfolk, Virginia 23529, United States
| | - Paul G. Tratnyek
- OHSU/PSU
School of Public Health, Oregon Health &
Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Wenqing Xu
- Department
of Civil and Environmental Engineering, Villanova University, Villanova, Pennsylvania 19085, United States
| |
Collapse
|
2
|
Lavecchia A, Fosso B, Engelen AH, Borin S, Manzari C, Picardi E, Pesole G, Placido A. Macroalgal microbiomes unveil a valuable genetic resource for halogen metabolism. MICROBIOME 2024; 12:47. [PMID: 38454513 PMCID: PMC10919026 DOI: 10.1186/s40168-023-01740-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/18/2023] [Indexed: 03/09/2024]
Abstract
BACKGROUND Macroalgae, especially reds (Rhodophyta Division) and browns (Phaeophyta Division), are known for producing various halogenated compounds. Yet, the reasons underlying their production and the fate of these metabolites remain largely unknown. Some theories suggest their potential antimicrobial activity and involvement in interactions between macroalgae and prokaryotes. However, detailed investigations are currently missing on how the genetic information of prokaryotic communities associated with macroalgae may influence the fate of organohalogenated molecules. RESULTS To address this challenge, we created a specialized dataset containing 161 enzymes, each with a complete enzyme commission number, known to be involved in halogen metabolism. This dataset served as a reference to annotate the corresponding genes encoded in both the metagenomic contigs and 98 metagenome-assembled genomes (MAGs) obtained from the microbiome of 2 red (Sphaerococcus coronopifolius and Asparagopsis taxiformis) and 1 brown (Halopteris scoparia) macroalgae. We detected many dehalogenation-related genes, particularly those with hydrolytic functions, suggesting their potential involvement in the degradation of a wide spectrum of halocarbons and haloaromatic molecules, including anthropogenic compounds. We uncovered an array of degradative gene functions within MAGs, spanning various bacterial orders such as Rhodobacterales, Rhizobiales, Caulobacterales, Geminicoccales, Sphingomonadales, Granulosicoccales, Microtrichales, and Pseudomonadales. Less abundant than degradative functions, we also uncovered genes associated with the biosynthesis of halogenated antimicrobial compounds and metabolites. CONCLUSION The functional data provided here contribute to understanding the still largely unexplored role of unknown prokaryotes. These findings support the hypothesis that macroalgae function as holobionts, where the metabolism of halogenated compounds might play a role in symbiogenesis and act as a possible defense mechanism against environmental chemical stressors. Furthermore, bacterial groups, previously never connected with organohalogen metabolism, e.g., Caulobacterales, Geminicoccales, Granulosicoccales, and Microtrichales, functionally characterized through MAGs reconstruction, revealed a biotechnologically relevant gene content, useful in synthetic biology, and bioprospecting applications. Video Abstract.
Collapse
Affiliation(s)
- Anna Lavecchia
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro", Via Orabona 4, Bari, 70124, Italy
| | - Bruno Fosso
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro", Via Orabona 4, Bari, 70124, Italy
| | - Aschwin H Engelen
- Center of Marine Sciences (CCMar), University of Algarve, Campus Gambelas, Faro, 8005-139, Portugal
| | - Sara Borin
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Via Celoria 2, Milan, 20133, Italy
| | - Caterina Manzari
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro", Via Orabona 4, Bari, 70124, Italy
| | - Ernesto Picardi
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro", Via Orabona 4, Bari, 70124, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council of Italy, Via Giovanni Amendola, Bari, 122/O, 70126, Italy
| | - Graziano Pesole
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro", Via Orabona 4, Bari, 70124, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council of Italy, Via Giovanni Amendola, Bari, 122/O, 70126, Italy
| | - Antonio Placido
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council of Italy, Via Giovanni Amendola, Bari, 122/O, 70126, Italy.
| |
Collapse
|
3
|
Huo K, Wang S, Zhao W, Guo H, Xiong W, Liu R, Yang C. Creating an efficient 1,2-dichloroethane-mineralizing bacterium by a combination of pathway engineering and promoter engineering. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163140. [PMID: 37001652 DOI: 10.1016/j.scitotenv.2023.163140] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 05/13/2023]
Abstract
Currently, 1,2-dichloroethane (DCA) is frequently detected in groundwater and has been listed as a potential human carcinogen by the U.S. EPA. Owing to its toxicity and recalcitrant nature, inefficient DCA mineralization has become a bottleneck of DCA bioremediation. In this study, the first engineered DCA-mineralizing strain KTU-P8DCA was constructed by functional assembly of DCA degradation pathway and enhancing pathway expression with a strong promoter P8 in the biosafety strain Pseudomonas putida KT2440. Strain KTU-P8DCA can metabolize DCA to produce CO2 and utilize DCA as the sole carbon source for cell growth by quantifying 13C stable isotope ratios in collected CO2 and in lyophilized cells. Strain KTU-P8DCA exhibited superior tolerance to high concentrations of DCA. Excellent genetic stability was also observed in continuous passage culture. Therefore, strain KTU-P8DCA has enormous potential for use in bioremediation of sites heavily contaminated with DCA. In the future, our strategy for pathway construction and optimization is expected to be developed as a standard pipeline for creating a wide variety of new contaminants-mineralizing microorganisms. The present study also highlights the power of synthetic biology in creating novel degraders for environmental remediation.
