1
|
Wosnick N, Chaves AP, Giareta EP, Leite RD, Saint'Pierre TD, Hauser-Davis RA. From screens to seas: Tech contaminants in tiger sharks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124690. [PMID: 39116921 DOI: 10.1016/j.envpol.2024.124690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
The potential negative impacts of Technology-Critical Elements (TCEs) on the environment and wildlife, despite increasingly recognized, remain largely overlooked. In this sense, this study aimed to investigate the concentrations of several TCEs, including rubidium (Rb), titanium (Ti) and various Rare Earth Elements (REEs), in different tissues of tiger sharks. Sharks incidentally caught by artisanal fleets in southern Brazil were opportunistically sampled and liver, gills, kidneys, heart, muscle, eyes, brain, skin, and teeth were analyzed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Significant Rb concentration variations were observed across different tissues, with higher levels detected in kidneys and lower levels in the liver. Titanium concentrations also exhibited significant differences, with higher levels detected in teeth and lower levels in liver. Although no statistical differences were observed for the analyzed REEs, a trend of higher accumulation in the liver, gills, and skin was noted. Light Rare Earth Elements (LREEs) were found predominantly in all organs, with neodymium, lanthanum, and cerium as the most significant REEs detected. Several statistically significant correlations were identified between Rb and REEs, as well as between Ti and REEs, indicating systemic transport of these elements across different tissues. These findings indicate that the growing extraction and disposal of metallic elements, driven by technological advancements, may lead to their assimilation by marine fauna, particularly at higher trophic levels. The potential harmful effects on these organisms remain unknown and require urgent investigation. Additionally, as mining activities intensify globally, precise legislative measures are essential to address environmental concerns, species conservation, and human health considerations.
Collapse
Affiliation(s)
- Natascha Wosnick
- Programa de Pós-graduação em Zoologia, Universidade Federal do Paraná, Paraná, Brazil; Associação MarBrasil, Pontal do Paraná, Brazil; Cape Eleuthera Institute, Eleuthera, The Bahamas.
| | - Ana Paula Chaves
- Programa de Pós-graduação em Toxicologia, Universidade de São Paulo, São Paulo, Brazil
| | - Eloísa Pinheiro Giareta
- Programa de Pós-graduação em Zoologia, Universidade Federal do Paraná, Paraná, Brazil; Associação MarBrasil, Pontal do Paraná, Brazil
| | - Renata Daldin Leite
- Associação MarBrasil, Pontal do Paraná, Brazil; Programa de Pós-graduação em Ecologia e Conservação, Universidade Federal do Paraná, Paraná, Brazil
| | | | - Rachel Ann Hauser-Davis
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4.365, Manguinhos, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Botêlho de Araújo CB, Alves de Mendonça S, de Lima Viana D, da Fontoura Martins M, Costa PG, Bianchini A, Vasconcelos de Oliveira PG, Torres RA, Vieira Hazin FH, Adam ML. Effects of blood metal(loid) concentrations on genomic damages in sharks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124569. [PMID: 39025294 DOI: 10.1016/j.envpol.2024.124569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/05/2024] [Accepted: 07/16/2024] [Indexed: 07/20/2024]
Abstract
The use of effect biomarkers has contributed to the understanding of the sublethal effects of contaminants on different organisms. However, the analysis of genotoxic markers as an indicator of organism and environmental health in sharks is underexplored. Thus, the present study investigated the relationship between the genomic damage frequency in erythrocytes and metal(loid) concentrations in whole blood of three shark species (Galeocerdo cuvier, Negaprion brevirostris and Ginglymostoma cirratum), taking into account climatic seasonality. The results showed that G. cuvier, an apex predator, presented the highest total erythrocyte genomic damage frequencies together with the highest mean whole blood concentrations of Al, Cd, Cr, Fe, Mn, Ni, Pb and Zn. The shark N. brevirostris also presented high levels of metal(loid), indicating a greater susceptibility to these contaminants in species that preferentially feed on fish. In contrast, G. cirratum, a mesopredator, presented the lowest erythrocyte damage frequencies and whole blood metal(loid) concentrations. The presence of micronuclei was the most responsive biomarker, and Al, As and Zn had an important effect on the genomic damage frequencies for all species evaluated. Zn concentration influenced the binucleated cells frequencies and Al concentration had an effect on the total damage and micronuclei frequencies in G. cuvier and N. brevirostris. Binucleated cells and blebbed nuclei frequencies were affected by As concentration, especially in G. cirratum, while showing a strong and positive correlation with most of the metals analyzed. Nonetheless, baseline levels of metal(loid) blood concentrations and erythrocyte genomic damage frequencies in sharks have not yet been established. Therefore, minimum risk levels of blood contaminants concentrations on the health of these animals have also not been determined. However, the high genomic instability observed in sharks is of concern considering the current health status of these animals, as well as the quality of the environment studied.
