1
|
Huang Y, Huang L, Cheng M, Li C, Zhou X, Ullah A, Sarfraz S, Khatab A, Xie G. Progresses in biosynthesis pathway, regulation mechanism and potential application of 2-acetyl-1-pyrroline in fragrant rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109047. [PMID: 39153390 DOI: 10.1016/j.plaphy.2024.109047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
The formation of rice aroma is a complex process that is influenced by genetic and environmental factors. More than 500 fragrance compounds have been documented in fragrant rice, among which 2-AP dominates the aroma of rice. This paper introduced the identification of OsBadh2 in the biosynthesis of 2-AP in rice. Then, non-enzymatic and enzymatic pathways of the 2-AP biosynthesis have been comprehensively investigated. In detail, 2-AP biosynthesis-associated enzyme, such as OsBADH2, OsP5CS, OsGAD, OsGAPDH, OsProDH, OsOAT, OsODC and OsDAO, have been summarized, while MG and fatty acids are also implicated in modulating the biosynthesis of 2-AP by providing the acetyl groups. Moreover, extensive collections of traditional fragrant rice varieties have been collated, together with the OsBadh2 haplotypes of 312 fragrant rice germplasm in China. And finally, genetic engineering of OsBadh2 and other genes in the 2-AP biosynthesis to develop fragrant rice are discussed.
Collapse
Affiliation(s)
- Yajing Huang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lei Huang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; The People's Government of Zougang Town, Xiaochang County, Xiaogan City, Hubei, 432910, China
| | - Maozhi Cheng
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chuanhao Li
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaofeng Zhou
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Aman Ullah
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Samina Sarfraz
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ahmed Khatab
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Rice Research and Training Center, 33717, Sakha, Kafr El-Sheikh, Egypt
| | - Guosheng Xie
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
2
|
Zeng Y, Nong B, Xia X, Zhang Z, Wang Y, Xu Y, Feng R, Guo H, Liang Y, Chen C, Liang S, Jiang X, Yang X, Li D. Metabolome and Transcriptome Unveil the Correlated Metabolites and Transcripts with 2-acetyl-1-pyrroline in Fragrant Rice. Int J Mol Sci 2024; 25:8207. [PMID: 39125774 PMCID: PMC11311731 DOI: 10.3390/ijms25158207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/17/2024] [Accepted: 07/21/2024] [Indexed: 08/12/2024] Open
Abstract
Fragrance is a valuable trait in rice varieties, with its aroma significantly influencing consumer preference. In this study, we conducted comprehensive metabolome and transcriptome analyses to elucidate the genetic and biochemical basis of fragrance in the Shangsixiangnuo (SSXN) variety, a fragrant indica rice cultivated in Guangxi, China. Through sensory evaluation and genetic analysis, we confirmed SSXN as strongly fragrant, with an 806 bp deletion in the BADH2 gene associated with fragrance production. In the metabolome analysis, a total of 238, 233, 105 and 60 metabolic compounds exhibited significant changes at the seedling (S), reproductive (R), filling (F), and maturation (M) stages, respectively. We identified four compounds that exhibited significant changes in SSXN across all four development stages. Our analyses revealed a significant upregulation of 2-acetyl-1-pyrroline (2AP), the well-studied aromatic compound, in SSXN compared to the non-fragrant variety. Additionally, correlation analysis identified several metabolites strongly associated with 2AP, including ethanone, 1-(1H-pyrrol-2-yl)-, 1H-pyrrole, and pyrrole. Furthermore, Weighted Gene Co-expression Network Analysis (WGCNA) analysis highlighted the magenta and yellow modules as particularly enriched in aroma-related metabolites, providing insights into the complex aromatic compounds underlying the fragrance of rice. In the transcriptome analysis, a total of 5582, 5506, 4965, and 4599 differential expressed genes (DEGs) were identified across the four developmental stages, with a notable enrichment of the common pathway amino sugar and nucleotide sugar metabolism in all stages. In our correlation analysis between metabolome and transcriptome data, the top three connected metabolites, phenol-, 3-amino-, and 2AP, along with ethanone, 1-(1H-pyrrol-2-yl)-, exhibited strong associations with transcripts, highlighting their potential roles in fragrance biosynthesis. Additionally, the downregulated expression of the P4H4 gene, encoding a procollagen-proline dioxygenase that specifically targets proline, in SSXN suggests its involvement in proline metabolism and potentially in aroma formation pathways. Overall, our study provides comprehensive insights into the genetic and biochemical mechanisms underlying fragrance production in rice, laying the foundation for further research aimed at enhancing fragrance quality in rice breeding programs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Xinghai Yang
- Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Science, Nanning 530007, China; (Y.Z.); (B.N.); (X.X.); (Z.Z.); (Y.W.); (Y.X.); (R.F.); (H.G.); (Y.L.); (C.C.); (S.L.); (X.J.)
| | - Danting Li
- Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Science, Nanning 530007, China; (Y.Z.); (B.N.); (X.X.); (Z.Z.); (Y.W.); (Y.X.); (R.F.); (H.G.); (Y.L.); (C.C.); (S.L.); (X.J.)
| |
Collapse
|
3
|
Imran M, Shafiq S, Ashraf U, Qi J, Mo Z, Tang X. Biosynthesis of 2-Acetyl-1-pyrroline in Fragrant Rice: Recent Insights into Agro-management, Environmental Factors, and Functional Genomics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4201-4215. [PMID: 36880506 DOI: 10.1021/acs.jafc.2c07934] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Rice is a staple food for more than half of the world's population, and rice fragrance is a key quality attribute which is highly desired by consumers and attracts premium prices in the international market. There are around 200 volatile compounds involved in rice fragrance, but 2-acetyl-1-pyrroline (2-AP) has been considered a master regulator of aroma in fragrant rice. Consequently, efforts were made to increase the 2-AP contents in the grain by managing agronomical practices or by using modern functional genomic tools, which successfully converted nonfragrant cultivars to fragrant rice. Furthermore, environmental factors were also reported to influence the 2-AP contents. However, a comprehensive analysis of 2-AP biosynthesis in response to agro-management practices, environmental factors, and the application of functional genomic tools for fragrant rice production was missing. In this Review, we summarize how micro/macronutrients, cultivation practices, amino acid precursors, growth regulators, and environmental factors, such as drought, salinity, light, and temperature, influence the 2-AP biosynthesis to modulate the aroma of fragrant rice. Furthermore, we also summarized the successful conversion of nonfragrant rice cultivars to fragrant rice using modern gene editing tools, such as RNAi, TALENS, and CRISPR-Cas9. Finally, we discussed and highlighted the future perspective and challenges related to the aroma of fragrant rice.