Collapse
Affiliation(s)
- Kaiyue Huo
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Siqi Wang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Wanwan Zhao
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Hongfu Guo
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Weini Xiong
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ruihua Liu
- Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Chao Yang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
4
|
Sharma P, Bano A, Singh SP, Sharma S, Xia C, Nadda AK, Lam SS, Tong YW. Engineered microbes as effective tools for the remediation of polyaromatic aromatic hydrocarbons and heavy metals. CHEMOSPHERE 2022; 306:135538. [PMID: 35792210 DOI: 10.1016/j.chemosphere.2022.135538] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/04/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) have become a major concern to human health and the environment due to rapid industrialization and urbanization. Traditional treatment measures for removing toxic substances from the environment have largely failed, and thus development and advancement in newer remediation techniques are of utmost importance. Rising environmental pollution with HMs and PAHs prompted the research on microbes and the development of genetically engineered microbes (GEMs) for reducing pollution via the bioremediation process. The enzymes produced from a variety of microbes can effectively treat a range of pollutants, but evolutionary trends revealed that various emerging pollutants are resistant to microbial or enzymatic degradation. Naturally, existing microbes can be engineered using various techniques including, gene engineering, directed evolution, protein engineering, media engineering, strain engineering, cell wall modifications, rationale hybrid design, and encapsulation or immobilization process. The immobilization of microbes and enzymes using a variety of nanomaterials, membranes, and supports with high specificity toward the emerging pollutants is also an effective strategy to capture and treat the pollutants. The current review focuses on successful bioremediation techniques and approaches that make use of GEMs or engineered enzymes. Such engineered microbes are more potent than natural strains and have greater degradative capacities, as well as rapid adaptation to various pollutants as substrates or co-metabolizers. The future for the implementation of genetic engineering to produce such organisms for the benefit of the environment andpublic health is indeed long and valuable.
Collapse
Affiliation(s)
- Pooja Sharma
- Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore
| | - Ambreen Bano
- IIRC-3, Plant-Microbe Interaction and Molecular Immunology Laboratory, Department of Biosciences, Faculty of Sciences, Integral University, Lucknow, UP, India
| | - Surendra Pratap Singh
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208001, India
| | - Swati Sharma
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Dehua Tubao New Decoration Material Co., Ltd., Huzhou, Zhejiang 313200, China
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173 234, India.
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India.
| | - Yen Wah Tong
- Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive, 117585, Singapore.
| |
Collapse
|
5
|
Lyu L, He Y, Dong C, Li G, Wei G, Shao Z, Zhang S. Characterization of chlorinated paraffin-degrading bacteria from marine estuarine sediments. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129699. [PMID: 35963094 DOI: 10.1016/j.jhazmat.2022.129699] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
This study explored chlorinated paraffin (CP)-degrading bacteria from the marine environment. Aequorivita, Denitromonas, Parvibaculum, Pseudomonas and Ignavibacterium were selected as the dominant genera after enrichment with chlorinated paraffin 52 (CP52) as the sole carbon source. Eight strains were identified as CP degraders, including Pseudomonas sp. NG6 and NF2, Erythrobacter sp. NG3, Castellaniella sp. NF6, Kordiimonas sp. NE3, Zunongwangia sp. NF12, Zunongwangia sp. NH1 and Chryseoglobus sp. NF13, and their degradation efficiencies ranged from 6.4% to 19.0%. In addition to Pseudomonas, the other six genera of bacteria were first reported to have the degradation ability of CPs. Bacterial categories, carbon-chain lengths and chlorination degrees were three crucial factors affecting the degradation efficiencies of CPs, with their influential ability of chlorinated degrees > bacterial categories > carbon-chain lengths. CP degradation can be performed by producing chlorinated alcohols, chlorinated olefins, dechlorinated alcohols and lower chlorinated CPs. This study will provide valuable information on CP biotransformation and targeted bacterial resources for studying the transformation processes of specific CPs in marine environments.
Collapse
Affiliation(s)
- Lina Lyu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yufei He
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Chunming Dong
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Guizhen Li
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Guangshan Wei
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Zongze Shao
- State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen 361005, China; Key Laboratory of Marine Genetic Resources, Ministry of Natural Resources, Xiamen 361005, China; Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, China; Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China.
| | - Si Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| |
Collapse
|
6
|
Mali H, Shah C, Rudakiya DM, Patel DH, Trivedi U, Subramanian RB. A novel organophosphate hydrolase from Arthrobacter sp. HM01: Characterization and applications. BIORESOURCE TECHNOLOGY 2022; 349:126870. [PMID: 35192947 DOI: 10.1016/j.biortech.2022.126870] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Bioremediation systems coupled to efficient microbial enzymes have emerged as an attractive approach for the in-situ removal of hazardous organophosphates (OPs) pesticides from the polluted environment. However, the role of engineered enzymes in OPs-degradation is rarely studied. In this study, the potential OPs-hydrolase (opdH) gene (Arthrobacter sp. HM01) was isolated, cloned, expressed, and purified. The recombinant organophosphate hydrolase (ropdH) was ∼29 kDa; which catalyzed a broad-range of OPs-pesticides in organic-solvent (∼99 % in 30 min), and was found to increase the catalytic efficiency by 10-folds over the native enzyme (kcat/Km: 107 M-1s-1). The degraded metabolites were analyzed using HPLC/GCMS. Through site-directed mutagenesis, it was confirmed that, conserved metal-bridged residue (Lys-127), plays a crucial role in OPs-degradation, which shows ∼18-folds decline in OPs-degradation. Furthermore, the catalytic activity and its stability has been enhanced by >2.0-fold through biochemical optimization. Thus, the study suggests that ropdH has all the required properties for OPs bioremediation.
Collapse
Affiliation(s)
- Himanshu Mali
- P. G. Department of Biosciences, UGC-Centre of Advanced Studies, Satellite Campus, Sardar Patel University, Sardar Patel Maidan, Bakrol-Vadtal Road, Bakrol, Gujarat 388 315, India
| | - Chandni Shah
- P. G. Department of Biosciences, UGC-Centre of Advanced Studies, Satellite Campus, Sardar Patel University, Sardar Patel Maidan, Bakrol-Vadtal Road, Bakrol, Gujarat 388 315, India
| | - Darshan M Rudakiya
- Synergy Cignpost Diagnostics, 3 Mills Studio, London, E3 3DU, United Kingdom
| | - Darshan H Patel
- Charotar Institute of Paramedical Sciences, Charotar University of Science and Technology, (CHARUSAT), Changa, Gujarat 388421, India
| | - Ujjval Trivedi
- P. G. Department of Biosciences, UGC-Centre of Advanced Studies, Satellite Campus, Sardar Patel University, Sardar Patel Maidan, Bakrol-Vadtal Road, Bakrol, Gujarat 388 315, India
| | - R B Subramanian
- P. G. Department of Biosciences, UGC-Centre of Advanced Studies, Satellite Campus, Sardar Patel University, Sardar Patel Maidan, Bakrol-Vadtal Road, Bakrol, Gujarat 388 315, India.