Collapse
Affiliation(s)
- Camila Brasilino Botêlho de Araújo
- Laboratory of Fisheries Oceanography, Department of Fisheries and Aquaculture, Federal Rural University of Pernambuco, Rua Dom Manuel de Medeiros, Dois Irmãos, 52.171-030, Recife, Pernambuco, Brazil; Evolutionary and Environmental Genomics Laboratory, Federal Technological University of Paraná, Av. dos Pioneiros, 3131, Jardim Morumbi, 86036-370, Londrina, Paraná, Brazil.
| | - Sibele Alves de Mendonça
- Laboratory of Fisheries Oceanography, Department of Fisheries and Aquaculture, Federal Rural University of Pernambuco, Rua Dom Manuel de Medeiros, Dois Irmãos, 52.171-030, Recife, Pernambuco, Brazil.
| | - Danielle de Lima Viana
- Laboratory of Fisheries Oceanography, Department of Fisheries and Aquaculture, Federal Rural University of Pernambuco, Rua Dom Manuel de Medeiros, Dois Irmãos, 52.171-030, Recife, Pernambuco, Brazil.
| | - Mariana da Fontoura Martins
- Institute of Biological Sciences, Federal University of Rio Grande, Avenida Itália, km 8, 96203-900, Rio Grande, Rio Grande do Sul, Brazil.
| | - Patrícia Gomes Costa
- Institute of Biological Sciences, Federal University of Rio Grande, Avenida Itália, km 8, 96203-900, Rio Grande, Rio Grande do Sul, Brazil.
| | - Adalto Bianchini
- Institute of Biological Sciences, Federal University of Rio Grande, Avenida Itália, km 8, 96203-900, Rio Grande, Rio Grande do Sul, Brazil.
| | - Paulo Guilherme Vasconcelos de Oliveira
- Laboratory of Fisheries Oceanography, Department of Fisheries and Aquaculture, Federal Rural University of Pernambuco, Rua Dom Manuel de Medeiros, Dois Irmãos, 52.171-030, Recife, Pernambuco, Brazil.
| | - Rodrigo Augusto Torres
- Evolutionary and Environmental Genomics Laboratory, Federal Technological University of Paraná, Av. dos Pioneiros, 3131, Jardim Morumbi, 86036-370, Londrina, Paraná, Brazil.
| | - Fábio Hissa Vieira Hazin
- Laboratory of Fisheries Oceanography, Department of Fisheries and Aquaculture, Federal Rural University of Pernambuco, Rua Dom Manuel de Medeiros, Dois Irmãos, 52.171-030, Recife, Pernambuco, Brazil.
| | - Mônica Lúcia Adam
- Evolutionary and Environmental Genomics Laboratory, Federal Technological University of Paraná, Av. dos Pioneiros, 3131, Jardim Morumbi, 86036-370, Londrina, Paraná, Brazil.
| |
Collapse
|
3
|
Trujillo JE, Bouyoucos I, Rayment WJ, Domenici P, Planes S, Rummer JL, Allan BJM. Escape response kinematics in two species of tropical shark: short escape latencies and high turning performance. J Exp Biol 2022; 225:276912. [PMID: 36168768 PMCID: PMC9845744 DOI: 10.1242/jeb.243973] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 09/17/2022] [Indexed: 01/29/2023]
Abstract
Accelerative manoeuvres, such as fast-starts, are crucial for fish to avoid predation. Escape responses are fast-starts that include fundamental survival traits for prey that experience high predation pressure. However, no previous study has assessed escape performance in neonate tropical sharks. We quantitatively evaluated vulnerability traits of neonate tropical sharks by testing predictions on their fast-start escape performance. We predicted (1) high manoeuvrability, given their high flexibility, but (2) low propulsive locomotion owing to the drag costs associated with pectoral fin extension during escape responses. Further, based on previous work on dogfish, Squalus suckleyi, we predicted (3) long reaction times (as latencies longer than teleosts, >20 ms). We used two-dimensional, high-speed videography analysis of mechano-acoustically stimulated neonate blacktip reef shark, Carcharhinus melanopterus (n=12), and sicklefin lemon shark, Negaprion acutidens (n=8). Both species performed a characteristic C-start double-bend response (i.e. two body bends), but single-bend responses were only observed in N. acutidens. As predicted, neonate sharks showed high manoeuvrability with high turning rates and tight turning radii (3-11% of body length) but low propulsive performance (i.e. speed, acceleration and velocity) when compared with similar-sized teleosts and S. suckleyi. Contrary to expectations, escape latencies were <20 ms in both species, suggesting that the neurophysiological system of sharks when reacting to a predatory attack may not be limited to long response times. These results provide a quantitative assessment of survival traits in neonate tropical sharks that will be crucial for future studies that consider the vulnerability of these sharks to predation.