Collapse
Affiliation(s)
- Muhammad Imran
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou 510642, P. R. China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture, Guangzhou 510642, P. R. China
- Yingdong College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, P. R. China
| | - Sarfraz Shafiq
- Department of Anatomy and Cell Biology, University of Western Ontario, 1151 Richmond St., London, ON N6A5B8, Canada
| | - Umair Ashraf
- Department of Botany, Division of Science and Technology, University of Education, Lahore 54770, Pakistan
| | - Jianying Qi
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou 510642, P. R. China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture, Guangzhou 510642, P. R. China
| | - Zhaowen Mo
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou 510642, P. R. China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture, Guangzhou 510642, P. R. China
| | - Xiangru Tang
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou 510642, P. R. China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture, Guangzhou 510642, P. R. China
| |
Collapse
|
4
|
Metabolite Profiling of Wheat Response to Cultivar Improvement and Nitrogen Fertilizer. Metabolites 2023; 13:metabo13010107. [PMID: 36677032 PMCID: PMC9862063 DOI: 10.3390/metabo13010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/28/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Both genetic improvement and the application of N fertilizer increase the quality and yields of wheat. However, the molecular kinetics that underlies the differences between them are not well understood. In this study, we performed a non-targeted metabolomic analysis on wheat cultivars from different release years to comprehensively investigate the metabolic differences between cultivar and N treatments. The results revealed that the plant height and tiller number steadily decreased with increased ears numbers, whereas the grain number and weight increased with genetic improvement. Following the addition of N fertilizer, the panicle numbers and grain weights increased in an old cultivar, whereas the panicle number and grain number per panicle increased in a modern cultivar. For the 1950s to 2010s cultivar, the yield increases due to genetic improvements ranged from -1.9% to 96.7%, whereas that of N application ranged from 19.1% to 81.6%. Based on the untargeted metabolomics approach, the findings demonstrated that genetic improvements induced 1.4 to 7.4 times more metabolic alterations than N fertilizer supply. After the addition of N, 69.6%, 29.4%, and 33.3% of the differential metabolites were upregulated in the 1950s, 1980s, and 2010s cultivars, respectively. The results of metabolic pathway analysis of the identified differential metabolites via genetic improvement indicated enrichment in 1-2 KEGG pathways, whereas the application of N fertilizer enriched 2-4 pathways. Our results provide new insights into the molecular mechanisms of wheat quality and grain yield developments.
Collapse
|
5
|
Li L, Belloch C, Flores M. A comparative study of savory and toasted aromas in dry cured loins versus dry fermented sausages. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
A comparative HS-SPME/GC-MS-based metabolomics approach for discriminating selected japonica rice varieties from different regions of China in raw and cooked form. Food Chem 2022; 385:132701. [PMID: 35320761 DOI: 10.1016/j.foodchem.2022.132701] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 11/20/2022]
Abstract
Japonica rice is widely planted in different regions of China. Rice of different geographical origins may have substantially different economic values. In this study, An untargeted metabolomics based approach using headspace solid-phase microextraction coupled to gas chromatography-mass spectrometry (HS-SPME/GC-MS) was applied to distinguish 27 japonica rice varieties originated from South, Northern and Northeastern China in raw and cooked form, respectively. Orthogonal partial least-squares discriminant analysis (OPLS-DA) models exhibited good geographic discrimination. Sixteen and twenty-two volatiles were selected as the discriminant markers in raw and cooked rice, respectively. However, only hexanal, 3,5-octadien-2-one and 2-butyl-2-octenal were selected both in raw and cooked rice. Markers in raw rice mainly involved in terpenes, lipoxygenases, indole, and shikimate and benzoic acid pathways. Markers in cooked rice were mainly derived from lipid oxidation. The results provided a deeper understanding of volatiles variation of rice in China from different geographic origins.
Collapse
|
7
|
Bennett C, Sriyotai W, Wiratchan S, Semakul N, Mahatheeranont S. Determination of 2-Acetyl-1-pyrroline via a Color-Change Reaction Using Chromium Hexacarbonyl. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123957. [PMID: 35745080 PMCID: PMC9228320 DOI: 10.3390/molecules27123957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 11/17/2022]
Abstract
At present, there is no colorimetric method for the quantitation of the aroma compound 2-acetyl-1-pyrroline (2AP). A novel colorimetric method was developed for the determination of 2AP content using chromium hexacarbonyl (Cr(CO)6) as a reagent. The reaction of synthetic 2AP with chromium hexacarbonyl reagent solution in the presence of light produced a green product with an absorption maximum (λmax) at 623 nm. GC–MS was used to confirm the color-change reaction, which showed the loss of 2AP after the addition of Cr(CO)6. This novel method enables facile and cost-effective determination of 2AP in fragrant rice. A comparative analysis of fragrant and nonfragrant rice grain extracts showed that no color-change reaction occurred with the nonfragrant rice sample. A limit of detection (LOD) of 2.00 mg L−1 was determined by method validation with an effective linear concentration ranging from 5.00 to 60.00 mg L−1 of 2AP. The results obtained using the developed colorimetric method were consistent with those obtained by automated static headspace gas chromatography with nitrogen-phosphorus detection (SHS-GC–NPD).
Collapse
Affiliation(s)
- Chonlada Bennett
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (C.B.); (W.S.); (S.W.)
| | - Woraprapa Sriyotai
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (C.B.); (W.S.); (S.W.)
| | - Sirakorn Wiratchan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (C.B.); (W.S.); (S.W.)
| | - Natthawat Semakul
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (C.B.); (W.S.); (S.W.)
- Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (N.S.); or (S.M.)
| | - Sugunya Mahatheeranont
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (C.B.); (W.S.); (S.W.)
- Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (N.S.); or (S.M.)
| |
Collapse
|
8
|
Volatile fingerprints and biomarkers of Chinese fragrant and non-fragrant japonica rice before and after cooking obtained by untargeted GC/MS-based metabolomics. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Hui S, Li H, Mawia AM, Zhou L, Cai J, Ahmad S, Lai C, Wang J, Jiao G, Xie L, Shao G, Sheng Z, Tang S, Wang J, Wei X, Hu S, Hu P. Production of aromatic three-line hybrid rice using novel alleles of BADH2. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:59-74. [PMID: 34465003 PMCID: PMC8710899 DOI: 10.1111/pbi.13695] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 07/20/2021] [Accepted: 08/19/2021] [Indexed: 05/15/2023]
Abstract
Aroma is a key grain quality trait that directly influences the market price of rice globally. Loss of function of betaine aldehyde dehydrogenase 2 (OsBADH2) affects the biosynthesis of 2-acetyl-1-pyrroline (2-AP), which is responsible for aroma in fragrant rice. The current study was aimed at creating new alleles of BADH2 using CRISPR/Cas9 gene editing technology under the genetic background of the japonica Ningjing 1 (NJ1) and indica Huang Huazhan (HHZ) varieties. Sensory evaluation and analysis using headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) showed that the grains of the four homozygous T1 lines with new alleles of BADH2 (nj1-cr BADH2 -1, nj1-cr BADH2 -2, hhz-cr BADH2 -1 and hhz-cr BADH2 -2) produced moderate fragrance and had significantly increased 2-AP content compared with wild-types. Moreover, there were no significant differences in the amylose content and gelatinization temperature among the four lines with new alleles of BADH2 to the wild-types. Thereafter, we crossed the HHZ background new alleles of BADH2 with CMS line Taonong 1A (TN1A) to produce a three-line hybrid variety B-Tao-You-Xiangzhan (BTYXZ) with increased grain aroma. The 2-AP content in grains of the improved BTYXZ-1 and BTYXZ-2 reached at 26.16 and 18.74 μg/kg, and the gel consistency of BTYXZ-1 and BTYXZ-2 increased significantly by 9.1% and 6.5%, respectively, compared with the wild-type Tao-You-Xiangzhan (TYXZ). However, the γ-aminobutyric acid (GABA) content in the improved three-line hybrid rice BTYXZ-1 (5.6 mg/100 g) and BTYXZ-2 (10.7 mg/100 g) was significantly lower than that of the TYXZ. These results demonstrated that CRISPR/Cas9 gene editing technology could be successfully utilized in improving aroma in non-fragrant japonica and indica varieties. In addition, the newly developed BADH2 alleles provided important genetic resources for grain aroma improvement in three-line hybrid rice.
Collapse
Affiliation(s)
- Suozhen Hui
- State Key Laboratory of Rice BiologyChina National Center for Rice ImprovementChina National Rice Research InstituteHangzhouChina
| | - Huijuan Li
- State Key Laboratory of Rice BiologyChina National Center for Rice ImprovementChina National Rice Research InstituteHangzhouChina
| | - Amos Musyoki Mawia
- State Key Laboratory of Rice BiologyChina National Center for Rice ImprovementChina National Rice Research InstituteHangzhouChina
| | - Liang Zhou
- State Key Laboratory of Rice BiologyChina National Center for Rice ImprovementChina National Rice Research InstituteHangzhouChina
| | - Jinyang Cai
- Jiaxing Academy of Agricultural SciencesJiaxingChina
| | - Shakeel Ahmad
- State Key Laboratory of Rice BiologyChina National Center for Rice ImprovementChina National Rice Research InstituteHangzhouChina
| | - Changkai Lai
- State Key Laboratory of Rice BiologyChina National Center for Rice ImprovementChina National Rice Research InstituteHangzhouChina
| | - Jingxin Wang
- State Key Laboratory of Rice BiologyChina National Center for Rice ImprovementChina National Rice Research InstituteHangzhouChina
| | - Guiai Jiao
- State Key Laboratory of Rice BiologyChina National Center for Rice ImprovementChina National Rice Research InstituteHangzhouChina
| | - Lihong Xie
- State Key Laboratory of Rice BiologyChina National Center for Rice ImprovementChina National Rice Research InstituteHangzhouChina
| | - Gaoneng Shao
- State Key Laboratory of Rice BiologyChina National Center for Rice ImprovementChina National Rice Research InstituteHangzhouChina
| | - Zhonghua Sheng
- State Key Laboratory of Rice BiologyChina National Center for Rice ImprovementChina National Rice Research InstituteHangzhouChina
| | - Shaoqing Tang
- State Key Laboratory of Rice BiologyChina National Center for Rice ImprovementChina National Rice Research InstituteHangzhouChina
| | | | - Xiangjin Wei
- State Key Laboratory of Rice BiologyChina National Center for Rice ImprovementChina National Rice Research InstituteHangzhouChina
| | - Shikai Hu
- State Key Laboratory of Rice BiologyChina National Center for Rice ImprovementChina National Rice Research InstituteHangzhouChina
| | - Peisong Hu
- State Key Laboratory of Rice BiologyChina National Center for Rice ImprovementChina National Rice Research InstituteHangzhouChina
| |
Collapse
|
10
|
Caesar LK, Montaser R, Keller NP, Kelleher NL. Metabolomics and genomics in natural products research: complementary tools for targeting new chemical entities. Nat Prod Rep 2021; 38:2041-2065. [PMID: 34787623 PMCID: PMC8691422 DOI: 10.1039/d1np00036e] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Covering: 2010 to 2021Organisms in nature have evolved into proficient synthetic chemists, utilizing specialized enzymatic machinery to biosynthesize an inspiring diversity of secondary metabolites. Often serving to boost competitive advantage for their producers, these secondary metabolites have widespread human impacts as antibiotics, anti-inflammatories, and antifungal drugs. The natural products discovery field has begun a shift away from traditional activity-guided approaches and is beginning to take advantage of increasingly available metabolomics and genomics datasets to explore undiscovered chemical space. Major strides have been made and now enable -omics-informed prioritization of chemical structures for discovery, including the prospect of confidently linking metabolites to their biosynthetic pathways. Over the last decade, more integrated strategies now provide researchers with pipelines for simultaneous identification of expressed secondary metabolites and their biosynthetic machinery. However, continuous collaboration by the natural products community will be required to optimize strategies for effective evaluation of natural product biosynthetic gene clusters to accelerate discovery efforts. Here, we provide an evaluative guide to scientific literature as it relates to studying natural product biosynthesis using genomics, metabolomics, and their integrated datasets. Particular emphasis is placed on the unique insights that can be gained from large-scale integrated strategies, and we provide source organism-specific considerations to evaluate the gaps in our current knowledge.