| |
Collapse
|
7
|
Huo K, Liu Y, Huang R, Zhang Y, Liu H, Che Y, Yang C. Development of a novel promoter engineering-based strategy for creating an efficient para-nitrophenol-mineralizing bacterium. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127672. [PMID: 34753648 DOI: 10.1016/j.jhazmat.2021.127672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/20/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
A toxic and persistent pollutant para-nitrophenol (PNP) enters into the environment through improper industrial waste treatment and agricultural usage of chemical pesticides, leading to a potential risk to humans. Although a variety of PNP-degrading bacteria have been isolated, their application in bioremediation has been precluded due to unknown biosafety, poor PNP-mineralizing capacity, and lack of genome editing tools. In this study, a novel promoter engineering-based strategy is developed for creating efficient PNP-mineralizing bacteria. Initially, a complete PNP biodegradation pathway from Pseudomonas sp. strain WBC-3 was introduced into the genome of a biosafety and soil-dwelling bacterium Pseudomonas putida KT2440. Subsequently, five strong promoters were identified from P. putida KT2440 by transcriptome analysis and strength characterization, and each of the five promoters was independently inserted into upstream of the pnp operon in the KT2440 genome. Consequently, a P8 promoter-substituted mutant strain showed the highest PNP degradation rate and strong tolerance against high concentrations of PNP. Furthermore, when using P8 promoter to regulate the transcription of all PNP degradation genes pnpABCDEF, the complete and efficient PNP mineralization was demonstrated by stable isotope 13C-labeled PNP transformation assay. Additionally, the finally constructed KTU-P8pnp can be monitored using integrated GFP on chromosome. This strategy of a combination of pathway construction and promoter engineering should open new avenues for creating efficient degraders for bioremediation.
Collapse
Affiliation(s)
- Kaiyue Huo
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yujie Liu
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Rui Huang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yiting Zhang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Honglu Liu
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - You Che
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892, USA.
| | - Chao Yang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
8
|
Tong T, Chen X, Hu G, Wang XL, Liu GQ, Liu L. Engineering microbial metabolic energy homeostasis for improved bioproduction. Biotechnol Adv 2021; 53:107841. [PMID: 34610353 DOI: 10.1016/j.biotechadv.2021.107841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/25/2021] [Accepted: 09/28/2021] [Indexed: 10/20/2022]
Abstract
Metabolic energy (ME) homeostasis is essential for the survival and proper functioning of microbial cell factories. However, it is often disrupted during bioproduction because of inefficient ME supply and excessive ME consumption. In this review, we propose strategies, including reinforcement of the capacity of ME-harvesting systems in autotrophic microorganisms; enhancement of the efficiency of ME-supplying pathways in heterotrophic microorganisms; and reduction of unessential ME consumption by microbial cells, to address these issues. This review highlights the potential of biotechnology in the engineering of microbial ME homeostasis and provides guidance for the higher efficient bioproduction of microbial cell factories.
Collapse
Affiliation(s)
- Tian Tong
- Hunan Provincial Key Laboratory for Forestry Biotechnology, Central South University of Forestry and Technology, Changsha 410004, China; International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Guipeng Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Xiao-Ling Wang
- Hunan Provincial Key Laboratory for Forestry Biotechnology, Central South University of Forestry and Technology, Changsha 410004, China; International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry and Technology, Changsha 410004, China
| | - Gao-Qiang Liu
- Hunan Provincial Key Laboratory for Forestry Biotechnology, Central South University of Forestry and Technology, Changsha 410004, China; International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
9
|
Tran KM, Lee HM, Thai TD, Shen J, Eyun SI, Na D. Synthetically engineered microbial scavengers for enhanced bioremediation. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126516. [PMID: 34218189 DOI: 10.1016/j.jhazmat.2021.126516] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Microbial bioremediation has gained attention as a cheap, efficient, and sustainable technology to manage the increasing environmental pollution. Since microorganisms in nature are not evolved to degrade pollutants, there is an increasing demand for developing safer and more efficient pollutant-scavengers for enhanced bioremediation. In this review, we introduce the strategies and technologies developed in the field of synthetic biology and their applications to the construction of microbial scavengers with improved efficiency of biodegradation while minimizing the impact of genetically engineered microbial scavengers on ecosystems. In addition, we discuss recent achievements in the biodegradation of fastidious pollutants, greenhouse gases, and microplastics using engineered microbial scavengers. Using synthetic microbial scavengers and multidisciplinary technologies, toxic pollutants could be more easily eliminated, and the environment could be more efficiently recovered.
Collapse
Affiliation(s)
- Kha Mong Tran
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyang-Mi Lee
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Thi Duc Thai
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Junhao Shen
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Seong-Il Eyun
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Dokyun Na
- Department of Biomedical Engineering, Chung-Ang University, Seoul 06974, Republic of Korea.
| |
Collapse
|
10
|
Phale PS, Mohapatra B, Malhotra H, Shah BA. Eco-physiological portrait of a novel Pseudomonas sp. CSV86: an ideal host/candidate for metabolic engineering and bioremediation. Environ Microbiol 2021; 24:2797-2816. [PMID: 34347343 DOI: 10.1111/1462-2920.15694] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 11/30/2022]
Abstract
Pseudomonas sp. CSV86, an Indian soil isolate, degrades wide range of aromatic compounds like naphthalene, benzoate and phenylpropanoids, amongst others. Isolate displays the unique and novel property of preferential utilization of aromatics over glucose and co-metabolizes them with organic acids. Interestingly, as compared to other Pseudomonads, strain CSV86 harbours only high-affinity glucokinase pathway (and absence of low-affinity oxidative route) for glucose metabolism. Such lack of gluconate loop might be responsible for the novel phenotype of preferential utilization of aromatics. The genome analysis and comparative functional mining indicated a large genome (6.79 Mb) with significant enrichment of regulators, transporters as well as presence of various secondary metabolite production clusters, suggesting its eco-physiological and metabolic versatility. Strain harbours various integrative conjugative elements (ICEs) and genomic islands, probably acquired through horizontal gene transfer events, leading to genome mosaicity and plasticity. Naphthalene degradation genes are arranged as regulonic clusters and found to be part of ICECSV86nah . Various eco-physiological properties and absence of major pathogenicity and virulence factors (risk group-1) in CSV86 suggest it to be an ideal candidate for bioremediation. Further, strain can serve as an ideal chassis for metabolic engineering to degrade various xenobiotics preferentially over simple carbon sources for efficient remediation.