Collapse
Affiliation(s)
- José E. Trujillo
- Department of Marine Science, University of Otago, Dunedin 9016, New Zealand,Author for correspondence ()
| | - Ian Bouyoucos
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville 4814, Australia,PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 66100 Perpignan, France,Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R2T 2N2, Canada
| | - William J. Rayment
- Department of Marine Science, University of Otago, Dunedin 9016, New Zealand
| | - Paolo Domenici
- CNR-IAS, Località Sa Mardini, 09170 Torregrande, Oristano, Italy,CNR-IBF, Area di Ricerca San Cataldo, Via G. Moruzzi N°1, 56124 Pisa, Italy
| | - Serge Planes
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 66100 Perpignan, France,Laboratoire d'Excellence CORAIL, EPHE, PSL Research University, UPVD, CNRS, USR 3278 CRIOBE, Papetoai 98729, French Polynesia
| | - Jodie L. Rummer
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville 4814, Australia,Marine Biology, College of Science and Engineering, James Cook University, Townsville 4814, Australia
| | - Bridie J. M. Allan
- Department of Marine Science, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
4
|
New Occurrences of the Tiger Shark ( Galeocerdo cuvier) (Carcharhinidae) off the Coast of Rio de Janeiro, Southeastern Brazil: Seasonality Indications. Animals (Basel) 2022; 12:ani12202774. [PMID: 36290161 PMCID: PMC9597784 DOI: 10.3390/ani12202774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 11/24/2022] Open
Abstract
The tiger shark Galeocerdo cuvier (Péron & Lesueur, 1822) (Carcharhinidae) is classified as near-threatened along the Brazilian coast, in line with its global categorization. Although Rio de Janeiro, located in southeastern Brazil, is internationally identified as a priority shark conservation area, many shark species, including tiger sharks, are landed by both industrial and artisanal fisheries in this state. However, there is a lack of detailed information on the species capture pressures and records for the state of Rio de Janeiro. Therefore, the aims of this study were to expand the tiger shark record database and to improve upon future conservation and management strategies. Tiger shark records from four coastal Rio de Janeiro regions were obtained by direct observation. The information obtained from fishery colonies/associations, environmental guards, researchers, and scientific articles, totaling 23 records, resulted in an approximately 5-fold increase in the number of tiger shark records off the coast of the state of Rio de Janeiro. A possible seasonality pattern concerning the size of the captured/observed animals was noted, emphasizing the need to consider the coast of Rio de Janeiro as an especially relevant area for at least part of the life history of tiger sharks.
Collapse
|
5
|
Smukall MJ, Carlson J, Kessel ST, Guttridge TL, Dhellemmes F, Seitz AC, Gruber S. Thirty-five years of tiger shark Galeocerdo cuvier relative abundance near Bimini, The Bahamas, and the Southeastern United States with a comparison across jurisdictional bounds. JOURNAL OF FISH BIOLOGY 2022; 101:13-25. [PMID: 35446438 DOI: 10.1111/jfb.15067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 10/17/2021] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Abundances of large sharks are reported to have declined worldwide, and in response various levels of fisheries management and conservation efforts have been established. For example, marine-protected areas have been suggested as a means to protect large expanses of ocean from fishing and other industrial activities (e.g., habitat destruction), and in 2011 The Commonwealth of The Bahamas established The Bahamas Shark Sanctuary. Nonetheless, assessing the effectiveness of conservation efforts is challenging because consistent long-term data sets of shark abundances are often lacking, especially throughout the Caribbean and The Bahamas. In this study, the authors investigated the catch rates and demographics of tiger sharks Galeocerdo cuvier caught in a fishery-independent survey near Bimini, The Bahamas, from 1984 to 2019 to assess relative abundance trends following the banning of longline fishing in 1993 and the subsequent establishment of the shark sanctuary. To contextualize the relative abundance trends near Bimini, the authors compared this to the relative abundance of tiger sharks in a fishery-dependent survey from the Southeastern USA (SE USA), conducted from 1994 to 2019. The data of this study suggest that local abundance of tiger sharks has been stable near Bimini since the 1980s, including after the ban of longline fishing and the implementation of the shark sanctuary. In comparison, the abundance near the SE USA has slowly increased in the past decade, following potential declines in the decade preceding the USA Shark Management Plan. The results of this study provide some optimism that current conservation efforts in The Bahamas have been effective to maintain local tiger shark abundance within the protected area. In addition, current fisheries management in the SE USA is allowing this species to recover within those waters.
Collapse
Affiliation(s)
- Matthew J Smukall
- Bimini Biological Field Station Foundation, Bimini, The Bahamas
- University of Alaska Fairbanks, College of Fisheries and Ocean Sciences, Fairbanks, Alaska, USA
| | - John Carlson
- National Oceanic and Atmospheric Administration, Panama City, Florida, USA
| | - Steven T Kessel
- Bimini Biological Field Station Foundation, Bimini, The Bahamas
- Shedd Aquarium, Chicago, Illinois, USA
| | - Tristan L Guttridge
- Bimini Biological Field Station Foundation, Bimini, The Bahamas
- Saving the Blue, Cooper City, Florida, USA
| | - Félicie Dhellemmes
- Bimini Biological Field Station Foundation, Bimini, The Bahamas
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Andrew C Seitz
- University of Alaska Fairbanks, College of Fisheries and Ocean Sciences, Fairbanks, Alaska, USA
| | - Samuel Gruber
- Bimini Biological Field Station Foundation, Bimini, The Bahamas
| |
Collapse
|
6
|
Lubitz N, Bradley M, Sheaves M, Hammerschlag N, Daly R, Barnett A. The role of context in elucidating drivers of animal movement. Ecol Evol 2022; 12:e9128. [PMID: 35898421 PMCID: PMC9309038 DOI: 10.1002/ece3.9128] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/10/2022] [Accepted: 07/01/2022] [Indexed: 11/26/2022] Open
Abstract
Despite its consequences for ecological processes and population dynamics, intra-specific variability is frequently overlooked in animal movement studies. Consequently, the necessary resolution to reveal drivers of individual movement decisions is often lost as animal movement data are aggregated to infer average or population patterns. Thus, an empirical understanding of why a given movement pattern occurs remains patchy for many taxa, especially in marine systems. Nonetheless, movement is often rationalized as being driven by basic life history requirements, such as acquiring energy (feeding), reproduction, predator-avoidance, and remaining in suitable environmental conditions. However, these life history requirements are central to every individual within a species and thus do not sufficiently account for the high intra-specific variability in movement behavior and hence fail to fully explain the occurrence of multiple movement strategies within a species. Animal movement appears highly context dependent as, for example, within the same location, the behavior of both resident and migratory individuals is driven by life history requirements, such as feeding or reproduction, however different movement strategies are utilized to fulfill them. A systematic taxa-wide approach that, instead of averaging population patterns, incorporates and utilizes intra-specific variability to enable predictions as to which movement patterns can be expected under a certain context, is needed. Here, we use intra-specific variability in elasmobranchs as a case study to introduce a stepwise approach for studying animal movement drivers that is based on a context-dependence framework. We examine relevant literature to illustrate how this context-focused approach can aid in reliably identifying drivers of a specific movement pattern. Ultimately, incorporating behavioral variability in the study of movement drivers can assist in making predictions about behavioral responses to environmental change, overcoming tagging biases, and establishing more efficient conservation measures.