Collapse
Affiliation(s)
- Lindsay K Caesar
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
| | - Rana Montaser
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology and Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Neil L Kelleher
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| |
Collapse
|
11
|
Tsugawa H, Rai A, Saito K, Nakabayashi R. Metabolomics and complementary techniques to investigate the plant phytochemical cosmos. Nat Prod Rep 2021; 38:1729-1759. [PMID: 34668509 DOI: 10.1039/d1np00014d] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: up to 2021Plants and their associated microbial communities are known to produce millions of metabolites, a majority of which are still not characterized and are speculated to possess novel bioactive properties. In addition to their role in plant physiology, these metabolites are also relevant as existing and next-generation medicine candidates. Elucidation of the plant metabolite diversity is thus valuable for the successful exploitation of natural resources for humankind. Herein, we present a comprehensive review on recent metabolomics approaches to illuminate molecular networks in plants, including chemical isolation and enzymatic production as well as the modern metabolomics approaches such as stable isotope labeling, ultrahigh-resolution mass spectrometry, metabolome imaging (spatial metabolomics), single-cell analysis, cheminformatics, and computational mass spectrometry. Mass spectrometry-based strategies to characterize plant metabolomes through metabolite identification and annotation are described in detail. We also highlight the use of phytochemical genomics to mine genes associated with specialized metabolites' biosynthesis. Understanding the metabolic diversity through biotechnological advances is fundamental to elucidate the functions of the plant-derived specialized metabolome.
Collapse
Affiliation(s)
- Hiroshi Tsugawa
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. .,RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.,Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588, Japan.,Graduate School of Medical Life Science, Yokohama City University, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Amit Rai
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. .,Plant Molecular Science Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. .,Plant Molecular Science Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Ryo Nakabayashi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
12
|
Iqbal Z, Iqbal MS, Khan MIR, Ansari MI. Toward Integrated Multi-Omics Intervention: Rice Trait Improvement and Stress Management. FRONTIERS IN PLANT SCIENCE 2021; 12:741419. [PMID: 34721467 PMCID: PMC8554098 DOI: 10.3389/fpls.2021.741419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/20/2021] [Indexed: 05/04/2023]
Abstract
Rice (Oryza sativa) is an imperative staple crop for nearly half of the world's population. Challenging environmental conditions encompassing abiotic and biotic stresses negatively impact the quality and yield of rice. To assure food supply for the unprecedented ever-growing world population, the improvement of rice as a crop is of utmost importance. In this era, "omics" techniques have been comprehensively utilized to decipher the regulatory mechanisms and cellular intricacies in rice. Advancements in omics technologies have provided a strong platform for the reliable exploration of genetic resources involved in rice trait development. Omics disciplines like genomics, transcriptomics, proteomics, and metabolomics have significantly contributed toward the achievement of desired improvements in rice under optimal and stressful environments. The present review recapitulates the basic and applied multi-omics technologies in providing new orchestration toward the improvement of rice desirable traits. The article also provides a catalog of current scenario of omics applications in comprehending this imperative crop in relation to yield enhancement and various environmental stresses. Further, the appropriate databases in the field of data science to analyze big data, and retrieve relevant information vis-à-vis rice trait improvement and stress management are described.
Collapse
Affiliation(s)
- Zahra Iqbal
- Molecular Crop Research Unit, Department of Biochemistry, Chulalongkorn University, Bangkok, Thailand
| | | | | | | |
Collapse
|
13
|
Gondal TA, Keast RSJ, Shellie RA, Jadhav SR, Gamlath S, Mohebbi M, Liem DG. Consumer Acceptance of Brown and White Rice Varieties. Foods 2021; 10:foods10081950. [PMID: 34441728 PMCID: PMC8391279 DOI: 10.3390/foods10081950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
Rice is consumed as a staple food by more than half of the world's population. Due to a higher fibre and micronutrient content, brown rice is more nutritious than white rice, but the consumption of brown rice is significantly lower than that of white rice, primarily due to sensory attributes. Therefore, the present research aimed to identify the sensory attributes which drive liking of Australian-grown brown and white rice varieties. Participants (n = 139) tasted and scored (9-point hedonic scale) their liking (i.e., overall liking, aroma, colour and texture) of brown and white rice types of Jasmine (Kyeema), Low GI (Doongara), and Medium grain rice (Amaroo). In addition, participants scored aroma, colour, hardness, fluffiness, stickiness, and chewiness, on Just About Right Scales. A within-subjects crossover design with randomised order (William's Latin Square design) was used with six repeated samples for liking and Just About Right scales. Penalty analyses were applied to determine the relative influence of perception of sensory attributes on consumer liking of the rice varieties. Across all varieties, white rice was liked more than brown rice due to the texture and colour, and Jasmine rice was preferred over Low GI and Medium Grain. Rice texture (hardness and chewiness) was the most important sensory attribute among all rice varieties and aroma was important for driving of liking between white rice varieties.
Collapse
Affiliation(s)
- Tanweer Aslam Gondal
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood Campus 221 Burwood Highway, Burwood, VIC 3125, Australia; (T.A.G.); (R.S.J.K.); (R.A.S.); (S.R.J.); (S.G.)
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan 66000, Pakistan
| | - Russell S. J. Keast
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood Campus 221 Burwood Highway, Burwood, VIC 3125, Australia; (T.A.G.); (R.S.J.K.); (R.A.S.); (S.R.J.); (S.G.)
| | - Robert A. Shellie
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood Campus 221 Burwood Highway, Burwood, VIC 3125, Australia; (T.A.G.); (R.S.J.K.); (R.A.S.); (S.R.J.); (S.G.)
| | - Snehal R. Jadhav
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood Campus 221 Burwood Highway, Burwood, VIC 3125, Australia; (T.A.G.); (R.S.J.K.); (R.A.S.); (S.R.J.); (S.G.)
| | - Shirani Gamlath
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood Campus 221 Burwood Highway, Burwood, VIC 3125, Australia; (T.A.G.); (R.S.J.K.); (R.A.S.); (S.R.J.); (S.G.)
| | - Mohammadreza Mohebbi
- Biostatistics Unit, Faculty of Health, Deakin University, Geelong, VIC 3125, Australia;
| | - Djin Gie Liem
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood Campus 221 Burwood Highway, Burwood, VIC 3125, Australia; (T.A.G.); (R.S.J.K.); (R.A.S.); (S.R.J.); (S.G.)