Collapse
Affiliation(s)
- Prashant S Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Mumbai, Maharashtra, 400076, India
| | - Balaram Mohapatra
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Mumbai, Maharashtra, 400076, India
| | - Harshit Malhotra
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Mumbai, Maharashtra, 400076, India
| | - Bhavik A Shah
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Mumbai, Maharashtra, 400076, India
| |
Collapse
|
11
|
Yu F, Zhao X, Wang Z, Liu L, Yi L, Zhou J, Li J, Chen J, Du G. Recent Advances in the Physicochemical Properties and Biotechnological Application of Vitreoscilla Hemoglobin. Microorganisms 2021; 9:microorganisms9071455. [PMID: 34361891 PMCID: PMC8306070 DOI: 10.3390/microorganisms9071455] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/03/2021] [Accepted: 07/04/2021] [Indexed: 11/16/2022] Open
Abstract
Vitreoscilla hemoglobin (VHb), the first discovered bacterial hemoglobin, is a soluble heme-binding protein with a faster rate of oxygen dissociation. Since it can enhance cell growth, product synthesis and stress tolerance, VHb has been widely applied in the field of metabolic engineering for microorganisms, plants, and animals. Especially under oxygen-limited conditions, VHb can interact with terminal oxidase to deliver enough oxygen to achieve high-cell-density fermentation. In recent years, with the development of bioinformatics and synthetic biology, several novel physicochemical properties and metabolic regulatory effects of VHb have been discovered and numerous strategies have been utilized to enhance the expression level of VHb in various hosts, which greatly promotes its applications in biotechnology. Thus, in this review, the new information regarding structure, function and expressional tactics for VHb is summarized to understand its latest applications and pave a new way for the future improvement of biosynthesis for other products.
Collapse
Affiliation(s)
- Fei Yu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (F.Y.); (Z.W.); (L.L.); (L.Y.); (J.Z.); (J.L.); (J.C.)
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Xinrui Zhao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (F.Y.); (Z.W.); (L.L.); (L.Y.); (J.Z.); (J.L.); (J.C.)
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Correspondence: (X.Z.); (G.D.)
| | - Ziwei Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (F.Y.); (Z.W.); (L.L.); (L.Y.); (J.Z.); (J.L.); (J.C.)
| | - Luyao Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (F.Y.); (Z.W.); (L.L.); (L.Y.); (J.Z.); (J.L.); (J.C.)
| | - Lingfeng Yi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (F.Y.); (Z.W.); (L.L.); (L.Y.); (J.Z.); (J.L.); (J.C.)
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (F.Y.); (Z.W.); (L.L.); (L.Y.); (J.Z.); (J.L.); (J.C.)
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (F.Y.); (Z.W.); (L.L.); (L.Y.); (J.Z.); (J.L.); (J.C.)
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (F.Y.); (Z.W.); (L.L.); (L.Y.); (J.Z.); (J.L.); (J.C.)
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (F.Y.); (Z.W.); (L.L.); (L.Y.); (J.Z.); (J.L.); (J.C.)
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Correspondence: (X.Z.); (G.D.)
| |
Collapse
|
12
|
Biodegradation of aromatic pollutants meets synthetic biology. Synth Syst Biotechnol 2021; 6:153-162. [PMID: 34278013 PMCID: PMC8260767 DOI: 10.1016/j.synbio.2021.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/24/2021] [Accepted: 06/03/2021] [Indexed: 02/02/2023] Open
Abstract
Ubiquitously distributed microorganisms are natural decomposers of environmental pollutants. However, because of continuous generation of novel recalcitrant pollutants due to human activities, it is difficult, if not impossible, for microbes to acquire novel degradation mechanisms through natural evolution. Synthetic biology provides tools to engineer, transform or even re-synthesize an organism purposefully, accelerating transition from unable to able, inefficient to efficient degradation of given pollutants, and therefore, providing new solutions for environmental bioremediation. In this review, we described the pipeline to build chassis cells for the treatment of aromatic pollutants, and presented a proposal to design microbes with emphasis on the strategies applied to modify the target organism at different level. Finally, we discussed challenges and opportunities for future research in this field.
Collapse
|
13
|
Zhao Y, Che Y, Zhang F, Wang J, Gao W, Zhang T, Yang C. Development of an efficient pathway construction strategy for rapid evolution of the biodegradation capacity of Pseudomonas putida KT2440 and its application in bioremediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143239. [PMID: 33158512 DOI: 10.1016/j.scitotenv.2020.143239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/11/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
In this work, we developed an efficient pathway construction strategy, consisting of DNA assembler-assisted pathway assembly and counterselection system-based chromosomal integration, for the rapid and efficient integration of synthetic biodegradation pathways into the chromosome of Pseudomonas putida KT2440. Using this strategy, we created a novel degrader capable of complete mineralization of γ-hexachlorocyclohexane (γ-HCH) and 1,2,3-trichloropropane (TCP) by integrating γ-HCH and TCP biodegradation pathways into the chromosome of P. putida KT2440. Furthermore, the chromosomal integration efficiencies of γ-HCH and TCP biodegradation pathways were improved to 50% and 41.6% in P. putida KT2440, respectively, by the inactivation of a type I DNA restriction-modification system. The currently developed pathway construction strategy coupled with the mutant KTUΔhsdRMS will facilitate implantation of heterologous catabolic pathways into the chromosome for rapid evolution of the biodegradation capacity of P. putida. More importantly, the successful removal of γ-HCH (10 mg/kg soil) and TCP (0.2 mM) from soil and wastewater within 14 days, respectively, highlighted the potential of the novel degrader for in situ bioremediation of γ-HCH- and TCP-contaminated sites. Moreover, chromosomal integration of gfp made the degrader to be monitored easily during bioremediation. In the future, this strategy can be expanded to a broad range of bacterial species for widespread applications in bioremediation.