Collapse
Affiliation(s)
- Nicolas Lubitz
- College of Science and EngineeringJames Cook UniversityTownsvilleQueenslandAustralia
| | - Michael Bradley
- Marine Data Technology HubCollege of Science and EngineeringJames Cook UniversityTownsvilleQueenslandAustralia
| | - Marcus Sheaves
- Marine Data Technology HubCollege of Science and EngineeringJames Cook UniversityTownsvilleQueenslandAustralia
| | - Neil Hammerschlag
- Rosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiamiFloridaUSA
| | - Ryan Daly
- Oceanographic Research InstituteDurbanSouth Africa
- South African Institute for Aquatic Biodiversity (SAIAB)MakhandaSouth Africa
| | - Adam Barnett
- Marine Data Technology HubCollege of Science and EngineeringJames Cook UniversityTownsvilleQueenslandAustralia
| |
Collapse
|
7
|
Hammerschlag N, McDonnell LH, Rider MJ, Street GM, Hazen EL, Natanson LJ, McCandless CT, Boudreau MR, Gallagher AJ, Pinsky ML, Kirtman B. Ocean warming alters the distributional range, migratory timing, and spatial protections of an apex predator, the tiger shark (Galeocerdo cuvier). GLOBAL CHANGE BIOLOGY 2022; 28:1990-2005. [PMID: 35023247 PMCID: PMC9305416 DOI: 10.1111/gcb.16045] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/14/2021] [Accepted: 12/12/2021] [Indexed: 05/07/2023]
Abstract
Given climate change threats to ecosystems, it is critical to understand the responses of species to warming. This is especially important in the case of apex predators since they exhibit relatively high extinction risk, and changes to their distribution could impact predator-prey interactions that can initiate trophic cascades. Here we used a combined analysis of animal tracking, remotely sensed environmental data, habitat modeling, and capture data to evaluate the effects of climate variability and change on the distributional range and migratory phenology of an ectothermic apex predator, the tiger shark (Galeocerdo cuvier). Tiger sharks satellite tracked in the western North Atlantic between 2010 and 2019 revealed significant annual variability in the geographic extent and timing of their migrations to northern latitudes from ocean warming. Specifically, tiger shark migrations have extended farther poleward and arrival times to northern latitudes have occurred earlier in the year during periods with anomalously high sea-surface temperatures. A complementary analysis of nearly 40 years of tiger shark captures in the region revealed decadal-scale changes in the distribution and timing of shark captures in parallel with long-term ocean warming. Specifically, areas of highest catch densities have progressively increased poleward and catches have occurred earlier in the year off the North American shelf. During periods of anomalously high sea-surface temperatures, movements of tracked sharks shifted beyond spatial management zones that had been affording them protection from commercial fishing and bycatch. Taken together, these study results have implications for fisheries management, human-wildlife conflict, and ecosystem functioning.
Collapse
Affiliation(s)
- Neil Hammerschlag
- Rosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiamiFloridaUSA
- Leonard & Jayne Abess Center for Ecosystem Science and PolicyUniversity of MiamiCoral GablesFloridaUSA
| | - Laura H. McDonnell
- Leonard & Jayne Abess Center for Ecosystem Science and PolicyUniversity of MiamiCoral GablesFloridaUSA
| | - Mitchell J. Rider
- Rosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiamiFloridaUSA
| | - Garrett M. Street
- Department of Wildlife, Fisheries, and AquacultureMississippi State UniversityStarkvilleMississippiUSA
- Quantitative Ecology and Spatial Technologies LaboratoryMississippi State UniversityStarkvilleMississippiUSA
| | - Elliott L. Hazen
- Environmental Research DivisionNOAA Southwest Fisheries Science CenterMontereyCaliforniaUSA
| | - Lisa J. Natanson
- National Marine Fisheries ServiceNarragansett LaboratoryNOAA Northeast Fisheries Science CenterNarragansettRhode IslandUSA
| | - Camilla T. McCandless
- National Marine Fisheries ServiceNarragansett LaboratoryNOAA Northeast Fisheries Science CenterNarragansettRhode IslandUSA
| | - Melanie R. Boudreau
- Department of Wildlife, Fisheries, and AquacultureMississippi State UniversityStarkvilleMississippiUSA
- Quantitative Ecology and Spatial Technologies LaboratoryMississippi State UniversityStarkvilleMississippiUSA
| | | | - Malin L. Pinsky
- Department of Ecology, Evolution, and Natural ResourcesRutgers, The State University of New JerseyNew BrunswickNew JerseyUSA
| | - Ben Kirtman
- Rosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiamiFloridaUSA
| |
Collapse
|
8
|
Rangel BDS, Moreira RG, Niella YV, Sulikowski JA, Hammerschlag N. Metabolic and nutritional condition of juvenile tiger sharks exposed to regional differences in coastal urbanization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146548. [PMID: 34030348 DOI: 10.1016/j.scitotenv.2021.146548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/08/2021] [Accepted: 03/13/2021] [Indexed: 05/23/2023]
Abstract