- Correspondence:
| |
Collapse
|
14
|
Promoting Human Nutrition and Health through Plant Metabolomics: Current Status and Challenges. BIOLOGY 2020; 10:biology10010020. [PMID: 33396370 PMCID: PMC7823625 DOI: 10.3390/biology10010020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 12/14/2022]
Abstract
Simple Summary This review summarizes the status, applications, and challenges of plant metabolomics in the context of crop breeding, food quality and safety, and human nutrition and health. It also highlights the importance of plant metabolomics in elucidating biochemical and genetic bases of traits associated with nutritive and healthy beneficial foods and other plant products to secure food supply, to ensure food quality, to protect humans from malnutrition and other diseases. Meanwhile, this review calls for comprehensive collaborations to accelerate relevant researches and applications in the context of human nutrition and health. Abstract Plant metabolomics plays important roles in both basic and applied studies regarding all aspects of plant development and stress responses. With the improvement of living standards, people need high quality and safe food supplies. Thus, understanding the pathways involved in the biosynthesis of nutritionally and healthily associated metabolites in plants and the responses to plant-derived biohazards in humans is of equal importance to meet people’s needs. For each, metabolomics has a vital role to play, which is discussed in detail in this review. In addition, the core elements of plant metabolomics are highlighted, researches on metabolomics-based crop improvement for nutrition and safety are summarized, metabolomics studies on plant natural products including traditional Chinese medicine (TCM) for health promotion are briefly presented. Challenges are discussed and future perspectives of metabolomics as one of the most important tools to promote human nutrition and health are proposed.
Collapse
|
15
|
Lim V, Gorji SG, Daygon VD, Fitzgerald M. Untargeted and Targeted Metabolomic Profiling of Australian Indigenous Fruits. Metabolites 2020; 10:metabo10030114. [PMID: 32204361 PMCID: PMC7143387 DOI: 10.3390/metabo10030114] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 12/17/2022] Open
Abstract
Selected Australian native fruits such as Davidson's plum, finger lime and native pepperberry have been reported to demonstrate potent antioxidant activity. However, comprehensive metabolite profiling of these fruits is limited, therefore the compounds responsible are unknown, and further, the compounds of nutritional value in these native fruits are yet to be described. In this study, untargeted and targeted metabolomics were conducted using the three fruits, together with assays to determine their antioxidant activities. The results demonstrate that targeted free and hydrolysed protein amino acids exhibited high amounts of essential amino acids. Similarly, important minerals like potassium were detected in the fruit samples. In antioxidant activity, Davidson's plum reported the highest activity in ferric reducing power (FRAP), finger lime in antioxidant capacity (ABTS), and native pepperberry in free radical scavenging (DPPH) and phosphomolybdenum assay. The compounds responsible for the antioxidant activity were tentatively identified using untargeted GC×GC-TOFMS and UHPLC-QqQ-TOF-MS/MS metabolomics. A clear discrimination into three clusters of fruits was observed using principal component analysis (PCA) and partial least squares (PLS) analysis. The correlation study identified a number of compounds that provide the antioxidant activities. GC×GC-TOFMS detected potent aroma compounds of limonene, furfural, and 1-R-α-pinene. Based on the untargeted and targeted metabolomics, and antioxidant assays, the nutritional potential of these Australian bush fruits is considerable and supports these indigenous fruits in the nutraceutical industry as well as functional ingredients for the food industry, with such outcomes benefiting Indigenous Australian communities.
Collapse
Affiliation(s)
- Vuanghao Lim
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; (S.G.G.); (V.D.D.)
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Penang, Malaysia
- Correspondence: (V.L.); (M.F.)
| | - Sara Ghorbani Gorji
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; (S.G.G.); (V.D.D.)
| | - Venea Dara Daygon
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; (S.G.G.); (V.D.D.)
| | - Melissa Fitzgerald
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; (S.G.G.); (V.D.D.)
- Correspondence: (V.L.); (M.F.)
| |
Collapse
|
16
|
Price EJ, Drapal M, Perez‐Fons L, Amah D, Bhattacharjee R, Heider B, Rouard M, Swennen R, Becerra Lopez‐Lavalle LA, Fraser PD. Metabolite database for root, tuber, and banana crops to facilitate modern breeding in understudied crops. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:1258-1268. [PMID: 31845400 PMCID: PMC7383867 DOI: 10.1111/tpj.14649] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/09/2019] [Accepted: 11/28/2019] [Indexed: 05/06/2023]
Abstract
Roots, tubers, and bananas (RTB) are vital staples for food security in the world's poorest nations. A major constraint to current RTB breeding programmes is limited knowledge on the available diversity due to lack of efficient germplasm characterization and structure. In recent years large-scale efforts have begun to elucidate the genetic and phenotypic diversity of germplasm collections and populations and, yet, biochemical measurements have often been overlooked despite metabolite composition being directly associated with agronomic and consumer traits. Here we present a compound database and concentration range for metabolites detected in the major RTB crops: banana (Musa spp.), cassava (Manihot esculenta), potato (Solanum tuberosum), sweet potato (Ipomoea batatas), and yam (Dioscorea spp.), following metabolomics-based diversity screening of global collections held within the CGIAR institutes. The dataset including 711 chemical features provides a valuable resource regarding the comparative biochemical composition of each RTB crop and highlights the potential diversity available for incorporation into crop improvement programmes. Particularly, the tropical crops cassava, sweet potato and banana displayed more complex compositional metabolite profiles with representations of up to 22 chemical classes (unknowns excluded) than that of potato, for which only metabolites from 10 chemical classes were detected. Additionally, over 20% of biochemical signatures remained unidentified for every crop analyzed. Integration of metabolomics with the on-going genomic and phenotypic studies will enhance 'omics-wide associations of molecular signatures with agronomic and consumer traits via easily quantifiable biochemical markers to aid gene discovery and functional characterization.