Collapse
Affiliation(s)
- Yuxin Zhao
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - You Che
- Environmental Microbiome Engineering and Biotechnology Laboratory, The University of Hong Kong, Hong Kong
| | - Fang Zhang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jiacheng Wang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Weixia Gao
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Life Sciences, Tianjin University of Science and Technology, Tianjin, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, The University of Hong Kong, Hong Kong
| | - Chao Yang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
14
|
Li J, Ye BC. Metabolic engineering of Pseudomonas putida KT2440 for high-yield production of protocatechuic acid. BIORESOURCE TECHNOLOGY 2021; 319:124239. [PMID: 33254462 DOI: 10.1016/j.biortech.2020.124239] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 06/12/2023]
Abstract
Protocatechuic acid (PCA) has been widely utilized in conventional pharmaceutical, cosmetic and functional food industries. Currently, chemical synthesis and solvent extraction are the main methods for commercial production, indicating several disadvantages. In this study, we developed a method for the biosynthesis of PCA in Pseudomonas putida KT2440 in high yield. First, we developed constitutive promoters with different expression intensities for fine-tuned gene expression. Second, we improved the biosynthesis of "natural" PCA in P. putida KT2440 via multilevel metabolic engineering strategies: overexpression of rate-limiting enzymes, removal of negative regulators, attenuation of pathway competition, and enhancement of precursor supply. Finally, by further bioprocess engineering efforts, the best-producing strain reached a titer of 12.5 g/L PCA from glucose at 72 h in a shake flask and 21.7 g/L in fed-batch fermentation without antibiotic pressure. This was the highest PCA titer from glucose using metabolically engineered microbial cell factories reported to date.
Collapse
Affiliation(s)
- Jin Li
- Laboratory of Biosystems and Microanalysis, Institute of Engineering Biology and Health, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bang-Ce Ye
- Laboratory of Biosystems and Microanalysis, Institute of Engineering Biology and Health, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| |
Collapse
|
15
|
Maucourt B, Vuilleumier S, Bringel F. Transcriptional regulation of organohalide pollutant utilisation in bacteria. FEMS Microbiol Rev 2020; 44:189-207. [PMID: 32011697 DOI: 10.1093/femsre/fuaa002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 01/31/2020] [Indexed: 12/13/2022] Open
Abstract
Organohalides are organic molecules formed biotically and abiotically, both naturally and through industrial production. They are usually toxic and represent a health risk for living organisms, including humans. Bacteria capable of degrading organohalides for growth express dehalogenase genes encoding enzymes that cleave carbon-halogen bonds. Such bacteria are of potential high interest for bioremediation of contaminated sites. Dehalogenase genes are often part of gene clusters that may include regulators, accessory genes and genes for transporters and other enzymes of organohalide degradation pathways. Organohalides and their degradation products affect the activity of regulatory factors, and extensive genome-wide modulation of gene expression helps dehalogenating bacteria to cope with stresses associated with dehalogenation, such as intracellular increase of halides, dehalogenase-dependent acid production, organohalide toxicity and misrouting and bottlenecks in metabolic fluxes. This review focuses on transcriptional regulation of gene clusters for dehalogenation in bacteria, as studied in laboratory experiments and in situ. The diversity in gene content, organization and regulation of such gene clusters is highlighted for representative organohalide-degrading bacteria. Selected examples illustrate a key, overlooked role of regulatory processes, often strain-specific, for efficient dehalogenation and productive growth in presence of organohalides.
Collapse
Affiliation(s)
- Bruno Maucourt
- Université de Strasbourg, UMR 7156 CNRS, Génétique Moléculaire, Génomique, Microbiologie, Strasbourg, France
| | - Stéphane Vuilleumier
- Université de Strasbourg, UMR 7156 CNRS, Génétique Moléculaire, Génomique, Microbiologie, Strasbourg, France
| | - Françoise Bringel
- Université de Strasbourg, UMR 7156 CNRS, Génétique Moléculaire, Génomique, Microbiologie, Strasbourg, France
| |
Collapse
|
16
|
George DM, Vincent AS, Mackey HR. An overview of anoxygenic phototrophic bacteria and their applications in environmental biotechnology for sustainable Resource recovery. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2020; 28:e00563. [PMID: 33304839 PMCID: PMC7714679 DOI: 10.1016/j.btre.2020.e00563] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/12/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022]
Abstract
Anoxygenic phototrophic bacteria (APB) are a phylogenetically diverse group of organisms that can harness solar energy for their growth and metabolism. These bacteria vary broadly in terms of their metabolism as well as the composition of their photosynthetic apparatus. Unlike oxygenic phototrophic bacteria such as algae and cyanobacteria, APB can use both organic and inorganic electron donors for light-dependent fixation of carbon dioxide without generating oxygen. Their versatile metabolism, ability to adapt in extreme conditions, low maintenance cost and high biomass yield make APB ideal for wastewater treatment, resource recovery and in the production of high value substances. This review highlights the advantages of APB over algae and cyanobacteria, and their applications in photo-bioelectrochemical systems, production of poly-β-hydroxyalkanoates, single-cell protein, biofertilizers and pigments. The ecology of ABP, their distinguishing factors, various physiochemical parameters governing the production of high-value substances and future directions of APB utilization are also discussed.