How varying levels of human activity, such as proximity and size of the nearest market (i.e., market gravity), influence the nutritional ecology and physiological condition of highly migratory marine predators is poorly understood. In the present study, we used a non-lethal approach to compare the concentration of metabolic hormones (i.e. corticosteroids and thyroid hormones) and plasma fatty acids between juvenile female tiger sharks (Galeocerdo cuvier) sampled in two areas of the subtropical north Atlantic, which differed markedly in their levels of coastal urbanization, Florida and the Bahamas (high versus low, respectively). We hypothesized that juvenile female tiger sharks sampled in water surrounding high coastal urbanization (Florida), would exhibit evidence of lower prey quality and higher energetic demands as compared to individuals sampled in relatively less urbanized areas of Northern Bahamas. Results revealed that relative corticosteroid levels (a proxy for energy mobilization) were higher in juvenile female tiger sharks sampled in Florida; however, no differences were found in concentrations of thyroid hormones (proxies of energetic adjustments) between the two locations. We found higher percentages of omega-3 polyunsaturated fatty acids (indicative of high prey quality) in juvenile tiger sharks from Florida, whereas higher percentages of bacterial markers (often indicative of domestic sewage effluent) were detected in the individuals sampled in the Bahamas. Taken together, these findings do not suggest that the differences in nutritional quality and metabolic condition found between the two sampling locations can be fully attributed to foraging in areas exposed to differing levels of urbanization. We speculate that these patterns may be due to the highly migratory nature and generalist feeding strategy of this species, even at the juvenile life stage, as well as proximity of sampling locations from shore.
Collapse
Affiliation(s)
- Bianca de Sousa Rangel
- Laboratório de Metabolismo e Reprodução de Organismos Aquáticos, Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, travessa 14, 321, CEP 05508-090, Cidade Universitária, São Paulo, SP, Brazil.
| | - Renata Guimarães Moreira
- Laboratório de Metabolismo e Reprodução de Organismos Aquáticos, Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, travessa 14, 321, CEP 05508-090, Cidade Universitária, São Paulo, SP, Brazil
| | - Yuri Vieira Niella
- Department of Biological Sciences, Macquarie University, North Ryde, New South Wales 2113, Australia
| | - James A Sulikowski
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA
| | - Neil Hammerschlag
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA; Leonard and Jayne Abess Center for Ecosystem Science and Policy, University of Miami, Coral Gables, FL 33146, USA
| |
Collapse
|
9
|
Pahl KB, Yurkowski DJ, Wintner SP, Cliff G, Dicken ML, Hussey NE. Determining the appropriate pretreatment procedures and the utility of liver tissue for bulk stable isotope (δ 13 C and δ 15 N) studies in sharks. JOURNAL OF FISH BIOLOGY 2021; 98:829-841. [PMID: 33251592 DOI: 10.1111/jfb.14635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 11/11/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
Stable-isotope analysis (SIA) provides a valuable tool to address complex questions pertaining to elasmobranch ecology. Liver, a metabolically active, high turnover tissue (~166 days for 95% turnover), has the potential to reveal novel insights into recent feeding/movement behaviours of this diverse group. To date, limited work has used this tissue, but ecological application of SIA in liver requires consideration of tissue preparation techniques given the potential for high concentrations of urea and lipid that could bias δ13 C and δ15 N values (i.e., result in artificially lower δ13 C and δ15 N values). Here we investigated the effectiveness of (a) deionized water washing (WW) for urea removal from liver tissue and (b) chloroform-methanol for extraction of lipids from this lipid rich tissue. We then (a) established C:N thresholds for deriving ecologically relevant liver isotopic values given complications of removing all lipid and (b) undertook a preliminary comparison of δ13 C values between tissue pairs (muscle and liver) to test if observed isotopic differences correlated with known movement behaviour. Tests were conducted on four large shark species: the dusky (DUS, Carcharhinus obscurus), sand tiger (RAG, Carcharias taurus), scalloped hammerhead (SCA, Sphyrna lewini) and white shark (GRE, Carcharodon carcharias). There was no significant difference in δ15 N values between lipid-extracted (LE) liver and lipid-extracted/water washed (WW) treatments, however, WW resulted in significant increases in %N, δ13 C and %C. Following lipid extraction (repeated three times), some samples were still biased by lipids. Our species-specific "C:N thresholds" provide a method to derive ecologically viable isotope data given the complexities of this lipid rich tissue (C:N thresholds of 4.0, 3.6, 4.7 and 3.9 for DUS, RAG, SCA and GRE liverLEWW tissue, respectively). The preliminary comparison of C:N threshold corrected liver and muscle δ13 C values corresponded with movement/habitat behaviours for each shark; minor differences in δ13 C values were observed for known regional movements of DUS and RAG (δ13 CDiffs = 0.24 ± 0.99‰ and 0.57 ± 0.38‰, respectively), while SCA and GRE showed greater differences (1.24 ± 0.63‰ and 1.08 ± 0.71‰, respectively) correlated to large-scale movements between temperate/tropical and pelagic/coastal environments. These data provide an approach for the successful application of liver δ13 C and δ15 N values to examine elasmobranch ecology.