Collapse
Affiliation(s)
- Elliott J. Price
- Royal Holloway University of London, SurreyTW20 0EXEghamUnited Kingdom
- Present address:
Masaryk UniversityBrno‐Bohunice625 00Czech Republic
| | - Margit Drapal
- Royal Holloway University of London, SurreyTW20 0EXEghamUnited Kingdom
| | - Laura Perez‐Fons
- Royal Holloway University of London, SurreyTW20 0EXEghamUnited Kingdom
| | - Delphine Amah
- International Institute of Tropical AgriculturePMB 5320IbadanNigeria
| | | | | | - Mathieu Rouard
- Bioversity InternationalParc Scientifique Agropolis II34397MontpellierFrance
| | - Rony Swennen
- Laboratory of Tropical Crop ImprovementDivision of Crop BiotechnicsKU LeuvenB‐3001LeuvenBelgium
- Bioversity InternationalWillem De Croylaan 42B‐3001LeuvenBelgium
- International Institute of Tropical Agriculture. C/0 The Nelson Mandela African Institution of Science and TechnologyP.O. Box 44ArushaTanzania
| | | | - Paul D. Fraser
- Royal Holloway University of London, SurreyTW20 0EXEghamUnited Kingdom
| |
Collapse
|
17
|
Kishor D, Seo J, Chin JH, Koh HJ. Evaluation of Whole-Genome Sequence, Genetic Diversity, and Agronomic Traits of Basmati Rice ( Oryza sativa L.). Front Genet 2020; 11:86. [PMID: 32153645 PMCID: PMC7046879 DOI: 10.3389/fgene.2020.00086] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/27/2020] [Indexed: 11/20/2022] Open
Abstract
Basmati is considered a unique varietal group of rice (Oryza sativa L.) because of its aroma and superior grain quality. Previous genetic analyses of rice showed that most of the Basmati varieties are classified into the aromatic group. Despite various efforts, genomic relationship of Basmati rice with other varietal groups and genomic variation in Basmati rice are yet to be understood. In the present study, we resequenced the whole genome of three traditional Basmati varieties at a coverage of more than 25X using Illumina HiSeq2500 and mapped the obtained sequences to the reference genome sequences of Nipponbare (japonica rice), Kasalath (aus rice), and Zhenshan 97 (indica rice). Comparison of these sequences revealed common single nucleotide polymorphisms (SNPs) in the genic regions of three Basmati varieties. Analysis of these SNPs revealed that Basmati varieties showed fewer sequence variations compared with the aus group than with the japonica and indica groups. Gene ontology (GO) enrichment analysis indicated that SNPs were present in genes with various biological, molecular, and cellular functions. Additionally, functional annotation of the Basmati mutated gene cluster shared by Nipponbare, Kasalath, and Zhenshan 97 was found to be associated with the metabolic process involved in the cellular aromatic compound, suggesting that aroma is an important specific genomic feature of Basmati varieties. Furthermore, 30 traditional Basmati varieties were classified into three different groups, aromatic (22 varieties), aus (four varieties), and indica (four varieties), based on genome-wide SNPs. All 22 aromatic Basmati varieties harbored the fragrant-inducing Badh2 allele. We also performed comparative analysis of 13 key agronomic and grain quality traits of Basmati rice and other rice varieties. Three traits including length-to-width ratio of grain (L/W ratio), panicle length (PL), and amylose content (AC) showed significant (P < 0.05 and P < 0.01) differences between the aromatic and indica/aus groups. Comparative analysis of genome structure, based on genome sequence variation and GO analysis, revealed that the Basmati genome was derived mostly from the aus and japonica groups. Overall, whole-genome sequence data and genetic diversity information obtained in this study will serve as an important resource for molecular breeding and genetic analysis of Basmati varieties.
Collapse
Affiliation(s)
- D.S. Kishor
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| | - Jeonghwan Seo
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| | - Joong Hyoun Chin
- Department of Integrative Bio-industrial Engineering, Sejong University, Seoul, South Korea
| | - Hee-Jong Koh
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| |
Collapse
|
18
|
Starkenmann C, Niclass Y, Vuichoud B, Schweizer S, He XF. Occurrence of 2-Acetyl-1-pyrroline and Its Nonvolatile Precursors in Celtuce ( Lactuca sativa L. var. augustana). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11710-11717. [PMID: 31600058 DOI: 10.1021/acs.jafc.9b05434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lactuca sativa L. var. augustana has a basmati rice-like odor with a green note in the background. This typical odor is due to the release of 2-acetyl-1-pyrroline (2-AP) after heating, which is confirmed by volatile analysis. Recent metabolomic and genomic studies of different rice varieties highlighted that the presence of 2-AP was linked to the accumulation of γ-aminobutyraldehyde; genome-wide association studies also indicated that acyltransferases were involved. These results prompted us to analyze nonvolatile compound precursors in L. sativa L. var. augustana (celtuce) to search for compound derivatives with a 4,5-dioxohexan alkyl amine-like structure. Hypothetical synthetic compounds were prepared from a reductive amination between 4,5-dioxohexanal and glycine, alanine, aspartic acid, and glutamic acid to give 2-(2-acetylpyrrolidin-1-yl) alkanoic acid. We proved that 2-(2-acetylpyrrolidin-1-yl) propionic acid is present in L. sativa, which, when thermally treated, released 2-AP. Other 2-AP precursors occurring in this plant are discussed.