Collapse
Key Words
- ALA, 5-Aminolevulinic acid
- APB, Anoxygenic phototrophic bacteria
- Anoxygenic phototrophic bacteria (APB)
- BChl, Bacteriochlorophyll
- BES, Bioelectrochemical systems
- BPV, Biophotovoltaic
- BPh, Bacteriopheophytin
- Bacteriochlorophyll (BChl)
- Chl, Chlorophyll
- CoQ10, Coenzyme Q10
- DET, Direct electron transfer
- DNA, Deoxyribonucleic acid
- DO, Dissolved oxygen
- DXP, 1 deoxy-d-xylulose 5-phosphate
- FPP, Farnesyl pyrophosphate
- Fe-S, Iron-Sulfur
- GNSB, Green non sulfur bacteria
- GSB, Green sulfur bacteria
- IPP, Isopentenyl pyrophosphate isomerase
- LED, light emitting diode
- LH2, light-harvesting component II
- MFC, Microbial fuel cell
- MVA, Mevalonate
- PH3B, Poly-3-hydroxybutyrate
- PHA, Poly-β-hydroxyalkanoates
- PHB, Poly-β-hydroxybutyrate
- PNSB, Purple non sulfur bacteria
- PPB, Purple phototrophic bacteria
- PSB, Purple sulfur bacteria
- Pheo-Q, Pheophytin-Quinone
- Photo-BES, Photosynthetic bioelectrochemical systems
- Photo-MFC, Photo microbial fuel cell
- Poly-β-hydroxyalkanoates (PHA)
- Purple phototrophic bacteria (PPB)
- Resource recovery
- RuBisCO, Ribulose-1,5-biphosphate carboxylase/oxygenase
- SCP, Single-cell protein
- SOB, Sulfide oxidizing bacteria
- SRB, Sulfate reducing bacteria
- Single-cell proteins (SCP)
Collapse
Affiliation(s)
- Drishya M. George
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Annette S. Vincent
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- Biological Sciences Program, Carnegie Mellon University in Qatar, Qatar
| | - Hamish R. Mackey
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| |
Collapse
|
17
|
Fan X, Zhang Y, Zhao F, Liu Y, Zhao Y, Wang S, Liu R, Yang C. Genome reduction enhances production of polyhydroxyalkanoate and alginate oligosaccharide in Pseudomonas mendocina. Int J Biol Macromol 2020; 163:2023-2031. [DOI: 10.1016/j.ijbiomac.2020.09.067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/11/2020] [Accepted: 09/10/2020] [Indexed: 12/15/2022]
|
18
|
Zheng H, Yang SJ, Zheng YC, Cui Y, Zhang Z, Zhong JY, Zhou J. Electrostatic Effect of Functional Surfaces on the Activity of Adsorbed Enzymes: Simulations and Experiments. ACS APPLIED MATERIALS & INTERFACES 2020; 12:35676-35687. [PMID: 32649833 DOI: 10.1021/acsami.0c08080] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The efficient immobilization of haloalkane dehalogenase (DhaA) on carriers with retaining of its catalytic activity is essential for its application in environmental remediation. In this work, adsorption orientation and conformation of DhaA on different functional surfaces were investigated by computer simulations; meanwhile, the mechanism of varying the catalytic activity was also probed. The corresponding experiments were then carried out to verify the simulation results. (The simulations of DhaA on SAMs provided parallel insights into DhaA adsorption in carriers. Then, the theory-guided experiments were carried out to screen the best surface functional groups for DhaA immobilization.) The electrostatic interaction was considered as the main impact factor for the regulation of enzyme orientation, conformation, and enzyme bioactivity during DhaA adsorption. The synergy of overall conformation, enzyme substrate tunnel structural parameters, and distance between catalytic active sites and surfaces codetermined the catalytic activity of DhaA. Specifically, it was found that the positively charged surface with suitable surface charge density was helpful for the adsorption of DhaA and retaining its conformation and catalytic activity and was favorable for higher enzymatic catalysis efficiency in haloalkane decomposition and environmental remediation. The neutral, negatively charged surfaces and positively charged surfaces with high surface charge density always caused relatively larger DhaA conformation change and decreased catalytic activity. This study develops a strategy using a combination of simulation and experiment, which can be essential for guiding the rational design of the functionalization of carriers for enzyme adsorption, and provides a practical tool to rationally screen functional groups for the optimization of adsorbed enzyme functions on carriers. More importantly, the strategy is general and can be applied to control behaviors of different enzymes on functional carrier materials.
Collapse
Affiliation(s)
- He Zheng
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, P. R. China
| | - Sheng-Jiang Yang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Yong-Chao Zheng
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, P. R. China
| | - Yan Cui
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, P. R. China
| | - Zhe Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, P. R. China
| | - Jin-Yi Zhong
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, P. R. China
| | - Jian Zhou
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
19
|
Oliveira GHDD, Schneider ALDS, Vo MT, Ramsay JA, Ramsay BA. Heterologous Expression of Vitreoscilla Hemoglobin in Pseudomonas putida KT2440 for the Production of mcl-PHA in Carbon-Limited Fermentations. Ind Biotechnol (New Rochelle N Y) 2020. [DOI: 10.1089/ind.2019.0023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
| | | | - Minh Tri Vo
- Chemical Engineering, Queen's University, Kingston, ON, Canada
| | | | | |
Collapse
|
20
|
Liang P, Zhang Y, Xu B, Zhao Y, Liu X, Gao W, Ma T, Yang C, Wang S, Liu R. Deletion of genomic islands in the Pseudomonas putida KT2440 genome can create an optimal chassis for synthetic biology applications. Microb Cell Fact 2020; 19:70. [PMID: 32188438 PMCID: PMC7081699 DOI: 10.1186/s12934-020-01329-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/12/2020] [Indexed: 01/05/2023] Open
Abstract
Background Genome streamlining is a feasible strategy for constructing an optimum microbial chassis for synthetic biology applications. Genomic islands (GIs) are usually regarded as foreign DNA sequences, which can be obtained by horizontal gene transfer among microorganisms. A model strain Pseudomonas putida KT2440 has broad applications in biocatalysis, biotransformation and biodegradation. Results In this study, the identified GIs in P. putida KT2440 accounting for 4.12% of the total genome size were deleted to generate a series of genome-reduced strains. The mutant KTU-U13 with the largest deletion was advantageous over the original strain KTU in several physiological characteristics evaluated. The mutant KTU-U13 showed high plasmid transformation efficiency and heterologous protein expression capacity compared with the original strain KTU. The metabolic phenotype analysis showed that the types of carbon sources utilized by the mutant KTU-U13 and the utilization capabilities for certain carbon sources were increased greatly. The polyhydroxyalkanoate (PHA) yield and cell dry weight of the mutant KTU-U13 were improved significantly compared with the original strain KTU. The chromosomal integration efficiencies for the γ-hexachlorocyclohexane (γ-HCH) and 1,2,3-trichloropropane (TCP) biodegradation pathways were improved greatly when using the mutant KTU-U13 as the recipient cell and enhanced degradation of γ-HCH and TCP by the mutant KTU-U13 was also observed. The mutant KTU-U13 was able to stably express a plasmid-borne zeaxanthin biosynthetic pathway, suggesting the excellent genetic stability of the mutant. Conclusions These desirable traits make the GIs-deleted mutant KTU-U13 an optimum chassis for synthetic biology applications. The present study suggests that the systematic deletion of GIs in bacteria may be a useful approach for generating an optimal chassis for the construction of microbial cell factories.