Collapse
Affiliation(s)
- K Blue Pahl
- Department of Integrative Biology, University of Windsor, Windsor, Ontario, Canada
| | - David J Yurkowski
- Fisheries and Oceans Canada, Freshwater Institute, Winnipeg, Manitoba, Canada
| | - Sabine P Wintner
- KwaZulu-Natal Sharks Board, Maritime Centre of Excellence, Umhlanga Rocks, Umhlanga, South Africa
- Biomedical Resource Unit, University of KwaZulu-Natal, Durban, South Africa
- College of Agriculture, Engineering and Science, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Geremy Cliff
- KwaZulu-Natal Sharks Board, Maritime Centre of Excellence, Umhlanga Rocks, Umhlanga, South Africa
- Biomedical Resource Unit, University of KwaZulu-Natal, Durban, South Africa
- College of Agriculture, Engineering and Science, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Matthew L Dicken
- KwaZulu-Natal Sharks Board, Maritime Centre of Excellence, Umhlanga Rocks, Umhlanga, South Africa
- Department of Development Studies, School of Economics, Development and Tourism, Nelson Mandela University, Port Elizabeth, South Africa
- College of Agriculture, Engineering and Science, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Nigel E Hussey
- Department of Integrative Biology, University of Windsor, Windsor, Ontario, Canada
| |
Collapse
|
10
|
Souza-Araujo J, Souza-Junior OG, Guimarães-Costa A, Hussey NE, Lima MO, Giarrizzo T. The consumption of shark meat in the Amazon region and its implications for human health and the marine ecosystem. CHEMOSPHERE 2021; 265:129132. [PMID: 33307506 DOI: 10.1016/j.chemosphere.2020.129132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
Here, we evaluated the levels of As, Hg, Pb, and Cd in shark meat sold along the Amazon Coast of Brazil and used nitrogen stable isotope values to determine trophic position and to assess element biomagnification. From market samples, a total of 13 species were identified via molecular analysis, including those listed as endangered and vulnerable by the IUCN Red List. Arsenic was present in significantly higher concentrations than all other elements, followed by Hg, with the highest mean concentrations recorded in M. higmani (As: 19.46 ± 8.79 μg/g ww) and C. acronotus (Hg: 1.12 ± 0.68 μg/g ww). Lead and Cd were recorded at much lower levels in all species. The EWI of individual elements were above PTWI for all species when considering Hg, seven species for inorganic arsenic (iAs), and one species for Pb. The weekly consumption of 10 species should be reduced to less than 416.39 g, which is equivalent to the daily estimated fish consumption rate in the region. The mean (±SD) δ15N values of species ranged from 10.7 ± 0.51‰ in M. higmani to 14.2 ± 0.59‰ in C. porosus, indicating feeding over >1 trophic level. Arsenic was negatively correlated with δ15N values, while Hg was positively correlated indicating biodilution and biomagnification, respectively. Our results indicate that the sale and consumption of shark meat will expose consumers to potentially harmful levels of iAs and Hg, as well as contributing to the population decline of species including those that are currently categorized as threatened.
Collapse
Affiliation(s)
- J Souza-Araujo
- Núcleo de Ecologia Aquática e Pesca da Amazônia, Universidade Federal Do Pará, Av. Perimetral 2651, 66040170, Belém, PA, Brazil.
| | - O G Souza-Junior
- Núcleo de Ecologia Aquática e Pesca da Amazônia, Universidade Federal Do Pará, Av. Perimetral 2651, 66040170, Belém, PA, Brazil.
| | - A Guimarães-Costa
- Instituto de Estudos Costeiros, Universidade Federal Do Pará, Alameda Leandro Ribeiro, 68600 - 000, Bragança, PA, Brazil.
| | - N E Hussey
- Integrative Biology, University of Windsor, Windsor, Ontario, N9B 3P4, Canada.
| | - M O Lima
- Instituto Evandro Chagas. Seção de Meio Ambiente. Rodovia BR-316, Km 7, S/N, 67030000, Ananindeua, PA, Brazil.
| | - T Giarrizzo
- Núcleo de Ecologia Aquática e Pesca da Amazônia, Universidade Federal Do Pará, Av. Perimetral 2651, 66040170, Belém, PA, Brazil.
| |
Collapse
|
11
|
Andrzejaczek S, Gleiss AC, Lear KO, Pattiaratchi C, Chapple TK, Meekan MG. Depth-dependent dive kinematics suggest cost-efficient foraging strategies by tiger sharks. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200789. [PMID: 32968529 PMCID: PMC7481696 DOI: 10.1098/rsos.200789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Tiger sharks, Galeocerdo cuvier, are a keystone, top-order predator that are assumed to engage in cost-efficient movement and foraging patterns. To investigate the extent to which oscillatory diving by tiger sharks conform to these patterns, we used a biologging approach to model their cost of transport. High-resolution biologging tags with tri-axial sensors were deployed on 21 tiger sharks at Ningaloo Reef for durations of 5-48 h. Using overall dynamic body acceleration as a proxy for energy expenditure, we modelled the cost of transport of oscillatory movements of varying geometries in both horizontal and vertical planes for tiger sharks. The cost of horizontal transport was minimized by descending at the smallest possible angle and ascending at an angle of 5-14°, meaning that vertical oscillations conserved energy compared to swimming at a level depth. The reduction of vertical travel costs occurred at steeper angles. The absolute dive angles of tiger sharks increased between inshore and offshore zones, presumably to reduce the cost of transport while continuously hunting for prey in both benthic and surface habitats. Oscillatory movements of tiger sharks conform to strategies of cost-efficient foraging, and shallow inshore habitats appear to be an important habitat for both hunting prey and conserving energy while travelling.