Collapse
Affiliation(s)
| | - Yvan Niclass
- Firmenich SA, Corporate R&D Division , P.O. Box 239, CH-1211 Geneva 8 , Switzerland
| | - Basile Vuichoud
- Firmenich SA, Corporate R&D Division , P.O. Box 239, CH-1211 Geneva 8 , Switzerland
| | - Sebastien Schweizer
- Firmenich SA, Corporate R&D Division , P.O. Box 239, CH-1211 Geneva 8 , Switzerland
| | - Xiu-Feng He
- Firmenich Aromatics China , 3901 Jindu Road , Xinzhuang Industrial Zone, Shanghai 201108 , China
| |
Collapse
|
19
|
Mo Z, Li Y, Nie J, He L, Pan S, Duan M, Tian H, Xiao L, Zhong K, Tang X. Nitrogen application and different water regimes at booting stage improved yield and 2-acetyl-1-pyrroline (2AP) formation in fragrant rice. RICE (NEW YORK, N.Y.) 2019; 12:74. [PMID: 31583492 PMCID: PMC6776583 DOI: 10.1186/s12284-019-0328-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/29/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND Water (W) and nitrogen (N) management generally cause regulations in the 2-acetyl-1-pyrroline (2AP) accumulation in fragrant rice; nevertheless, the feasibility of such management strategies at booting stage in improving 2AP accumulation has not been examined in details. METHODS Field experiments were conducted in the early season (March-July) and repeated in the late season (July-November) in 2013. The treatments were applied urea (90 kg ha- 1), calcium super phosphate (90 kg ha- 1) and potassium chloride (195 kg ha- 1) as basal fertilizer, and urea (65 kg ha- 1) at tillering stage. Three N levels i.e., 0 kg N ha- 1 (N1), 30 kg N ha- 1 (N2), and 60 kg N ha- 1 (N3) and three water levels i.e., W1 treatment (well-watered treatment with water layer of 2-4 cm), W2 treatment (soil water potential was - 15 ± 5 kPa), and W3 treatment (soil water potential was - 25 ± 5 kPa) at booting stage was set up for three rice varieties i.e., Nongxiang 18, Yungengyou 14 and Basmati. The grain yield, head milled rice yield, 2AP contents and the biochemical parameters related to 2AP formation were investigated. RESULTS Result indicated that W and N dynamics regulated the grain yield, head milled rice yield, and 2AP contents in brown rice across three varieties. The N2 and N3 treatment significantly increased the 2AP contents in brown rice by 9.54% and 11.95%, and 8.88% and 32.54% in the early and the late season, respectively; improved grain yield and head milled rice yield. The W3 treatment improved grain yield, head milled rice yield and 2AP content. Significant W and N interaction effect on 2AP content in brown rice was detected, where the W3 N3 treatment showed the strongest interaction regarding improvement of 2AP contents in brown rice. The 2AP accumulation and its related biochemical parameters and their relationships in different plant tissues at different growth stages under W and N treatments had also been assessed. The 2AP content, P5C content and DAO activity during grain filling periods was highly related to the 2AP content in brown rice. CONCLUSION This study revealed that the 60 kg N ha- 1 coupled with - 25 ± 5 kPa treatment showed the best positive effects on yield and aroma in fragrant rice, suggested that water and nitrogen management at booting stage can improve grain yield and fragrance in fragrant rice. However, further study to evaluate the metabolic and molecular basis of 2AP accumulation in fragrant rice is needed.
Collapse
Affiliation(s)
- Zhaowen Mo
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture.P. R. China, Guangzhou, 510642 China
| | - Yanhong Li
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong China
- Agro-innovative Demonstration Base Guangdong Academy of Agricultural Sciences, Guangzhou, 510642 China
| | - Jun Nie
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong China
- Agro-innovative Demonstration Base Guangdong Academy of Agricultural Sciences, Guangzhou, 510642 China
| | - Longxin He
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture.P. R. China, Guangzhou, 510642 China
| | - Shenggang Pan
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture.P. R. China, Guangzhou, 510642 China
| | - Meiyang Duan
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture.P. R. China, Guangzhou, 510642 China
| | - Hua Tian
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture.P. R. China, Guangzhou, 510642 China
| | - Lizhong Xiao
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture.P. R. China, Guangzhou, 510642 China
| | - Keyou Zhong
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture.P. R. China, Guangzhou, 510642 China
| | - Xiangru Tang
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture.P. R. China, Guangzhou, 510642 China
| |
Collapse
|
20
|
Aubry S. The Future of Digital Sequence Information for Plant Genetic Resources for Food and Agriculture. FRONTIERS IN PLANT SCIENCE 2019; 10:1046. [PMID: 31543884 PMCID: PMC6728410 DOI: 10.3389/fpls.2019.01046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/29/2019] [Indexed: 05/27/2023]
Abstract
The recent debates on the legal status of "digital sequence information" (DSI) at the international level could have extensive consequences for the future of agriculture and food security. A large majority of recent advances in biology, medicine, or agriculture were achieved by sharing and mining of freely accessible sequencing data. It is most probably because of the tremendous success of modern genomics and advances of synthetic biology that concerns were raised about possible fair and equitable ways of sharing data. The DSI concept is relatively new, and all concerned parties agreed upon the need for a clear definition. For example, the extent to which DSI understanding is limited only to genetic sequence data has to be clarified. In this paper, I focus on a subset of DSI essential to humankind: the DSI originating from plant genetic resources for food and agriculture (PGRFA). Two international agreements shape the conservation and use of plant genetic resources: the Convention on Biodiversity and the International Treaty for Plant Genetic Resources for Food and Agriculture. In an attempt to mobilize DSI users and producers involved in research, breeding, and conservation, I describe here how the increasing amount of genomic data, information, and studies interact with the existing legal framework at the global level. Using possible scenarios, I will emphasize the complexity of the issues surrounding DSI for PGRFA and propose potential ways forward for developing an inclusive governance and fair use of these genetic resources.
Collapse
Affiliation(s)
- Sylvain Aubry
- Department of Plant and Microbial Science, University of Zurich, Zurich, Switzerland
- Section Genetic Resources and Technology, Swiss Federal Office for Agriculture, Bern, Switzerland
| |
Collapse
|
21
|
Fujita A, Ota M, Kato K. Urinary volatile metabolites of amygdala-kindled mice reveal novel biomarkers associated with temporal lobe epilepsy. Sci Rep 2019; 9:10586. [PMID: 31332211 PMCID: PMC6646363 DOI: 10.1038/s41598-019-46373-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/26/2019] [Indexed: 11/11/2022] Open
Abstract
Epilepsy is a chronic neurological disorder affecting mammals, including humans. Uncontrolled epilepsy is associated with poor quality of life, accidents, and sudden death. In particular, temporal lobe epilepsy (TLE) is the most common type of pharmacoresistant epilepsy, which easily gets out of control in human adults. The aim of this study was to profile urinary volatile organic compounds (VOCs) in a mouse model of TLE using solid-phase microextraction (SPME) gas chromatography mass spectrometry (GC-MS). Thirteen urinary VOCs exhibited differential abundance between epileptic and control mice, and the corresponding areas under the receiver operating characteristic (ROC) curve were greater than 0.8. Principal component analysis (PCA) based on these 13 VOCs separated epileptic from sham operated-mice, suggesting that all these 13 VOCs are epilepsy biomarkers. Promax rotation and dendrogram analysis concordantly separated the 13 VOCs into three groups. Stepwise linear discriminant analysis extracted methanethiol; disulfide, dimethyl; and 2-butanone as predictors. Based on known metabolic systems, the results suggest that TLE induced by amygdala stimulation could affect both endogenous metabolites and the gut flora. Future work will elucidate the physiological meaning of the VOCs as end-products of metabolic networks and assess the impact of the metabolic background involved in development of TLE.