Collapse
Affiliation(s)
- Peixin Liang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Yiting Zhang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Bo Xu
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Yuxin Zhao
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Xiangsheng Liu
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Weixia Gao
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Ting Ma
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Chao Yang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin, 300071, China.
| | - Shufang Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| | - Ruihua Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
21
|
Janssen DB, Stucki G. Perspectives of genetically engineered microbes for groundwater bioremediation. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:487-499. [PMID: 32095798 DOI: 10.1039/c9em00601j] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Biodegradation is the main process for the removal of organic compounds from the environment, but proceeds slowly for many synthetic chemicals of environmental concern. Research on microbial biodegradation pathways revealed that recalcitrance is - among other factors - caused by biochemical blockages resulting in dysfunctional catabolic routes. This has raised interest in the possibility to construct microorganisms with improved catabolic activities by genetic engineering. Although this goal has been pursued for decades, no full-scale applications have emerged. This perspective explores the lagging implementation of genetically engineered microorganisms in practical bioremediation. The major technical and scientific issues are illustrated by comparing two examples, that of 1,2-dichloroethane where successful full-scale application of pump-and-treat biotreatment processes has been achieved, and 1,2,3-trichloropropane, for which protein and genetic engineering yielded effective bacterial cultures that still await application.
Collapse
Affiliation(s)
- Dick B Janssen
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands.
| | | |
Collapse
|
22
|
Kampers LFC, Volkers RJM, Martins dos Santos VAP. Pseudomonas putida KT2440 is HV1 certified, not GRAS. Microb Biotechnol 2019; 12:845-848. [PMID: 31199068 PMCID: PMC6680625 DOI: 10.1111/1751-7915.13443] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 05/16/2019] [Indexed: 01/13/2023] Open
Abstract
Pseudomonas putida is rapidly becoming a workhorse for industrial production due to its metabolic versatility, genetic accessibility and stress-resistance properties. The P. putida strain KT2440 is often described as Generally Regarded as Safe, or GRAS, indicating the strain is safe to use as food additive. This description is incorrect. P. putida KT2440 is classified by the FDA as HV1 certified, indicating it is safe to use in a P1 or ML1 environment.
Collapse
Affiliation(s)
- Linde F. C. Kampers
- Laboratory of Systems and Synthetic BiologyWageningen University and Research CentreStippeneng 46708WageningenThe Netherlands
| | - Rita J. M. Volkers
- Laboratory of Systems and Synthetic BiologyWageningen University and Research CentreStippeneng 46708WageningenThe Netherlands
| | - Vitor A. P. Martins dos Santos
- Laboratory of Systems and Synthetic BiologyWageningen University and Research CentreStippeneng 46708WageningenThe Netherlands
- Lifeglimmer GmbHMarkelstr. 3812163BerlinGermany
| |
Collapse
|
23
|
Wang F, Song T, Jiang H, Pei C, Huang Q, Xi H. Bacillus subtilis Spore Surface Display of Haloalkane Dehalogenase DhaA. Curr Microbiol 2019; 76:1161-1167. [PMID: 31278426 DOI: 10.1007/s00284-019-01723-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 06/19/2019] [Indexed: 12/18/2022]
Abstract
The haloalkane dehalogenase DhaA can degrade sulfur mustard (2,2'-dichlorethyl sulfide; also known by its military designation HD) in a rapid and environmentally safe manner. However, DhaA is sensitive to temperature and pH, which limits its applications in natural or harsh environments. Spore surface display technology using resistant spores as a carrier to ensure enzymatic activity can reduce production costs and extend the range of applications of DhaA. To this end, we cloned recombinant Bacillus subtilis spores pHY300PLK-cotg-dhaa-6his/DB104(FH01) for the delivery of DhaA from Rhodococcus rhodochrous NCIMB 13064. A dot blotting showed that the fusion protein CotG-linker-DhaA accounted for 0.41% ± 0.03% (P < 0.01) of total spore coat proteins. Immunofluorescence analyses confirmed that DhaA was displayed on the spore surface. The hydrolyzing activity of DhaA displayed on spores towards the HD analog 2-chloroethyl ethylsulfide was 1.74 ± 0.06 U/mL (P < 0.01), with a specific activity was 0.34 ± 0.04 U/mg (P < 0.01). This is the first demonstration that DhaA displayed on the surface of B. subtilis spores retains enzymatic activity, which suggests that it can be used effectively in real-world applications including bioremediation of contaminated environments.
Collapse
Affiliation(s)
- Fuli Wang
- Research Institute of Chemical Defense, Academy of Military Sciences, Beijing, 102205, People's Republic of China.,State Key Laboratory of NBC Protection for Civilian, Academy of Military Sciences, Beijing, 102205, People's Republic of China
| | - Tianyu Song
- Research Institute of Chemical Defense, Academy of Military Sciences, Beijing, 102205, People's Republic of China.,State Key Laboratory of NBC Protection for Civilian, Academy of Military Sciences, Beijing, 102205, People's Republic of China
| | - Hui Jiang
- Research Institute of Chemical Defense, Academy of Military Sciences, Beijing, 102205, People's Republic of China.,State Key Laboratory of NBC Protection for Civilian, Academy of Military Sciences, Beijing, 102205, People's Republic of China
| | - Chengxin Pei
- Research Institute of Chemical Defense, Academy of Military Sciences, Beijing, 102205, People's Republic of China.,State Key Laboratory of NBC Protection for Civilian, Academy of Military Sciences, Beijing, 102205, People's Republic of China
| | - Qibin Huang
- Research Institute of Chemical Defense, Academy of Military Sciences, Beijing, 102205, People's Republic of China.,State Key Laboratory of NBC Protection for Civilian, Academy of Military Sciences, Beijing, 102205, People's Republic of China
| | - Hailing Xi
- Research Institute of Chemical Defense, Academy of Military Sciences, Beijing, 102205, People's Republic of China. .,State Key Laboratory of NBC Protection for Civilian, Academy of Military Sciences, Beijing, 102205, People's Republic of China.