Collapse
Affiliation(s)
- Samantha Andrzejaczek
- Oceans Graduate School and The UWA Oceans Institute, The University of Western Australia, Crawley, Western Australia 6009, Australia
- The Australian Institute of Marine Science, Crawley, Western Australia 6009, Australia
| | - Adrian C. Gleiss
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Karissa O. Lear
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Charitha Pattiaratchi
- Oceans Graduate School and The UWA Oceans Institute, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Taylor K. Chapple
- Coastal Oregon Marine Experiment Station, Oregon State University, Newport, OR 97365, USA
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, 93950, USA
| | - Mark G. Meekan
- The Australian Institute of Marine Science, Crawley, Western Australia 6009, Australia
| |
Collapse
|
12
|
Raoult V, Broadhurst MK, Peddemors VM, Williamson JE, Gaston TF. Resource use of great hammerhead sharks (Sphyrna mokarran) off eastern Australia. JOURNAL OF FISH BIOLOGY 2019; 95:1430-1440. [PMID: 31613987 DOI: 10.1111/jfb.14160] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
Great hammerhead sharks Sphyrna mokarran are the largest member of Sphyrnidae, yet the roles of these large sharks in the food webs of coastal ecosystems are still poorly understood. Here we obtained samples of muscle, liver and vertebrae from large S. mokarran (234-383 cm total length; LT ) caught as by-catch off eastern Australia and used stable-isotope analyses of δ15 N, δ13 C and δ34 S to infer their resource use and any associated ontogenetic patterns. The results indicated large S. mokarran are apex predators primarily relying on other sharks and rays for their diet, with a preference for benthic resources such as Australian cownose rays Rhinoperon neglecta during the austral summer. Teleosts, cephalopods and crustaceans were not significant components of S. mokarran diets, though some conspecifics appeared to rely on more diverse resources over the austral summer. Ontogenetic shifts in resource use were detected but trajectories of the increases in trophic level varied among individuals. Most S. mokarran had non-linear trajectories in ontogenetic resource-use shifts implying size was not the main explanatory factor. Stable isotope values of δ13 C and δ34 S in muscle suggest S. mokarran span coastal, pelagic and benthic food webs in eastern Australia.
Collapse
Affiliation(s)
- Vincent Raoult
- School of Environmlental and Life Sciences, University of Newcastle, Ourimbah, Australia
| | - Matt K Broadhurst
- New South Wales Department of Industries, Fisheries Conservation Technology Unit, National Marine Science Centre, Coffs Harbour, Australia
| | - Vic M Peddemors
- New South Wales of Department of Primary Industries, Fisheries, Sydney Institute of Marine Science, Mosman, Australia
| | - Jane E Williamson
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| | - Troy F Gaston
- School of Environmlental and Life Sciences, University of Newcastle, Ourimbah, Australia
| |
Collapse
|
13
|
Peel LR, Daly R, Keating Daly CA, Stevens GMW, Collin SP, Meekan MG. Stable isotope analyses reveal unique trophic role of reef manta rays ( Mobula alfredi) at a remote coral reef. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190599. [PMID: 31598296 PMCID: PMC6774984 DOI: 10.1098/rsos.190599] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 08/08/2019] [Indexed: 06/10/2023]
Abstract
Stable isotope analyses provide the means to examine the trophic role of animals in complex food webs. Here, we used stable isotope analyses to characterize the feeding ecology of reef manta rays (Mobula alfredi) at a remote coral reef in the Western Indian Ocean. Muscle samples of M. alfredi were collected from D'Arros Island and St. Joseph Atoll, Republic of Seychelles, in November 2016 and 2017. Prior to analysis, lipid and urea extraction procedures were tested on freeze-dried muscle tissue in order to standardize sample treatment protocols for M. alfredi. The lipid extraction procedure was effective at removing both lipids and urea from samples and should be used in future studies of the trophic ecology of this species. The isotopic signatures of nitrogen (δ15N) and carbon (δ13C) for M. alfredi differed by year, but did not vary by sex or life stage, suggesting that all individuals occupy the same trophic niche at this coral reef. Furthermore, the isotopic signatures for M. alfredi differed to those for co-occurring planktivorous fish species also sampled at D'Arros Island and St. Joseph Atoll, suggesting that the ecological niche of M. alfredi is unique. Pelagic zooplankton were the main contributor (45%) to the diet of M. alfredi, combined with emergent zooplankton (38%) and mesopelagic prey items (17%). Given the extent of movement that would be required to undertake this foraging strategy, individual M. alfredi are implicated as important vectors of nutrient supply around and to the coral reefs surrounding D'Arros Island and St. Joseph Atoll, particularly where substantial site fidelity is displayed by these large elasmobranchs.