Collapse
Affiliation(s)
- Akiko Fujita
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto, Japan
| | - Manami Ota
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto, Japan
| | - Keiko Kato
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto, Japan.
| |
Collapse
|
22
|
Okpala NE, Mo Z, Duan M, Tang X. The genetics and biosynthesis of 2-acetyl-1-pyrroline in fragrant rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 135:272-276. [PMID: 30592999 DOI: 10.1016/j.plaphy.2018.12.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/27/2018] [Accepted: 12/16/2018] [Indexed: 05/27/2023]
Abstract
Rice (Oryza sativa L.) is a staple food for the majority of the world's population. Rice fragrance, aroma, or scent is not just a cooking quality, but also an eating quality of rice. Rice fragrance is a trait that is widely desired among rice consumers. Consequently, rice producers are sorting for rice cultivars with strong fragrance. High demand for fragrant rice cultivars has prompted rice breeders and researchers to investigate the genetics and the ways to improve fragrance in rice. It has been established by many researches that fgr gene on the chromosome 8 of rice controls its fragrance. As with other plants, rice contains BADH but because rice does not accumulate GB, a catalyst for BADH coding, BADH1 on chromosome 4 of rice and BADH2 on chromosome 8 of rice have been widely reported to be responsible for encoding BADH. badh2, a recessive allele of BADH2 has been confirmed to be responsible for fragrance in rice. badh2 and its alleles have been associated with the accumulation and synthesis of 2AP. Proline, ornithine, glutamate, methylglyoxal, Δ1-pyrroline-5-carboxylate synthetase and glyceraldehyde-3-phosphate dehydrogenase have all been identified as the precursors for the synthesis and accumulation of 2AP. By reviewing and summarising the main results of various researchers, we have been able to elucidate how various genes and metabolites influence 2AP accumulation in fragrant rice. It is our hope that this paper will be beneficial to researchers, who are working on the improvement of rice fragrance.
Collapse
Affiliation(s)
| | - Zhaowen Mo
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| | - Meiyang Duan
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| | - Xiangru Tang
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, China; Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture, PR China.
| |
Collapse
|
23
|
Zarei I, Luna E, Leach JE, McClung A, Vilchez S, Koita O, Ryan EP. Comparative Rice Bran Metabolomics across Diverse Cultivars and Functional Rice Gene⁻Bran Metabolite Relationships. Metabolites 2018; 8:metabo8040063. [PMID: 30304872 PMCID: PMC6315861 DOI: 10.3390/metabo8040063] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/03/2018] [Accepted: 10/06/2018] [Indexed: 12/12/2022] Open
Abstract
Rice (Oryza sativa L.) processing yields ~60 million metric tons of bran annually. Rice genes producing bran metabolites of nutritional and human health importance were assessed across 17 diverse cultivars from seven countries using non-targeted metabolomics, and resulted in 378–430 metabolites. Gambiaka cultivar had the highest number and Njavara had the lowest number of metabolites. The 71 rice bran compounds of significant variation by cultivar included 21 amino acids, seven carbohydrates, two metabolites from cofactors and vitamins, 33 lipids, six nucleotides, and two secondary metabolites. Tryptophan, α-ketoglutarate, γ-tocopherol/β-tocopherol, and γ-tocotrienol are examples of bran metabolites with extensive cultivar variation and genetic information. Thirty-four rice bran components that varied between cultivars linked to 535 putative biosynthetic genes using to the OryzaCyc 4.0, Plant Metabolic Network database. Rice genes responsible for bran composition with animal and human health importance is available for rice breeding programs to utilize in crop improvement.
Collapse
Affiliation(s)
- Iman Zarei
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Emily Luna
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523, USA.
| | - Jan E Leach
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523, USA.
| | - Anna McClung
- USDA-Agricultural Research Service, Dale Bumpers National Rice Research Center, Stuttgart, AR 72160, USA.
| | - Samuel Vilchez
- Center of Infectious Diseases, Department of Microbiology and Parasitology, Faculty of Medical Sciences, National Autonomous University of Nicaragua, León (UNAN-León), León 21000, Nicaragua.
| | - Ousmane Koita
- Laboratoire de Biologie Moléculaire Appliquée, Campus de Badalabougou, Université des Sciences, des Techniques et des Technologies de Bamako, BP 1805 Bamako, Mali.
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
24
|
Concepcion JCT, Ouk S, Riedel A, Calingacion M, Zhao D, Ouk M, Garson MJ, Fitzgerald MA. Quality evaluation, fatty acid analysis and untargeted profiling of volatiles in Cambodian rice. Food Chem 2017; 240:1014-1021. [PMID: 28946217 DOI: 10.1016/j.foodchem.2017.08.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 07/11/2017] [Accepted: 08/03/2017] [Indexed: 11/28/2022]
Abstract
This study provides the first investigation of the physical traits, pasting properties and volatile compounds of Cambodian rice cultivars, including traditional, improved, and improved traditional varieties, allowing for their differentiation as high and low quality rice. Analysis of the grain quality traits illustrates interesting features of traditional varieties and correlations between traits that assist with understanding texture. Untargeted profiling of volatile compounds shows that high quality fragrant varieties not only contain 2-acetyl-1-pyrroline but also several other compounds, including aldehydes, alcohols and 2-alkylfurans that contribute to overall aroma. Moreover, low odour threshold volatile compounds, which can be derived from the oxidation of unsaturated fatty acids, were more abundant in the fragrant varieties. The percentage area of both oleic and linoleic acid were found to be significantly different among the rice varieties tested. Such findings suggest that unsaturated fatty acids in milled rice contribute to rice fragrance, and thereby to overall quality.
Collapse
Affiliation(s)
| | - Sothea Ouk
- Cambodian Agricultural Research and Development Institute, P.O. Box 1, Phnom Penh, Cambodia.
| | - Arthur Riedel
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane 4072, Australia.
| | - Mariafe Calingacion
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane 4072, Australia.
| | - Dule Zhao
- International Rice Research Institute, Plant Breeding, Genetics and Biotechnology Division, Laguna 4031, Philippines.
| | - Makara Ouk
- Cambodian Agricultural Research and Development Institute, P.O. Box 1, Phnom Penh, Cambodia.
| | - Mary J Garson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia.
| | - Melissa A Fitzgerald
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|