| |
Collapse
|
24
|
Atashgahi S, Liebensteiner MG, Janssen DB, Smidt H, Stams AJM, Sipkema D. Microbial Synthesis and Transformation of Inorganic and Organic Chlorine Compounds. Front Microbiol 2018; 9:3079. [PMID: 30619161 PMCID: PMC6299022 DOI: 10.3389/fmicb.2018.03079] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 11/29/2018] [Indexed: 12/26/2022] Open
Abstract
Organic and inorganic chlorine compounds are formed by a broad range of natural geochemical, photochemical and biological processes. In addition, chlorine compounds are produced in large quantities for industrial, agricultural and pharmaceutical purposes, which has led to widespread environmental pollution. Abiotic transformations and microbial metabolism of inorganic and organic chlorine compounds combined with human activities constitute the chlorine cycle on Earth. Naturally occurring organochlorines compounds are synthesized and transformed by diverse groups of (micro)organisms in the presence or absence of oxygen. In turn, anthropogenic chlorine contaminants may be degraded under natural or stimulated conditions. Here, we review phylogeny, biochemistry and ecology of microorganisms mediating chlorination and dechlorination processes. In addition, the co-occurrence and potential interdependency of catabolic and anabolic transformations of natural and synthetic chlorine compounds are discussed for selected microorganisms and particular ecosystems.
Collapse
Affiliation(s)
- Siavash Atashgahi
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | | | - Dick B. Janssen
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Alfons J. M. Stams
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
25
|
Volke DC, Nikel PI. Getting Bacteria in Shape: Synthetic Morphology Approaches for the Design of Efficient Microbial Cell Factories. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201800111] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Daniel C. Volke
- The Novo Nordisk Foundation Center for Biosustainability; Technical University of Denmark; Kemitorvet 2800 Kgs. Lyngby Denmark
| | - Pablo I. Nikel
- The Novo Nordisk Foundation Center for Biosustainability; Technical University of Denmark; Kemitorvet 2800 Kgs. Lyngby Denmark
| |
Collapse
|
26
|
Gong T, Xu X, Dang Y, Kong A, Wu Y, Liang P, Wang S, Yu H, Xu P, Yang C. An engineered Pseudomonas putida can simultaneously degrade organophosphates, pyrethroids and carbamates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 628-629:1258-1265. [PMID: 30045547 DOI: 10.1016/j.scitotenv.2018.02.143] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/11/2018] [Accepted: 02/12/2018] [Indexed: 05/21/2023]
Abstract
Agricultural soils are often polluted with a variety of pesticides. Unfortunately, natural microorganisms lack the capacity to simultaneously degrade different types of pesticides. Currently, synthetic biology provides powerful approaches to create versatile degraders. In this work, a biosafety strain Pseudomonas putida KT2440 was engineered for simultaneous degradation of organophosphates, pyrethroids, and carbamates, enhanced oxygen-sequestering capability, and real-time monitoring by targeted insertion of four pesticide-degrading genes, vgb, and gfp into the chromosome using a scarless genome-editing method. The resulting recombinant strain, designated as P. putida KTUe, could completely degrade 50mg/L methyl parathion, chlorpyrifos, fenpropathrin, cypermethrin, carbofuran and carbaryl within 30h when incubated in M9 minimal medium supplemented with 20g/L glucose. In soil remediation studies, all the tested six pesticides (50mg/kg soil each) were completely removed in soils inoculated with P. putida KTUe within 15days. Moreover, Vitreoscilla hemoglobin (VHb)-expressing P. putida KTUe grew faster than P. putida KTUd without VHb expression under oxygen-limited conditions, suggesting that VHb may enhance the capability of this recombinant strain to sequester oxygen. Furthermore, the green fluorescence was observed on the P. putida KTUe cells, suggesting that this green fluorescent protein (GFP)-marked strain may be tracked by fluorescence during bioremediation. Therefore, this recombinant strain may serve as a promising candidate for in situ bioremediation of soil contaminated with multiple pesticides. This work not only underscores the value of P. putida KT2440 as an ideal host for bioremediation but also highlights the power of synthetic biology for expanding the degradation capability of natural degraders.
Collapse
Affiliation(s)
- Ting Gong
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin 300071, China
| | - Xiaoqing Xu
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin 300071, China
| | - Yulei Dang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin 300071, China
| | - Annie Kong
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin 300071, China
| | - Yunbo Wu
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin 300071, China
| | - Peixin Liang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin 300071, China
| | - Shufang Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Huilei Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chao Yang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin 300071, China.
| |
Collapse
|
27
|
Liu J, Zhang X, Yang M, Hu M, Zhong G. Toxicity assessment of chlorpyrifos-degrading fungal bio-composites and their environmental risks. Sci Rep 2018; 8:2152. [PMID: 29391422 PMCID: PMC5794795 DOI: 10.1038/s41598-018-20265-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 01/16/2018] [Indexed: 11/09/2022] Open
Abstract
Bioremediation techniques coupling with functional microorganisms have emerged as the most promising approaches for in-situ elimination of pesticide residue. However, the environmental safety of bio-products based on microorganisms or engineered enzymes was rarely known. Here, we described the toxicity assessment of two previously fabricated fungal bio-composites which were used for the biodegradation of chlorpyrifos, to clarify their potential risks on the environment and non-target organisms. Firstly, the acute and chronic toxicity of prepared bio-composites were evaluated using mice and rabbits, indicating neither acute nor chronic effect was induced via short-term or continuous exposure. Then, the acute mortality on zebrafish was investigated, which implied the application of fungal bio-composites had no lethal risk on aquatic organisms. Meanwhile, the assessment on soil organic matters suggested that no threat was posed to soil quality. Finally, by monitoring, the germination of cabbage was not affected by the exposure to two bio-products. Therefore, the application of fungal bio-composites for chlorpyrifos elimination cannot induce toxic risk to the environment and non-target organisms, which insured the safety of these engineered bio-products for realistic management of pesticide residue, and provided new insights for further development of bioremediation techniques based on functional microorganisms.
Collapse
Affiliation(s)
- Jie Liu
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, P.R. China
| | - Xiaoying Zhang
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, P.R. China
| | - Mengran Yang
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, P.R. China
| | - Meiying Hu
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, P.R. China
| | - Guohua Zhong
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, P.R. China.
| |
Collapse
|