Collapse
Affiliation(s)
- Lauren R. Peel
- School of Biological Sciences, The Oceans Graduate School, The University of Western Australia, Crawley, Western Australia 6009, Australia
- The Australian Institute of Marine Science, Crawley, Western Australia 6009, Australia
- Save Our Seas Foundation – D'Arros Research Centre (SOSF-DRC), Rue Philippe Plantamour 20, 1201 Genève, Switzerland
- The Manta Trust, Catemwood House, Norwood Lane, Corscombe, Dorset DT2 0NT, UK
| | - Ryan Daly
- Save Our Seas Foundation – D'Arros Research Centre (SOSF-DRC), Rue Philippe Plantamour 20, 1201 Genève, Switzerland
- South African Institute for Aquatic Biodiversity (SAIAB), Private Bag 1015, Grahamstown 6140, South Africa
| | - Clare A. Keating Daly
- Save Our Seas Foundation – D'Arros Research Centre (SOSF-DRC), Rue Philippe Plantamour 20, 1201 Genève, Switzerland
| | - Guy M. W. Stevens
- The Manta Trust, Catemwood House, Norwood Lane, Corscombe, Dorset DT2 0NT, UK
| | - Shaun P. Collin
- School of Biological Sciences, The Oceans Graduate School, The University of Western Australia, Crawley, Western Australia 6009, Australia
- School of Life Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Mark G. Meekan
- The Australian Institute of Marine Science, Crawley, Western Australia 6009, Australia
| |
Collapse
|
14
|
Sievers M, Brown CJ, Tulloch VJ, Pearson RM, Haig JA, Turschwell MP, Connolly RM. The Role of Vegetated Coastal Wetlands for Marine Megafauna Conservation. Trends Ecol Evol 2019; 34:807-817. [DOI: 10.1016/j.tree.2019.04.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/25/2019] [Accepted: 04/02/2019] [Indexed: 11/30/2022]
|
15
|
Nowicki R, Heithaus M, Thomson J, Burkholder D, Gastrich K, Wirsing A. Indirect legacy effects of an extreme climatic event on a marine megafaunal community. ECOL MONOGR 2019. [DOI: 10.1002/ecm.1365] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Robert Nowicki
- International Center for Coral Reef Research and Restoration Mote Marine Laboratory 24244 Overseas Highway Summerland Key Florida 33042 USA
- Department of Biological Sciences and Marine Education and Research Initiative Florida International University Miami Florida 33199 USA
| | - Michael Heithaus
- Department of Biological Sciences and Marine Education and Research Initiative Florida International University Miami Florida 33199 USA
| | - Jordan Thomson
- School of Life and Environmental Sciences Deakin University Warrnambool Campus Warrnambool Victoria 3280 Australia
| | - Derek Burkholder
- Guy Harvey Research Institute Nova Southeastern University Ft Lauderdale Florida 33314 USA
| | - Kirk Gastrich
- Department of Biological Sciences and Marine Education and Research Initiative Florida International University Miami Florida 33199 USA
| | - Aaron Wirsing
- School of Environmental and Forest Sciences University of Washington Box 352100 Seattle Washington 98195 USA
| |
Collapse
|
16
|
Connan M, Hall G, Smale M. Effects of pre-treatments on bulk stable isotope ratios in fish samples: A cautionary note for studies comparisons. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:291-302. [PMID: 30414205 DOI: 10.1002/rcm.8344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/28/2018] [Accepted: 10/29/2018] [Indexed: 06/08/2023]
Abstract
RATIONALE Stable isotope analysis (SIA) has revolutionised ecological studies over the past thirty years. One of the major fields where SIA is applied in the marine environment is related to the definition of ecosystem structure and function. With marine top predators such as sharks, SIA is a method of choice because tissue samples can be collected without the sacrifice of the animal. In elasmobranch research, the influence of compounds such as urea, trimethylamine oxide and lipids must be considered when using stable isotopes as ecological markers. Currently, a range of pre-treatments are used to chemically remove these molecules prior to SIA. METHODS This study investigated the impact of eleven commonly used pre-treatments on carbon and nitrogen contents and C:N atomic ratio, as well as carbon and nitrogen SI ratios in elasmobranch tissues and its prey, measured by isotope ratio mass spectrometry. Three tissues were tested: blood and muscle of the ragged-tooth shark Carcharias taurus, and muscle of one teleost species, the Cape knifejaw Oplegnathus conwayi. RESULTS Compared with untreated samples, no trend or generalisation could be highlighted with the influence of pre-treatments being species-, tissue- and chemical-element-dependent. For the δ13 C and δ15 N values, differences among pre-treatments were as high as 3‰, therefore potentially leading to erroneous ecological interpretation. CONCLUSIONS The chemical properties of compounds (e.g. urea, lipids) combined with the polarity of solutions (e.g. water, solvents) explained a large part of these observations. This study highlights that pre-treatments need to be considered especially when comparing carbon and nitrogen stable isotope ratios between studies. The results of this study provide a call to all stable isotope researchers to make a concerted effort to standardise pre-treatment methods. This is crucial as global reviews are becoming increasingly more informative.
Collapse
Affiliation(s)
- Maëlle Connan
- Institute for Coastal and Marine Research, Marine Apex Predator Research Unit, Department of Zoology, Nelson Mandela University, PO Box 77000, Port Elizabeth, 6031, South Africa
| | - Grant Hall
- UP Stable Isotope Laboratory, Mammal Research Institute, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | - Malcolm Smale
- Institute for Coastal and Marine Research, Marine Apex Predator Research Unit, Department of Zoology, Nelson Mandela University, PO Box 77000, Port Elizabeth, 6031, South Africa
- Port Elizabeth Museum, PO Box 13147 Humewood, Port Elizabeth, 6013, South Africa
| |
Collapse
|